
1
MATLAB Primer

1

2 MATLAB PRIMER

MATLAB is a software tool and programming environment that has become commonplace among scientists and
engineers. For the engineering professional it is a useful programming language for scientific computing, data pro-
cessing, and visualization of results. Many useful mathematical functions and graphical features are integrated with
the language. MATLAB is a powerful language for many applications as it has high-level functionality for science
and engineering applications coupled with the flexibility of a general-purpose programming environment. Through-
out this course, we primarily use MATLAB for simulating dynamic systems and the analysis and visualization of
experimental data.

This chapter does not provide a complete description of MATLAB programming, but rather an introduction to the
basic capability and the basic syntax. As the title says, this chapter is a primer, not complete product documentation.
In this chapter we provide some simple examples to get the student started and familiar with programming in the
environment. There is extensive documentation on the Mathworks web site as well as the help feature built into the
MATLAB environment. All the commands presented in this chapter have detailed explanations of the functionality
via the built in help. This chapter is also not a general introduction to programming.

Most of the functionality will be presented through very simple (trivial) examples, just to present the basic
syntax and capability. More complete and complicated programs are included at the end of the chapter. If you are
an experienced programmer, you should pay particular attention to the sections on array operations and mathematics
as this feature is one of the biggest differences with traditional programming languages.

We emphasize that this chapter is only an introduction to the basic functionality of MATLAB. There is much
more to learn than contained here. Also, you should not feel frustrated if you do not understand everything the first
time you read this. Programming requires time to learn and much practice. We will be using MATLAB throughout
this course so you will get plenty of time to practice; this is only the start.

To get the most out of this chapter you should read the notes with MATLAB open and type each command
and write each program as you read this primer. Make some variations so that you understand each command and
program. There are problems in the chapter meant to give you practice programming in MATLAB. Depending
on your past programming experience these activities may vary in difficulty, it will likely be very challenging for
someone who has never programmed in the past. Do not worry about the “deliverables” with each problem. The
main objective of the problems is to provide some example applications to give you practice and a chance to explore.

1.1 GETTING STARTED

The focus of the MATLAB graphical user interface (GUI) is the command window. In the command window you
can type MATLAB instructions, the instructions will be executed instantaneously and the result will be displayed
in the window. You may also store a sequence of commands in a file so that you may run a long sequence of
instructions. We will get to that later, but we will start with running all our instructions in interactive mode. In
the MATLAB command window the characters » indicate the prompt. The prompt is waiting for you to type a
command to be executed. The notation for commands in this primer is,

» command;

which simply means you should type “command;” at the MATLAB prompt. If a semi-colon is placed at the end
of a command then all output from that command is suppressed and you will get the next prompt after execution.
If you do not type the semi-colon, any output from the command will be displayed. Many times in this primer we
use comments to help explain the purpose of each command. Comments are marked by the percent sign, MATLAB
ignores anything to the right of a percent sign. The comments allow the reader to follow written programs more
easily. We will make use of comments to clarify the intent, the format will follow

» command; %% This is a comment to describe this command

Finally, any command presented in this primer has further information via the integrated help manual. To find
details of commands that we present, simply type

» help command

which will provide information on the inputs, outputs, usage, and functionality of the command. Most commands
have a variety of options that may be invoked and these are explained in the help. A listing of commands sorted by
functionality can be found by typing help.

CALCULATOR 3

1.2 CALCULATOR

The simplest function that MATLAB can perform is that of a very expensive calculator. You may go to the command
window and try typing in basic mathematical operations such as the following three examples,

» 4*9

ans =
36

» 12/8

ans =
1.5000

» 12+31 - (9*(2-9))/18

ans =
46.5000

after hitting the return key following each command you will receive the answers shown. Note the basic operators
are + for addition, - for subtraction, * for multiplication, and / for division. The order of operations follows
the convention of basic algebra such that if you type 8*4 + 3 or 8*(4 + 3) you will get the appropriate
answers. MATLAB understands most common mathematical operations such as trigonometric functions, expo-
nentials, complex numbers, and common constants. Try typing some of the following operations at the command
line.

» pi

ans =
3.1416

» cos(pi/6)

ans =
0.8660

» 2ˆ3

ans =
8

Some common mathematical functions are sqrt(x) for
� �

, xˆ y is
���

, log(x) is the base e logarithm of x,
log10(x) is the base 10 logarithm of x, cos(x) is cos � ��� , and exp is �	� . You can see what other elementary
functions are known to MATLAB by typing » help elfun. For the usage of any of these commands you can
type, for example, » help acos and to get help on the usage of the inverse cosine function. The value you
provide the function is called the argument and always must be included in parentheses after the function name.

1.3 VARIABLES

We can start to make the calculator a little more useful if we store data into variables so that we can collect the
results of lengthy calculations in a straightforward manner. The following commands are examples of assignment
statements.

» x = 4.8;
» y = 7;
» z = x*y;

These commands define three variables, x, y and z and assign their values 4.8, 7 and 33.6 respectively. If we
type the commands as listed above, we will simply receive the prompt after hitting return (because we included the
semicolon). To understand what MATLAB has done, type whos. The whos command lists all variables that are

4 MATLAB PRIMER

stored in the local workspace, or memory. After typing whos, we will see that MATLAB has created the variables
x, y, and z and stored them in the workspace.

» whos
Name Size Bytes Class
x 1x1 8 double array
y 1x1 8 double array
z 1x1 8 double array

Grand total is 3 elements using 24 bytes

To remove all variables from the workspace use the command,clear. If you now execute the whos command you
will find that the workspace is empty. You may also selectively remove variables from the workspace with clear
variable;. There is also a graphical window that displays the workspace interactively in a side window which
you may activate.
There is no difference between the way integers or real numbers are used in MATLAB. All variables thus far are
listed as an eight byte, 1x1 element, double array. In many programming languages, such as C, there is a difference
between mathematics and storage of integer and real numbers, but not so in MATLAB. In the whos listing, the 1x1
refers to the fact that the variables are single entry of a table of numbers. We will demonstrate in short order that
MATLAB is efficient in working with tables, or arrays, of numbers. MATLAB always assumes all numbers are
tables - even if there is only one entry. To view the values assigned to the variables, simply type the variable name
with no semi-colon.

