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Introduction

The text lays the foundations for the study of fluid dynamics. The

first question a student might ask is why should we be interested in

fluid dynamics? Let me address the question through some examples

of applications where these topics are relevant.

Biology: Our bodies are mostly water. Fluids are essential to life as

we know it. The understanding of the transport of oxygen and nutrients

throughout the body by fluids (at the level of lungs, heart, and blood

vessels as well a the cellular one) requires a basic understanding of the

topics herein. Locomotion of many species from fish to birds to small

microorganisms is determined by fluid flow.

Geophysical: The atmosphere and oceans are fluids. The currents,

the winds, the gulf stream, and the jet stream carry energy and matter

around the planet. Our basic understanding of the weather, the climate,

and the environment can only begin with a basic understanding of fluid

dynamics. The Earth’s magnetic field is generated by convection of the

mantle deep within the Earth.

Energy: Most of our current energy needs are met by the combustion

of fuel; the basic processes of combustion depend upon the details of

the fluid mixing of fuel and air and and the resulting heat release.

Advances in understanding of the details of these processes has led to a

number of developments over the years which made combustion cleaner

and significantly reduced the number of pollutants emitted from cars.

Many of the renewable sources of energy such as wind, geothermal,

ocean waves and tidal seems obvious to state that fluid flow plays a

prominent role. It is fair to claim that an understanding of all energy

systems must begin with the basic understanding of topics in this text.
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Climate The computer models used by climate scientists begin with

the basic equations we will develop here. Since we can only run a sin-

gle irreversible real-time experiment on our planet’s climate, computer

models are needed to understand what is likely to happen to the cli-

mate in the coming centuries. One cannot appreciate the complexity,

accuracy, and shortcomings of these computer models without under-

standing the basics of fluid transport.

Infrastructure and transportation: Fluid dynamics also plays a

role in our basic civil infrastructure; water delivery to our homes, water

resources management, sewage, building heating and cooling. Losses

due to aerodynamic drag on boats, cars, and planes set the efficiency

and energy use of most transportation systems.

Engineering: Many fields of engineering need some understanding

of flow transfer. Aerospace engineers need to understand fluid flow to

get planes to fly. Automotive engineers need to understand the pro-

cesses of combustion, the lift and drag forces on the vehicle, as well

as how to keep the engine cool. Civil engineers need to understand

water management in cities. Computer engineers need to understand

that dissipation of heat is one of the main limitations in making faster

computer chips. As argued before, our bodies are mostly water, thus it

seems obvious that bio-engineers need to understand fluids as well.

Astronomy: Despite the extraordinarily large scale, the formation

of galaxies, planets, and stars can be studied with the equations of

fluid dynamics. We cannot test experimental galaxies in a lab, thus

fluid dynamics simulations is an integral part of answering questions

about the formation of objects in our universe.

Mathematics: Fluid dynamics has also provided a rich field of study

for mathematicians. The basic equations of fluid dynamics, the Navier

Stokes equations, are notoriously difficult to solve. If you can provide

a general solution, you can win a million dollars (see the Millennium

Prize problems sponsored by the Clay Mathematics Institute). There

are many cases where in an attempt to solve a problem in fluid dynamics

has lead to new and powerful mathematical techniques. Computational

fluid dynamics, solving the Navier Stokes equations numerically, has

been one of the most powerful drivers in developing supercomputers

and other advances in high performance computing.

In short, while my viewpoint is biased, the foundations in this book

are critical to essentially all scientists and engineers.
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1.1 Scope of the text

Now that I have built up the number of applications this field is rele-

vant to, we must scale things back. A study this comprehensive would

overwhelm most mortals over their lifetime. We only begin our study

of these topics and this course will provide only a basic background.

This text will mostly provide the theoretical and mathematical foun-

dations. The book is not meant to stand-alone but should be part of

course which also involves a balance of working examples, conducting

some simple hands-on experiments, and learning how computer pack-

ages can help solve some of these problems.

It is expected that this text will provide the (somewhat) rigorous

background and derivations. You should read and work through many

of these results yourself. Even though the text is not too long, many of

the chapters are very dense in terms of content. In my course we will

review some of these high points in class, but I will leave it to you to

really read through the details. The details can sometimes be tedious,

and until you have some working knowledge (perhaps by the end of the

course), it is hard to see why one would care about them. These notes

should hopefully provide you a view that the mathematical foundations

for the field are relatively rigorous. In many cases, we can write the

equations down in a few short lines and we could in theory solve any

problem. We will soon see that matters are not so simple and that

while the equations are known, their solution can be extraordinarily

challenging.