» z

z =
33.6000

You can use almost any name you like for variables, but there are restrictions. You must start each variable name
with a letter, but numbers may follow (a2 is fine, 2a is not). You may not use spaces to separate words in a long
variable name, but you may use the underscore (long variable name is fine). You may not use other symbols
in the variables name. MATLAB also has many keywords that are part of the language and may not be used for
variables names. These keywords include for, if, else, elseif, while, function, return, continue,
global, persistent, break, case, otherwise, try, and catch. If you use these names in variables
you will receive an error immediately.

You may use variable names that match MATLAB function names, but this should always be avoided. Since
MATLAB has a special place for names such as pi and cos you should not use these as a variable name, though
you will be allowed to do so. If you use pi as a variable name and assign a value to it, it will no longer be available
as 3.14159. If you issue the command cos = 10 you will no longer be able to use the cosine function until you
clear the workspace.

1.4 ONE-DIMENSIONAL ARRAYS

In the last section we stored single numbers in variables. Often we have an entire series of data that we would like
to manipulate rather than a single number. One of the advantages of MATLAB is that when we create lists of data,
MATLAB can perform mathematical operations on those entire lists. Such lists are often called arrays or vectors.
We demonstrate the manipulation of these arrays by a series of simple examples.

When dealing with arrays the orientation is important. To create a column oriented and a row oriented array we
can type the following commands.

» x = [1; 2; 3] %% column

x =
1
2
3

» y = [1 2 3] %% row

y =
1 2 3

ONE-DIMENSIONAL ARRAYS 5

To view the workspace variables
» whos
Name Size Bytes Class

x 3x1 24 double array
y 1x3 24 double array

which shows that the size of the data arrays are 3x1 and 1x3 for x and y respectively. The size 3x1 means that
the data has three rows and one column. Note that spaces between elements create rows and semicolons create
columns. To find what information is contained in the first element of the array you can use the index enclosed in
parentheses to denote the position in the array,

» x(1)

ans =
1

which returns the first element of the array x. You can also access a range of elements in the array, for example,
» x(1:2)

ans =
1
2

returns the elements of the array ranging from the first and second position.
One fundamental advantage of MATLAB is the ability to perform mathematical operations on entire arrays of

data with one command. Using the basic mathematical operations we can multiply all the numbers in the array
by a constant, add a constant to each element of the array, or add two arrays - element by element. The following
commands demonstrate these concepts,

» x*4 %% multiply each number in the array by 4

ans =
4
8
12

» x+4 %% multiply each number in the array by 4

ans =
5
6
7

» x+x/5 %% sum of x and 1/5 of x

ans =
1.2000
2.4000
3.6000

We cannot add x and y as they are oriented in different directions, one is a row array and the other a column array,
and MATLAB will return an error. In order to add arrays they need to be the same size and the same orientation.

» x+y
??? Error using ==> +
Matrix dimensions must agree.

To change the orientation of an array use the function transpose or the shorthand ’.
» y’ %% flip the orientation of y

ans =
1
2
3

» x+y’ %% add x and y. flip y so x & y have same orientation

6 MATLAB PRIMER

ans =
2
4
6

» x+transpose(y) %% add x and y. flip y so x & y have same orientation

ans =
2
4
6

In order to perform an element by element multiplication (division) of two vectors, you must use the ”dot”
operations. The usual multiplication (division) sign will fail.

» x*x
??? Error using ==> *
Inner matrix dimensions must agree.

This error refers to a topic that is out of the scope of this course. MATLAB is a linear algebra package that performs
matrix vector operations quite succinctly. In linear algebra, a multiplication means something somewhat different
when dealing with one and two-dimensional arrays of data. We do not want to deal with linear algebra in this
course. In order to force an element by element multiplication operator on a list of numbers you need the “dot”
operator. The .* (dot multiply) operation performs x.*y = [x(1)*y(1); x(2)*y(2); x(3)*y(3)].
Observe the result of this series of examples.

» x.*x %% multiply x by itself, element by element

ans =
1
4
9

» x.ˆ2 %% take x to the second power, same as last command

ans =
1
4
9

» x./x %% divide x by itself, results in all ones
ans =

1
1
1

The reader with programming experience might notice this feature to be a time saver. In many languages, such
as C, when you wish to multiply each element of an array by a constant you must write a loop that explicitly
multiplies each element of the array. Such whole array notation is extremely useful and will be used frequently in
our MATLAB programs.

There are numerous methods to generate regular one-dimensional arrays. A simple way to create an array of
integers between zero and five is, t = [0:5]. Arrays of equally spaced numbers can also be created using the
command linspace, the function requires three arguments - the start value, the last value, and the number of
points. A variety of arrays of equally spaced points are generated as follows. Study the notation and experiment
with your own values. These commands are quite useful and commonly used throughout this course.

» t = [0:5] %% array runs from 0 to 5 in increments of 1

t =
0 1 2 3 4 5

» t = [0:.1:.5] %% array runs from 0 to .5 in increments of .1

t =
0 0.1000 0.2000 0.3000 0.4000 0.5000

PLOTTING 7

» t = linspace(0,.5,6) %% 6 element array from 0 to .5

t =
0 0.1000 0.2000 0.3000 0.4000 0.5000

» t = [0:5]/5 %% 6 element array from 0 to 1

t =
0 0.2000 0.4000 0.6000 0.8000 1.0000

1.5 PLOTTING

One of the most powerful features of MATLAB is that you have the opportunity to easily integrate graphics into your
calculations, analysis, and simulations. In this section we will demonstrate some of the basic plotting capabilities.
A simple example is to create a list of known points and evaluate a function (sine in this example) at these sample
points and plot the result. The basic usage of the plot command is plot(t,y) which generates a plot of t versus
y. The arrays x and y should be the same length and orientation. The commands xlabel and ylabel are used
to add text to the axis. When plotting data you should get into the habit of always labeling the axis. The following
set of commands will create generate a list of sample, points evaluate the sine function and the generate a plot of a
simple sinusoidal wave putting axis labels on the plot.

» t = linspace(0,1,200); %% create 200 points from 0 to 1
» f = sin(2*pi*t); %% evaluate sin(2*pi*t)
» plot(t,f); %% create the plot
» xlabel(’t’); %% add axis labels
» ylabel(’sin(2 pi t)’); %% add axis labels

You can create other interesting plots such as the unit circle,
» t = linspace(0,1,200); %% create 200 points from 0 to 1
» plot(cos(2*pi*t),sin(2*pi*t);
» xlabel(’cos’)
» ylabel(’sin’)

The appearance of plots can be manipulated either via simple commands embedded in your programs or you can
edit plots directly through the graphical user interface. You may click on the axes or the lines and change numerous
properties such as the line styles, the axis, the font sizes, colors, etc. Some of the more common controls are to
add different line-styles to distinguish between curves and controlling the axis limits on graphs, and adding legends
which are shown in the example below.

» t = linspace(0,2,200); %% create 200 points from 0 to 1
» clf; %% clears the current figure
» plot(t,exp(-t)); %% plots e-̂t
» hold on %% holds graphics for subsequent plots
» plot(t,exp(-3*t),’r--’); %% plots e-̂3t with red dashed line
» plot(t,exp(-5*t),’k .’); %% plots e-̂5t with black dash-dot line
» axis([0 1 0 1]); %% set the axis limits between 0 and 1
» xlabel(’t’); %% x-axis label
» legend(’eˆ � -t � ’,’eˆ � -3t � ’,’eˆ � -5t � ’) %% adds a legend

Embedding commands in your programs to change the appearance of plots is most important when the task is
repetitive and you may want to generate many plots that all look the same.

1.6 TWO-DIMENSIONAL ARRAYS

MATLAB also has syntax for dealing with two dimensional arrays, or tables of numbers. Many of the same rules
from one-dimensional data are directly extended. To create a simple array, three rows by three columns, you can
enter directly

» a = [1 2 3; 4 5 6; 7 8 9]
a =

1 2 3
4 5 6

8 MATLAB PRIMER

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

e−t

e−3t

e−5t

Fig. 1.1 The resulting plot for the commands typed in the above example of section 1.5.

7 8 9

Spaces indicate a change in column and semicolons a change in row. To access any particular element of this data
simply use the notation a(1,3) to access the first row, third column. To extract the second column of a you can
use the notation a(:,2) (meaning second column all rows)

» a(:,2)
ans =

2
5
8

or to extract the last row use the notation a(3,:) (meaning third row all columns)
» a(3,:)
ans =

7 8 9

It is also easy to extract a smaller two dimensional array. For example, the sub-array that consists of the first and
third rows and the second and third column is generated via

» a([1 3],2:3)

ans =

2 3
8 9

The notation for mathematical operations on the two-dimensional array of data is the same as with the one-
dimensional data. As before you can perform operations such as 3*a, a-5, or a/10 and the result will be that all
elements of a are multiplied by 3, have 5 subtracted, and are divided by 10 respectively. For example,

» 3*a

ans =
3 6 9
12 15 18
21 24 27

To perform multiplication, division, or powers on an element by element basis requires the “dot” operators. For
example to multiply the data element by element by itself try a.*a and a.ˆ 2 which should provide the same
result.

» a.ˆ2

ans =
1 4 9
16 25 36

RELATIONAL OPERATORS 9

0 1 2 3 4 5 6
0

2

4

6

8

10

12

X

Y

Fig. 1.2 The resulting plot for the commands typed in the above example of section 1.6 demonstrating the meshgrid and
contour commands.

49 64 81

The operation a./a will return an array of all ones.
» a./a

ans =
1 1 1
1 1 1
1 1 1

Care must be taken when using the multiply operation as you can easily introduce errors. When the array a, has
the same number of columns as there are rows in the array b, the the operation a*b is defined and will return an
answer. The result you obtain the matrix-matrix product of the two data arrays. This product is very different
than the element by element squaring of the array. Matrix-matrix products are covered in a standard linear algebra
course.

The two dimensional analogy to thelinspace command ismeshgrid. The commandmeshgrid transforms
the one-dimensional vectors into two-dimensional arrays that can be used for evaluating two dimensional functions
An example of the use of this function is provided below

» x = linspace(0,2*pi,100); %% x-axis ranges from 0 to 2 pi
» y = linspace(0,4*pi,100); %% y-axis ranges from 0 to 4 pi
» [X,Y] = meshgrid(x,y); %% create the 2-D array 100x100
» contour(x,y,sin(X).*sin(Y)); %% create contour plot of 2-D function
» xlabel(’X’)
» xlabel(’Y’)

These commands create a contour plot of the function sin � ��� sin ��� � on the domain ���
�
����� and ���

�
�
	�� .

The first two lines create the one-dimensional vector representing the points along the x and y axis where the
function is evaluated. The meshgrid command creates the two-dimensional arrays, X and Y. The next command
creates the function and plots the contours in a single command. In a similar manner, a mesh plot of the function
can be created using mesh(x,y,sin(X).*sin(Y)). In order to visualize the result of meshgrid, create a
contour plot of the two arrays, x and y. The array x should produce vertical contours and the array y should produce
horizontal contours.

1.7 RELATIONAL OPERATORS

The relational operators can be used to compare numbers. The usual relational operators are greater than >, less
than <, greater than or equal to >=, less than or equal to >=, equal to ==, and not equal to ˜ =. All of the operators
return either a one or a zero if the condition is true or false. We demonstrate this in a simple example where we
define two, one-dimensional arrays and apply the relational operators in turn. These same operators may be applied

10 MATLAB PRIMER

to two-dimensional data or single numbers. You should type each of these commands yourself and take note of the
answers that are returned.

» a = [1 2 3];
» b = [1 1 4];
» a>b

ans =
0 1 0

» a>b

ans =
0 0 1

» a<=b

ans =
1 0 1

» a>=b

ans =
1 1 0

» a==b

ans =
1 0 0

» a˜=b

ans =
0 1 1

Note that the operators are applied element by element. In the first example above, a(1) is not greater than b(1)
so ans(1) is false (zero), but a(2) is greater than b(2) so ans(2) is true (one), and a(3) is not greater than
b(3) so ans(3) is false (zero). A useful command that uses logical operators is find. This command returns
the index to the elements in the array that correspond to true from the relational operator. Some simple examples
of the find command are provided below.

» a = [-3:3]

a =
-3 -2 -1 0 1 2 3

» find(a >= 2)

ans =
6 7

» find(a==0)

ans =
4

» find(a > 10)

ans =
Empty matrix: 1-by-0

» find(a > mean(a))

ans =
5 6 7

SCRIPTS 11

In the first example above, we ask for the indices of all elements of a that are greater than or equal to 2, which are
the sixth and seventh elements.