Finally, there are a number of good books on these topics. I will never

provide some insight that was not thought of before. My treatment

will rely on a number of excellent books through which I learned the

topic. So why bother to write my own notes? The basic answer is that

professors can’t help themselves. The way everyone else explains stuff

is never quite the way you want it. However, the excellent books that

I use the most and those who influenced my view are,

• Fluid Mechanics by Kundu and Cohen (2004).

• Transport Phenomena by Bird et al. (1960).

• Div grad curl and all that by Schey (1997).

• Incompressible flow by Panton (1996).

• Album of fluid motion by VanDyke (1982).
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1.2 What is a fluid?

We have already talked about fluids a lot. The two fluids we will dis-

cuss most often are air and water. There are some real fundamental

differences between air and water - yet we will treat them on the same

footing as “fluids” in this book. So it would be reasonable to ask, what

is a fluid? A precise definition seems difficult. The most popular exam-

ple of a substance that is not clearly a fluid or a solid is Silly Putty. Put

it on the table, leave it, and it flows. Drop it and it bounces. Silly Putty

is just one example of a complicated material, though many more exist.

Substances which we normally think of as a solid can act like a fluid

(and vice versa) under extreme conditions. Hit water hard enough and

it can fracture. Wait long enough and a mountain can flow. You should

search the internet for “pitch drop experiment” to see an interesting

long term experiment. A funnel of pitch tar was placed in a funnel in

1927 and has been dripping ever since. To date nine drops have fallen,

so the material does flow. However, hit the material with hammer and

it easily shatters. Sometimes the difference between a fluid and solid is

just a matter of time scale.

The primary property that differentiates fluid from solid behavior is

that fluids cannot support shear forces at equilibrium. If I take a block

of solid material between my hands and shear it, the solid resists the

motion. The solid may deform, but the solid can resist and ultimately

stop the motion. Fluid on the other hand, will just flow and cannot

stop the shearing force. I can shear the fluid continuously.

We will be a little more precise later when we develop a mathematical

theory. We will see we need to define a constitutive law which relates

deformation to forces. The simplest fluid model is called a Newtonian

Fluid, which turns out to describe air, water, and oils quite nicely. It

does not describe Silly Putty. Later we will define fluids based on their

constitutive laws. For now just go with your intuition - if it flows, its a

fluid and not get caught up in a precise definition just yet.

1.3 Simple fluid properties

There are two common fluid properties that we will refer to throughout

this book, density and viscosity.
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Density which typically has the symbol, ρ, is nothing more than the

mass per unit volume. Everything we discuss in the development of the

theory is given on a per unit volume basis, thus the density will show

up throughout the course. Density of a liquid is really easy to measure,

just fill a beaker of known volume and weigh the mass of the fluid. The

ratio of mass divided by volume is density. When we write our fluid

version of Newton’s laws, density will take the role of mass when we

write F = ma.

Viscosity which typically has the symbol µ (though η is common

in chemical engineering) describes a substance’s resistance to flowing.

You probably have some intuition about this concept based on pouring

water and syrup. A simple device for quantifying viscosity comprises

two concentric cylinders with a very narrow gap between them. A fluid

of interest is placed in the gap. The inner cylinder is held fixed while the

outer one rotates at a constant angular speed, ω. The speed of the wall

at the outer cylinder is simply U = ωR, where R is the radius of the

cylinder. If we conducted this experiment for different gap sizes d and

different speeds, we would find the torque needed to spin at constant

speed would follow a law,

Torque ∝ µU
d
.

We would find for all things equal, syrup is harder to spin than water

because the syrup has a higher viscosity. Not all fluids would follow the

law above. Only simple fluids such as water, air, syrup, and oil. Fluids

that follow a law such as that above are called Newtonian, a definition

we will be precise about later.

1.4 Other properties

There are many other properties of fluids that show up but will not

play much of a role in our initial study.

Surface tension is a usually given the symbol σ and has units of

force per unit length. Surface tension exists at the interface of a liquid

with a gas and it is the force that holds raindrops together and makes

them want to be spherical. Surface tension can hold relatively small

objects like water striders from sinking into the pond. Surface tension
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can hold water droplets to the ceiling tiles in your shower. Surface

tension also acts at the interface between two immiscible liquids like

oil and vinegar. If there is no free surface in the liquid then surface

tension does not play a role. For flows at a liquid interface for objects

the size of boats and people, surface tension is too small to matter

much. For objects that are measured in millimeters, surface tension

can be a dominant force.