1.8 SCRIPTS

Currently we have been typing MATLAB commands at the prompt. This is clearly not efficient if you want to write
programs of more than a few lines and programs that you might want to run repeatedly. As we will start writing
programs that are multiple lines long it is useful to write a script file so if a mistake is made it is easy to fix the script,
run it again, and reprocess the results. In MATLAB nomenclature this script file is called an m-file; an m-file is
only a text file that processes each line of the file as though you typed them at the command prompt. These scripts
can be written with any text editor, but it is best to use the editor that is included with MATLAB. In the graphical
user interface you can click File->New->M-File to launch the editor. One advantage of the MATLAB editor
is that colors are used to highlight keywords and comments. This will help you make fewer syntax mistakes when
typing your script for the first time.

The script may be executed by returning to the command window and typing the name of the script. In MATLAB,
you must be in the directory that the script file is located to run the program. To see what directly you are currently
in use the Unix command pwd. To list the contents of the current directory use ls. You may also access directory
information through the graphical user interface.

1.9 CONTROL FLOW

There are a variety of commands that allow us to control the flow of commands inside a program. We will present
some of the common ones through example in this section. A common construct is if-elseif-else structure. With
these commands we can allow different blocks of code to be executed depending on some condition. This if
structure allows the program to make decisions. Create the following program as a script file and execute it to study
the behavior.

x = 5;
if (x > 10)

y = 10;
elseif (x < 0)

y = 0;
else

y = x;
end

This simple program will result in ���
�

when � �
�
� � � , ��� � � when

�
is greater than 10, and ��� � when

� is negative. This very simple program has the following logic: the program starts by setting
�
��� (you should

change this number and run the program many times). The next line asks the question, is
�

greater than 10? If the
answer is true the program executes all the commands until it reaches an else, elseif, or end. In our example,
the answer is false so the program proceeds to the next else, elseif, or end statement. In this example the
program next asks the question, OK so x was not greater than 10, but is it less than zero? Again this statement is
false in our example so the program proceeds the else statement. At the else statement the program gives up and
says; OK neither of those conditions were true, so now execute these lines of code and set ���

�
. If

�
were set equal

to 11 then the first condition would be true and the program would set
�
� � � , and then jump to the end statement

that closes the if-else block. Programming convention is to indent blocks of code that are surrounded by if-else-end
statements. The indentation makes the code easier to read and debug, especially if the blocks of conditional code
are lengthy. The MATLAB m-file editor will do the indentation automatically for you.

Another common control flow construct is the for loop. The for loop is simply an iteration loop that tells the
computer to repeat some task a given number of times. The format of a for-loop is

» for i=1:3
» i
» end

i =
1

i =

12 MATLAB PRIMER

2
i =

3

The above for-loop says that the variable � will be taken in increments of 1 (default) from 1 to 3. All the statements
until the next end is reached are executed three times. Other forms of the expression of the range of iteration may
be used, for example

» for i=3:-1:1
» i
» end

i =
3

i =
2

i =
1

In this example the statement 3:-1:1 takes the variable � from 3 to 1, by increments of -1. The format for the for
loop starts with the keyword for, followed by the variable name to be iterated, the start value, the increment value,
and the end value. If the increment value is not provided, 1 is assumed. For loops are useful for many things and
can be used to perform repetitive tasks; something computers are very good for. A simple example would be an
algorithm that computed the factorial of an integer.

N = 6;
fac = 1;
for i = 1:N

fac = fac*i;
end
fac

fac =
720

For loops are also useful for processing data inside of arrays. The iteration variable can be used as the index into
the array. When possible the programmer should try to use MATLAB’s whole array mathematics, as this results
in shorter programs and more efficient code. Many times the use of for-loops is needed, do not be ashamed to use
them. An example program is

N = 1000;
for i = 1:N

t(i) = (i-1)/N;
f(i) = sin(2*pi*t(i));

end
plot(t,f)
xlabel(’t’)
ylabel(’sin(2 pi t’))

This program is perfectly acceptable but the program will run much faster for large values of � if you allocate
the arrays � and � before the for-loop. The reason is that the size of the array grows with each iteration and the
computer must reallocate a block of memory to hold the entire array with each iteration in the loop. On the first
time through the loop, t is allocated as one element long. On the second iteration it is two elements long, and so
on. With each iteration a location in memory must be allocated to hold the variables t and f. The time required
for memory allocation time will only be become prohibitive at very large values of N, i.e. � � � ����� ��� � on my a
current laptop. Since each element is 8 bytes, when storing � � � ����� ��� � we need 0.8 megabytes of free memory.
While this amount of memory is easily available the time required to continuously update the allocation can make
the program run slow. It is faster to allocate the entire memory block at the beginning and fill the array with values
in the for-loop. We initialize the arrays � and � to be zero, but of the proper size.

N = 1000;
f = zeros(N+1,1);
t = zeros(N+1,1)
for i = 1:N

t(i) = (i-1)/N;
f(i) = sin(2*pi*t(i));

end
plot(t,f)

LOGICAL OPERATORS 13

xlabel(’t’)
ylabel(’sin(2 pi t’))

Try the previous two programs and note how long it takes each to run. Try changing N and see at what value the
time to allocate the data becomes prohibitive. Finally, the above programs can be constructed without for-loops; an
equivalent program is

N = 1000;
t = [0:N]/N;
f = sin(2*pi*t);
plot(t,f)
xlabel(’t’)
ylabel(’sin(2 pi t)’)

It is always the case in programming that there is no single way to do a given task.

1.10 LOGICAL OPERATORS

The common logical operators are and, or, and not. The operators are fairly intuitive, the and operator checks two
input states returns true only when both input conditions are true. The or operator checks two input states returns
true if either is true. The not inverts the true/false state of the input. Logical operators are usually used with if
statements and the symbols are & (and), | (or), and ˜ (not). The statement

if (x > 10 & x < 20)
x = 0

end

sets x to zero if it is between 10 and 20. As a further example,
if (x > 10 | x < -10)

x = 0
end

sets x to zero if it is outside the range �

� � �
�
� � � .

1.11 FILES

One common use of MATLAB is to take data generated from another program or from an experiment and use
MATLAB as a plotting and analysis tool. In this case you need to be able to read data from a file in order to
manipulate it. If the data is stored as plain text, with whitespace separating the columns of the data and returns
to denote new lines, you can use the command load to import the data. This command will simply create a
two-dimensional array corresponding to the data. To use the load command the file must have the same number of
columns in each row.

You can also write data to a file from MATLAB. There are several ways to do this, but the simplest is to use the
save command. You can save data in MATLAB format or in ASCII. Saving variables in MATLAB format allows
for easy loading and storing of data. The command save filename saves all the variables in the workspace
to the file, filename. The command save filename A B saves only the variables A and B. Finally, save
-ascii filename A saves the data A as an ascii text file.

To test these commands try the following program.
A = [1 2 3; 4 5 6; 7 8 9];
save -ascii test.dat A;

you should now look at the file test.dat and examine how the data was stored. Now returning to MATLAB type
» clear %% clear the workspace
» whos %% confirm workspace empty
» load A %% load the file
» whos %% see that a 3x3 double array is now in the worksapce

Name Size Bytes Class

A 3x3 72 double array

Grand total is 9 elements using 72 bytes

14 MATLAB PRIMER

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time

f(
t)

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

A
1

A
2

A
3

A
4

A
5

A
6

A
7

Fig. 1.3 Schematic of trapezoidal rule applied to the function
���������
	�������������

sampled at 8 points. The trapezoidal rule
simply computes the area of each block and sums them up.

» A %% comfirm it is the array defined above.
A =

1 2 3
4 5 6
7 8 9

If we tried the same sequence of commands, only using save test.dat A we get the same result only when
we open the file test.dat, it is not readable to any application other than MATLAB.

Finally, we can also read and write data to files line by line using fscanf and fprintf commands. Help
can be found on these commands in the MATLAB documentation, but we will not be using these functions herein.
These input/output commands are very similar to their counterparts in C.

1.12 EXAMPLE: NUMERICAL INTEGRATION

In this course we will often write programs for numerical approximations to common mathematical operations.
A simple example to introduce the idea of numerical approximation is to take the numerical integral of a known
function. The integral of a function is defined as the area contained underneath the curve. When we have a discrete
representation of a function, we can easily compute the integral by using the trapezoidal rule. The trapezoidal rule
simply breaks up a function into several trapezoids whos areas are easy to compute and sums the area, see Figure
1.3.

In Figure 1.3 we see that there are seven blocks (���) and 8 data points (���). To compute the area, ��� , of the �����
trapezoidal block we use ��� � � � ��� � � � � ���"! # �

� � ���"! # � ��� � (1.1)

For now, let’s assume that the sample points � � are equally spaced such that � �"! # � � � �%$ � . Therefore the total
area is � �&$ � ' � � � # ��� � � �)(�

�
� � � �)(� � � � �)* �

�
�%+,+-+ � � �). � � � � �). �

�
� � � �)/ � � � � �)0 �

� 1 � (1.2)

which generalizes to 2
� � � �43 �657$ �98: � � �"# �"; � � � � �)< �=; � �?>�@ #A�"B (� � ��� ��CD (1.3)

EXAMPLE: RATE EQUATIONS 15

The trapezoidal rule provides a useful mechanism for approximating integrals to functions that are to difficult to
evaluate analytically. There are more complex and more accurate methods of approximation that will be covered
later in the course.

Now we will write a MATLAB program that takes a two arrays, � and � , assumes � is a function of � and
computes the integral � ������ � � � �)3 � using the trapezoidal rule (equation 1.3). Equation 1.3 assumes that the points in
� are equally spaced, an assumption that the program does not make.

t = [0:100]/100;
y = sin(2*pi*t);
I = 0;
for j = 2:length(t)

I = I + +(y(i)+y(i-1))/2*(t(i)-t(i-1));
end

An equivalent algorithm that makes use of some of MATLAB’s built in functionality could be,
I = (y(2:end) + y(1:end-1))/2;
I = I.*diff(t);
I = sum(I);

In the second example we made use of the MATLAB functions diff and sum; you should read the MATLAB help
on these functions to understand the usage and output. The second algorithm works whether or not the points are
equally spaced.

1.13 EXAMPLE: RATE EQUATIONS

Many of the systems we will study in this course can be described by rate equations. Often we can write equations
that represent the rate of change of some system and we will want to understand how the system evolves over time.
Equations that describe the rate of change of a variable are called differential equations.

As a very simple example let us consider a car moving along at constant velocity. The position of the car at any
instant in time,

�
, is given as the starting position plus the velocity (rate of change of position), � , multiplied by the

time elapsed. We will numerically solve this problem (which we can also easily solve by hand) by using a for loop
to take small increments in time of

� ; � � minute. At each instant we will update of position of the care by the short
time that has passed and accumulate a record of where the car was located at each instant.

x = 0; %% Initial position
v = 1; %% velocity in miles/minute (60 mph)
dt = .1; %% time increment in minutes
for i = 1:1000

t = t + dt; %% new time = old time plus increment
x = x + v*dt; %% new x = old x plus distance travelled in increment
plot(t,x,’.’);
hold on;

end

The result of program will be a straight line. Now we will add a second following car that starts ten miles behind the
first car. This second car will travel at a top speed of 72 miles/hour (1.2 miles/minute) until it catches the first car.
As it approaches the first car it will slow down and follow the lead car at 60 miles/hour. Rather than approach the
lead car and slam on the brakes to slow down, the second car will approach the first car with a velocity proportional
to the distance between the two cars.

x1 = 0; %% Initial position car 1
v1 = 1; %% velocity in miles/minute of car 1 (60 mph)
x2 = -10; %% Initial position car 2
v2 = 0; %% velocity in miles/minute of car 2
dt = 0.1; %% time increment in minutes
for i = 1:1000

t = t + dt; %% new time = old time plus increment
x1 = x1 + v1*dt; %% new x = old x plus distance travelled in increment

v2 = (x1-x2); %% velocity of car 2 depends on distance between two cars.
if (v2 > 1.2) %% max velocity is 72 mph

v2 = 1.2;
end

16 MATLAB PRIMER

0 20 40 60 80 100
0

20

40

60

80

100

120

time (min.)

po
si

tio
n

(m
i.)