Speed of sound is exactly what it says - it is the speed that sound

travels in the fluid. The speed of sound becomes important when flow

speeds start to approach it. The ratio of flow speed (or speed of the

object moving through the fluid) to sound speed is called the Mach

number, Ma. When the speed of the object becomes greater than the

sound speed, Ma > 1, then we have supersonic flow. Supersonic flow is

very interesting as much of our intuition about fluid flow goes out the

window. Supersonic flow is a topic for another course.

When the Mach number exceeds about 0.3, then the flow becomes

compressible meaning that the density can no longer be considered a

constant (this is a rule of thumb, not an exact criteria). It is the Mach

number that tells us when we need to start thinking differently about air

and water even though we called them both fluids. Gases are relatively

easy to compress when placed inside a closed container while liquids

are not. When we have flow, it is the Mach number that characterizes

whether the flow is compressible or not. Note that it is important to

distinguish between a compressible fluid and a compressible flow. Air is

an easily compressible substance, however most flows that we encounter

with air on a daily based are incompressible flows. It is the Mach number

that helps determine if we have a compressible flow.

Elasticity Normally we think of solids exhibiting elasticity. I pull

on a rubber band it will stretch. When I let go it will return to its

initial state. Simple fluids like water, air, syrup and simple oils do not

exhibit any significant elasticity. If I shear the fluid and then let go, the

fluid does not try to return to its original configuration. Some fluids

such as biological fluids or polymeric solutions exhibit both elasticity

and viscosity - typically called viscoelastic fluids. Silly putty is a classic

example, I can roll it in a ball and it will bounce or leave it on the table

and it will puddle up. In the case of silly putty, it is the time scale of

the flow that distinguishes between whether the flow is more viscous or
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more elastic. Viscoelastic fluids have many interesting properties but

will not appear in our initial study.

Other viscosity parameters The basic behavior of simple fluids

such as water and air are the only one we will consider. Fluids that

obey our basic viscosity law are called Newtonian fluids, thus anything

that does not follow this law is generically called Non-Newtonian. The

term Non-Newtonian fluid is not very descriptive as it applies to any

behavior which is, well, not Newtonian. We will be more precise later

about what we mean by a Newtonian fluid.

Beyond viscoelasticity, another non-Newtonian behavior is called shear

thickening. Shear thickening means that the faster we stir the fluid, the

hard it becomes to stir. Cornstarch mixed with water is an example of

this behavior - you can find videos where people run across a pool of it

but when they stand still they sink. We can also have shear thinning,

meaning that the faster we stir the easier it is to stir. We can also have

fluids that act as a solid as long as the applied forces are small, but

once we exceed some threshold they start to flow. One could spend a

career (and many have) just studying Non-Newtonian fluids.

1.5 What is a continuum?

In this course we will develop a theory where materials can be consid-

ered to be a continuum. We will generally not be concerned that the

fluid or solid is made up of molecules or atoms. This assumption works

well in applications where the features we are interested in studying are

much larger than the distance between molecules. The mean free path

of air at standard conditions is approximately 0.1 µm. As long as the

smallest features of the problem are greater than this scale, the con-

tinuum approximation is a good one. In liquids the mean free path is

usually a few angstroms (an angstrom is 10−10m), making cases where

we must account for non-continuum effects rare for an engineer.

To be more precise, let’s consider a measurement of the density of

air as an example. We could measure the density by taking a known

volume of air and weighing it. If our volume was the size of the room,

the density measure would be the average density in the room. As we

shrink our measuring volume, the value we measure for the density

might change. The density of warm air is less than cool air, so if we
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Figure 1.1 Schematic of the concept of a continuum. The local mass
density of a gas varies with height in a room with less dense fluid
moving to the top. If we zoom in to sample the density we can obtain
a local value by using smaller and smaller measuring volumes. At
some point, we trapped so few molecules in the volume that the
notion of density at such a small scale loses meaning.

took our measuring volume near the ceiling we might expect a different

answer than near the floor. This idea is shown schematically in Figure

1.1, where the local measurement of density is shown to be linear with

height, with less dense fluid rising to the top. As we shrink the mea-

suring volume we obtain a more local measure of the density. At some

point we keep shrinking the measuring volume and we keep getting the

same answer. This constant value would be what we would consider

the local, continuum value of the density at that point in space. If we

continued to shrink the measuring volume we run into trouble with the

fact that air is comprised of many molecules. Eventually the measur-

ing volume would be so small that the mass we measure would depend

upon how many molecules we managed to trap. If there are only 10

molecules on average in our volume, then the answer starts to fluctuate

depending on if we randomly had 8, 9, 10, 11, or 12 molecules in the

volume at the time of measurement. The continuum limit is thus the

intermediate asymptotic, where we take the limit such that we can talk

about local quantities (i.e. density, temperature, pressure, velocity) at

a point in space, but we don’t take the limit too small that the molec-

ular nature of matter comes into play. As long as the geometry of the

problem is large compared to the molecular scale, then the continuum

assumption is good.
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1.6 Mathematical prerequisites

I will assume throughout that the reader is familiar with Newton’s

Laws, Calculus (integration and differentiation), and basic vector cal-

culus. If you know F = ma, can compute some simple integrals, and

have heard of the divergence, gradient, and curl, you are probably good.