Following car (2)

Lead car (1)

Fig. 1.4 The resulting figure from the program created to predict the position of one car following a second. Note that the
first car travels at constant velocity while the second car catches the first and then follows at a close distance.

x2 = x2 + v2*dt; %% new x = old x plus distance travelled in increment

plot(t,x1,’.’);
hold on;
plot(t,x2,’r.’);

end

Notice that this method of controlling the position of the second car means that the second car will always be one
mile behind the first. When the difference between the two cars is one mile, v2=1 and therefore the distance between
the two cars will never change. The system will behave very differently for different constants of proportionality,
which we took as unity in the example. This is a somewhat contrived example and we will see more complex and
authentic examples of similar control ideas throughout the course. Later, we also investigate the effects of changing
the size of the incremental step in time and provide a more thorough mathematical background to such numerical
methods.

1.14 EXAMPLE: PLOTTING EXPERIMENTAL DATA

MATLAB can be useful as a tool to analyze and visualize data taken from other sources, such as a digital mea-
surement. In this section we provide an example where several of the MATLAB functions are integrated to write
a program for a specific application. In the following example we process data from a hot-wire anemometer. A
hot-wire anemometer is a thin wire resistive heater that can measure the velocity of air flowing past. The heated
wire senses changes in the amount of power needed to keep the wire at a constant temperature. When the air is
flowing fast, more heat is taken away and more power is needed to maintain the wire temperature. The probe has
2-axis to measure 2 components of velocity in a plane.

In our experiment we started with a test wind tunnel at rest. A fan was started to force a flow along the channel.
The air is pumped at a high flow rate and therefore becomes unstable and very turbulent. Typically, in a turbulent
flow like a fast moving river, the velocity at any location might be quite random, but there will still be a general
mean flow along the river. A hot-wire probe is placed in the center of the channel and records the instantaneous
velocity in the flow and cross-flow direction at that location. The probe writes data to a file where the first column
is the time in seconds since the experiment started, the second column is the voltage corresponding to the velocity
in the flow direction and the third column is the voltage corresponding to the velocity in the cross-flow direction.
The data sheet for the sensor provides the calibration curve,

Velocity (cm/s) � 	�	
+ �

Volts
� Volts

(
� �
+
���

The following program is simply a data analysis and visualization program. The program loads the data file into
memory and then creates several plots and computes some simple statistics such as the mean and standard deviation

EXAMPLE: PLOTTING EXPERIMENTAL DATA 17

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−20

0

20

40

time (s)

ve
l (

cm
/s

)

Max x−vel 38.69 Max y−vel 12.02

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

20

30

40

time (s)

x−
ve

l (
cm

/s
)

STD 4.4 Mean 24

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−20

−10

0

10

20

time (s)

y−
ve

l (
cm

/s
)

STD 3.3 Mean −0.095

Fig. 1.5 The resulting figure from the program created to analyze the data from the hot-wire anemometer.

of the flow velocity. You will see in Figure 1.5 that there is a transient to the experiment; the flow starts are rest
and has some start-up time. Until the velocity grows unstable, there is no flow velocity across the channel. The
program below will automatically find the start of the steady state behavior (after system start-up) and only use this
data for computing the statistics. We would like to know the average flow velocity and in order to get an accurate
estimate we should not include the transient of the experiment as it will make the computed average lower than the
true value. Note that the fluctuations in the data are due to turbulent motions of the fluid, we are only measuring a
single point.

The new functions introduce in this program are: abs, mean, std, mat2str, subplot, and title. The
reader should consult the MATLAB help to explore the usage and functionality of these commands.

load probe %% load data file

%%% convert data from file to useful form
%%% and convert into units that we need
t = probe(:,1); %% time
vx = probe(:,2); %% x-velocity - volts
vx = vx*44.3 + vx.ˆ2/25.08; %% x-velocity - calibration
vy = probe(:,3); %% y-velocity - volts
vy = vy*44.3 + vy.ˆ2/25.08; %% y-velocity - calibration

%%%% plot the full velocity trace from the probe file
subplot(3,1,1)

18 MATLAB PRIMER

plot(t,vx)
hold on
plot(t,vy,’k--’)
xlabel(’time (s)’);
ylabel(’vel (cm/s)’);
titlestr = [’Max x-vel ’ mat2str(max(vx),4) ’ Max y-vel ’ mat2str(max(vy),4)];
title(titlestr);

%% find the index of the array where instability sets in
%% define as a vy velocity greater than 3 cm/s
steady = find(abs(vy) > 3);
steady = steady(1);

%%% define shorter t, vx, vy arrays that
%%% corresponds to the steady state data only
t steady = t(steady:end);
vx steady = vx(steady:end);
vy steady = vy(steady:end);

%%% create a 2 element array to plot the mean
%%% value as a straight line
vx mean = [mean(vx) mean(vx)];
t mean = [t steady(1) t steady(end)];

%%% plot the steady x-velocity and the mean
subplot(3,1,2)
plot(t steady,vx steady)
hold on
plot(t mean,vx mean,’r--’)

xlabel(’time (s)’);
ylabel(’x-vel (cm/s)’);
titlestr = [’STD ’ mat2str(std(vx steady),2) ’...
Mean ’ mat2str(mean(vx steady),2)];
title(titlestr);

%%% plot the steady y-velocity
subplot(3,1,3);
plot(t steady,vy steady);

xlabel(’time (s)’);
ylabel(’y-vel (cm/s)’);
titlestr = [’STD ’ mat2str(std(vy steady),2) ’...
Mean ’ mat2str(mean(vy steady),2)];
title(titlestr);

1.15 FUNCTIONS

Functions are programs that accept inputs and provide outputs according to some rules. You have used many
functions so far as MATLAB has many built in. For example the functions linspace, plot, and cos are just
a few of the many examples we have covered. Now you will learn to write your own functions. Functions are
extremely useful as you can write one piece of code to perform a task and then use that function repeatedly; requiring
one time programming and debugging. How would you like to write out the lines of code that compute the cosine
every time you needed it!

The first line of a function M-file starts with the keyword function. Next you provide the output variable, the
function name, and the name of the input variables. This is best shown through example. Previously, we used the
if statement to create a function that limited a variable between 0 and 10. We will create this code as a function. In
a separate file named limit0 10.m try the following function,

function B = limit0 10(A)
if (A > 10)

B = 10;
elseif (A < 0)

B = 0;
else

FUNCTIONS 19

B = A;
end

You can test this function by saving the file and running the function in the command window,
» limit0 10(11)

ans =
10

» limit0 10(-1)

ans =
0

» limit0 10(2)

ans =
2

The function above has the name limit0 10, the input variable name is A and the output variable name is B. It
is very important that the function name and file name match and that there is one function in each file.
It is also very important to realize that functions have their own workspace. They only know variables that have
been passed as input arguments or calculated inside the function itself. They are not aware of the main MATLAB
workspace. This is important because then when we write functions we know that they are self contained and cannot
be contaminated by variables already in memory. To test this we make a simple edit to the limit function, by adding
a whos statement inside to check the workspace.

function B = limit0 10(A)
if (A > 10)

B = 10;
elseif (A < 0)

B = 0;
else

B = A;
end
whos

We now can move to the command window and monitor the workspace as we use the function. We start with a clear
workspace and define a variable � . We then check to see that is the only variable in the workspace. We then run the
function and see that the whos statement inside the function shows that two variables in the function’s workspace
are � and � , � is the input argument and � is created in the function. We then check the workspace back in the
command window and see that � and � are the only known variables. Functions have an independent workspace,
containing variables that are defined as input arguments or defined within.

» X = 5.6;
» whos

Name Size Bytes Class

X 1x1 8 double array

Grand total is 1 element using 8 bytes

» Y = limit0 10(X);
Name Size Bytes Class

A 1x1 8 double array
B 1x1 8 double array

Grand total is 2 elements using 16 bytes

» whos
Name Size Bytes Class

X 1x1 8 double array
Y 1x1 8 double array

Grand total is 2 elements using 16 bytes

20 MATLAB PRIMER

We can extend our function so that it works on data arrays as well. While there are many ways to execute such a
function, one method using the find command is shown as

function B = limit0 10(A)
B = A; %% set A=B
i = find(A> 10); %% find indices wher A>10
B(i) = 10; %% upper limit to 10
i = find(A< 0); %% find indices wher A<0
B(i) = 0; %% lower limit to 0

which can perform the function element-wise on data arrays as follows.
» X = [-2 0 5.5 13];
» limit0 10(X)

ans =
0 0 5.5000 10.0000

The final modification to this program, we allow the maximum and minimum outputs be determined by the user.
These values are added as input arguments that should be supplied by the user.

function B = limit min max(A,maximum,minimum)
B = A; %% set A=B
i = find(A> maximum); %% find indices wher A>10
B(i) = maximum; %% upper limit to 10
i = find(A< minimum); %% find indices wher A<0
B(i) = minimum; %% lower limit to 0

which now has a more flexible functionality.
» X = [-2 0 5.5 13];
» limit0 10(X,6,-1)

ans =
-1.0000 0 5.5000 6.0000

To provide more function examples, we can create functions for a variety of mathematical operations. Below we
provide an example of a factorial function, a function that sums all elements of an array, one that finds the greatest
common divisor of two integers, and one that takes the integral of two vectors assuming that one is a function of the
other. MATLAB already has factorial, sum, gcd, and trapz as a built in function, but we will construct our
own for example. Write the following program in a separate file named fac.m, summit.m, and gdivisor.m.
In the gdivisor program we make use of a few new MATLAB commands. The command error will print the
text that is passed to the function and then quit the execution and return to the command prompt. The function mod
provides the modulus after division, zero if the number is evenly divisible.

function X = fac(N)
% Computes the factorial of N and returns the result in X

X = 1;
for i = 1:N

X = fac*i;
end

function X = summit(A)
% Sums all the elements in array A and returns the result in X.
% The sum is taken over all elements regardless of the dimension of A.

X = 0; %% sum
a = a(:); %% if 2-D stretch into 1-D
for i = 1:length(a)

X = X + a(i) %% add up
end

function N = gdivisor(A,B)
% Find the greatest common divisor of A and B and return answer in N.
% A and B must be positive integers or an error is returned.
% A and B are only single numbers, not arrays.

%% make sure A and B are integers

PROBLEMS 21

if (round(A) ˜=A | size(A(:)) > 1 | A < 0)
error(’A is not a single, positive, integer!’);

end
if (round(B) ˜=B | size(B(:)) > 1 | B < 0)

error(’B is not a single, positive, integer!’);
end

%% exhaustive search. start from the largest
%% possible, which is the smallest of the
%% two numbers
for N = min(A,B):-1:1

if (mod(A,N) == 0 & mod(B,N) ==0)
break

end
end

function I = integral(t,y)
%% compute the integral of y(t) from t(1) to t(end)
I = (y(2:end) + y(1:end-1))/2;
I = I.*diff(t);
I = sum(I);

These functions can be run at the MATLAB command prompt. For example, to run the last function you can go
to the MATLAB prompt and issue the following commands to get the the value of the integral returned to you.

t = [0:100]/100;
y = sin(2*pi*t);
integral(t,y)

A very useful feature of functions in MATLAB is that comments placed at the top of the file, with the comment
marker in the first column are available as help from the command line. This feature allows you to document the
usage of your functions. This is very important so that you may return to the function at a later date and remember
what it does. For example, using the code written above,

» help gdivisor

Find the greatest common divisor of A and B and return answer in N.
A and B must be positive integers or an error is returned.
A and B are only single numbers, not arrays.

As a final note, MATLAB requires that each function you create exist in a separate file where the function and
file name match. You may use multiple functions in a single file, but then those functions are only available inside
that file. When breaking a specific problem into smaller, convenient pieces, it is common to keep all the related
functions in one file. When creating general purpose functions, then one strategy for keeping your work straight is
to keep a special directory containing one file per function. You can keep all these files in a special directory that
is part of the MATLAB search path. With that strategy you can simply call the function as you would any built in
MATLAB function. You should also be aware that all the good functions are already written. MATLAB contains
most of the common mathematical functions that you can think of.

Problems

1.1 Create a vector, t, that ranges from 0 to 1 with 1000 equally spaced points. Plot the functions sin � ��� � � , � @ � � ,
and cos � � � e @ � on the same graph. Label the x and y axis.

1.2 Create a vector t that ranges from 0 to 1 with 1000 equally spaced points. Plot the functions � � � � � � � � with
a saturation limit of � � � � . This means that if � is greater than or equal to ten, then set ��� � � .
1.3 Alias error refers to taking digital samples of a signal at a rate that is slower than the signal itself. The result
is bogus measurement. One way to visualize this error is to create a high frequency sine wave with a low number
of points. Create two vectors t1 and t2. Each array should range from 0 to 1, but t1 should have 21 equally
space points (i.e. t1=[0:20]/20 and t2 should have 1000 equally spaced points. On the same graph plot the
function � � sin � ��� ��� � � using t1 and t2. Plot the function with t1 as discrete points and not a connected curve,
while you should plot the function with t2 as a connected curve. Try changing the number of points in t1 and see

22 MATLAB PRIMER

what happens. Note that the command hold on will hold the current figure to allow you to plot a new curve on
top of it and plot(t,f,’.’) will plot the function as discrete points rather than a connected line.