If it has been some time since you took vector calculus, I would recom-

mend the book Div, Grad, Curl and All That as a complement to these

notes. A few common things that we will make use of are provided

below.

We will make use of the Fundamental Theorem of Calculus which

states ∫ b

a

df

dx
dx = f(b)− f(a).

We will use vector calculus notation such as the gradient of a scalar

function F (x, y, z) is a vector given as

∇F =
∂F

∂x
i +

∂F

∂y
j +

∂F

∂z
k,

where i, j,k are the unit vectors in the x, y, z direction. We will use the

convention that bold face lower case letters are vectors. The divergence

of a vector field f(x, y, z) is a scalar given as

∇ · f =
∂fx
∂x

+
∂fy
∂y

+
∂fz
∂z

.

The primary vector calculus theorem we will use is the divergence the-

orem, which states, ∫
∇ · fdV =

∫
f · ndS.

This theorem equates the flux of a vector field through a closed surface

to the volume integral of the divergence of the vector field. Above, we

use the notation that dS is a unit of surface and dV is a unit of volume.

If if the above notation seems vaguely familiar to you but you have

forgotten the details, you will have no problem. We will review vector

calculus in a later chapter. If you have never seen these symbols before,

you might have some trouble understanding some of the later chapters.
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Dimensional analysis

The result of any physical equation must remain unchanged regard-

less of the system of units that we select for the problem. While this

seems like a obvious statement the implications are quite interesting.

The simple fact that units are man-made and thus arbitrary can lead to

an extraordinary simplification in many problems. The number of free

parameters in any physical problem can be reduced by taking the units

out of the problem. This concept is not limited to the topics in this

book, however it seems that the fields of fluid dynamics and transport

phenomena have adopted this viewpoint to the extent that the discus-

sion of dimensional analysis is in every book. As we will soon show, the

reasons for adopting a dimensionless world-view are quite compelling.

Books of experimental data can be reduced to a single chart.

However, the dimensionless world-view can be overdone and only

working in a dimensionless world can obscure some intuition about the

physics of a particular problem. We will try and balance the dimensional

world-view and the dimensionless one throughout this book.

2.1 Units

We often refer to fundamental and derived units. Fundamental units in

this course will be mass (M), length (L), time (T ), and temperature

(Θ). Derived units are things like velocity (L/T ), force (ML/T 2), or

density (M/L3). The distinction above is arbitrary. Of course we could

say that force is fundamental and mass is derived. If you want to do
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this, this is your right. I find it easiest to stick with the distinction

above.

We could relate temperature and energy and thus remove tempera-

ture as a fundamental unit. In this course, this path would not lead to

simplification. It would require us to bring in a new parameter, Boltz-

mann’s constant. Boltzmann’s constant bridges the statistical definition

of kinetic energy of molecules to the macroscopic temperature. If we are

not dealing with statistical mechanics, then introducing Boltzmann’s

constant just leads to confusion. In this course, everything is macro-

scopic and thus treating the temperature as its own fundamental unit

is always going to be the way to go.

2.2 Buckingham Pi Theorem

The Buckingham Pi Theorem is the starting point for any discussion of

dimensions. The Pi Theorem states that if a problem has N independent

parameters and there are R independent dimensions, then there are N-

R independent parameters in the problem. This simple theorem can

only be understood through example.

2.2.1 Pendulum

The first example on dimensional analysis every book uses is the pen-

dulum. I won’t be original. Imagine a point mass (m) hanging on a

massless string of length (`) in a gravitational field (g); shown schemat-

ically in Figure 2.1. There is no friction. All this is an idealization, but

it is one that we can easily realize in practice to a good degree of ap-

proximation. The question is what is the period of oscillation, t, for a

given starting angle θ and how does it depend upon the parameters in

the problem? There are five independent parameters (m, `, g, θ and

t). These parameters are made up of 3 independent dimensions (M , L,

and T ). Applying the theorem tells us that N = 5, R = 3 and thus

there are only 2 independent parameters.