1.4 Modify the integral program to compute the following integrals over � � � � � : sin � ��� � � , � @ � � , and cos � � � e @ � .
Use 100 data points in your definition of t.

1.5 Modify the integral program to return the integral at every instant in time, not just the total accumulated result
at the final time. The program should compute the function � � � � � � �� � � � �43 � . Test your program using a function
to which you know the result, such as � � � � � � which gives � � � � � � (; � . Once you have tested your program
compute the integrals over � � � � � of sin � � � � � , sin ��	�� � � , and sin � � � � � . Plot the integral of each function on the
same graph. Do you get a cosine function for each? What happens to the amplitude of the wave?

1.6 Take a particle and locate it in a two-dimensional plane at the location
�
�
� and � � � . Assign the particle

an
�

and � velocity of some value that is between 0 and 1. Write a script that tracks the progression of this ball as
it bounces around inside a box that has perfectly elastic walls at

�
��� � and ����� � .

To start the problem lets assume that there are no walls and no forces. Since a particle in motion will stay in
motion, the velocity will be constant. Create a for loop to take small steps in time. You know the initial position
and we will assume that the velocity is constant, therefore you can take a small step in time (say 0.1 “seconds”) and
predict the new position. All you need to do is say that the new x position is the old position plus the x velocity
multiplied by the time step,

� <���� � �
	��� � � � $ � . This expression holds likewise for � position. The loop will
repeat this prediction over and over and track the evolution of the ball. At each time step you should plot the position
as a point plot(x,y,’.’) and hold the graphics “on” so the next iteration will plot on the same graph (use
hold on). An example code to computes this part of the problem is shown below:

x = 0;
y = 0;
vx = 0.5;
vy = 0.2;
dt = 0.1;
for i = 1:1000

x = x + vx*dt;
y = y + vy*dt;
plot(x,y,’.’);
hold on;
pause(0.01);

end

The pause command allows a brief instant for the graphics to refresh so that the plot will appear in “real-time”. The
particle should take off in a straight line. Type » clf between runs to clear the figure for each new time you run
the program. This program is very boring, so....

Now you will add the walls. Once the particle reaches a wall it will undergo an elastic collision. On collision,the
tangential velocity will be maintained and the normal (or perpendicular) velocity will be reversed. Add some if
statements that decide if the particle has hit a horizontal or vertical wall. Depending on what wall is hit reverse the
appropriate component of velocity while holding the other constant. Try running the program for different initial
velocities and see what happens. Change the time step size and see if you notice any difference?

1.7 Write the integral function provided in the section. Use this integral function to compute the integral over
� � � � � of � @ � . Define the number of points used to represent the function with t = [0:N]/N and set � � � �
initially. Now create a script that will compute the numerical integral for a given � and compute the difference
between the numerical solution and the analytical solution that you can compute by hand. Define the absolute value
of the difference between the true and numerical solution as the approximation error. Generate of plot for many
values of � (say

� � � � � � ��� �), of � versus the error. Hint: The easiest way to do this problem is to first
write the program that works for a specific � . After computing the error, plot the answer as plot(N,err,’.’)
where err is the variable name for the error. Now change � and see that the new result is computed and the new
points appears on your plot. Now place a for loop around this program that iterates the value of � from 10 to
1000. You should now get a curve of the error versus � . Change the axis on the plot to be log-log. What does the
shape of the curve on log-log coordinates tell you? If you double the number of points, what happens to the error.

1.8 In the early 1800’s an English botanist, Robert Brown, observed that pollen grains contained in a drop of
water wiggled about in a jagged, random path. Later this behavior was attributed to molecular fluctuations in the

PROBLEMS 23

water. Water molecules impinge on the small particle causing random forces acting in random directions. If the
particle is small enough then the particle will move about in response to these random forces.

A simple model of Brownian motion in two dimensions is as follows: Take a particle and place it at the origin�
� � � � . Use a for loop to take steps in time. At each time step add a normally distributed (i.e. bell-curve)

random number to the horizontal and vertical coordinate. Plot the position of the particle at each step. The MATLAB
command randn(1) will generate a single random number. The command plot(x,y,’.’) will plot a single
data point and the command hold on will hold the graphics “on” so that the next iteration will plot the point on
the same graph.

Write a program that plots the path (in x-y space) of one particle over 10,000 iterations. Try running the program
a few times and see what patterns you develop. You will notice that each run will look very unique. Type » clf
between runs to clear the figure for each new time you run the program.

1.9 In order to do this problem, we need an image to process. Any image will do. You can check the file types
that are supported by the function imread. Most common formats such as tiff and jpeg are supported. The
function imread will import the image file into the MATLAB workspace. If the image is color you will get
a three dimensional array, two-dimensions for the picture and the third for RGB scale. If the original picture is
gray-scale then you will get a two-dimensional array The format for the numbers is unit8 which is not suitable
for mathematics, so we transform the image data type to a default for numbers, double. The command imagesc
is useful for plotting images; the function performs self scaling. Try the following sequence of commands

» A = imread(’picture.jpg’);
» image(A);
» whos

Name Size Bytes Class
A 450x600x3 810000 uint8 array

Grand total is 810000 elements using 810000 bytes

» A = double(A(:,:,1)); %% take only one color level.
» whos

Name Size Bytes Class
A 450x600 2160000 double array

Grand total is 270000 elements using 2160000 bytes

» imagesc(A); %% this will look a little funny since we are not decoding the color

Now you can manipulate the two-dimensional array, A. Write a program that applies a “binary” threshold filter
to the image data array. The threshold filter sets some value and everything above the filter is “on” and everything
below is “off”. Have your program work as a function. The input value is a two-dimensional data array. The
program should find the average value of the input image and use that value as the threshold. The new image should
be the same size as the input and consist of one and zero depending on if you are above or below the threshold. The
output of the program should be the new image data file. Plot the output using imagesc. Try plotting the element
by element multiplication of the input and output data arrays.