There are a number different ways to formally approach the removal

of units from the problem to decide what the dimensionless parameters

are. Once you are comfortable, you can often just remove the units by

inspection. I like the table method as it is a provides a good framework
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ℓ θ

m

g

Figure 2.1 Schematic of a simple pendulum.

for formally approaching the problem. We make a table with all the

parameters and their units in brackets. We put the primary thing we

want to know, in this case the period, in the first column. For this

problem, our table starts as,

t [T ] m [M ] ` [L] g [ LT 2 ] θ

Note that the starting angle θ has no units. Angles are measured in

radians which is defined as the arc length divided by the radius, thus

the radian is already dimensionless.

Now start adding lines to the table, and in each new line remove one

of the independent dimensions and one dimensional parameter from

the problem. Let’s start by removing mass from the problem. Since

the dimension M only exists in the mass, there is nothing to do but

remove it from the problem. Mass cannot be a parameter to the problem

as there is no way to cancel that fundamental unit. With each new line

to the table it is useful to add yourself a little note to the right.

t [T ] m [M ] ` [L] g [ LT 2 ] θ

t [T ] ` [L] g [ LT 2 ] θ remove M

Now let’s remove length from the problem by defining a new param-

eter g/` that does not have length in it. We expand our table by one

line so it reads,
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t [T ] m [M ] ` [L] g [ LT 2 ] θ

t [T ] ` [L] g [ LT 2 ] θ remove M

t [T ] g
` [ 1

T 2 ] θ remove L

Finally, we can remove time from the problem by adding another line

to our table as follows,

t [T ] m [M ] ` [L] g [ LT 2 ] θ

t [T ] ` [L] g [ LT 2 ] θ remove M

t [T ] g
` [ 1

T 2 ] θ remove L

t
√

g
` θ remove T

The final result is that there are two parameters, t
√
g/` and θ. We

can then state that the answer has the following functional form,

t

√
g

`
= f(θ) or t =

√
`

g
f(θ)

At this point we don’t know what the function is, but it says the period

of any pendulum of any length in any gravitational field only depends

upon its starting angle. We only need to measure time in units of
√
g/`,

and all pendulums are the same. If we always started the pendulum

from the same angle, the function on the right hand side would then

just be a constant. The result tells if the length of the string is increased

by a factor of 4, then the period increases by a factor of 2 to keep

t
√
g/`=constant. You can easily confirm this result experimentally.

2.2.2 Pythagorean theorem

Dimensional analysis can easily be used to prove the Pythagorean the-

orem, a2 + b2 = c2 for a right triangle. The area of the triangle A only

depends upon the angle θ and the length of the hypotenuse c. We don’t

even need the table, we could move directly to the result that the area

divided by c2 is a unknown function of theta, A/c2 = f(θ). The areas

of triangles 1 and 2 are thus A1/a
2 = f(θ) and A2/b

2 = f(θ). Since

A1 +A2 = A, then a2f(θ)+b2f(θ) = c2f(θ). Since the function f must

be the same for all triangles, then we can divide it out and obtain the

desired result.
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a

b

c

A1

A2

θ

Figure 2.2 Schematic of a right triangle. It is easy to prove a2 +b2 =
c2 using dimensional analysis.

2.2.3 Caveats

There is a nice paper written by Lord Rayleigh on the “Principle of

Similitude” (Rayleigh (1915)); note that similitude is another name for

dimensional analysis. He starts the paper;

I have often been impressed by the scanty attention paid even by original
workers in physics to the great principle of similitude. It happens infrequently
that results in the form of “laws” are put forward as novelties on the basis
of elaborate experiments, which might have been predicted a priori after a
minutes’ consideration.

The Rayleigh paper then gives, in essentially 1 sentence each, 13

examples of answers to various problems in physics. The true analytical

answer to most of these problems is not trivial. However, the result

Rayleigh provides is obtained by essentially applying the Pi Theorem.

His results are all correct and some are as simple to obtain as the

pendulum example. For many of the examples, if you were given the

list of variables which the problem depends on, you could probably

reproduce Rayleigh’s answers quite readily. However, knowing which

parameters matter and which don’t is not always a simple task. If you

tried to replicate Rayleigh’s results from scratch, you would probably

have difficulty getting most of the results. You really need to understand

the problem before proceeding with dimensional analysis and the Pi

Theorem.

There is a textbook on Dimensional Analysis written by P.W. Bridg-

man in 1922 who makes this exact point (Bridgman (1922)). In Bridg-

man’s book he discusses an exchange that Rayleigh had with another

researcher in the journal Nature about Rayleigh’s original paper. D. Ri-

abouchinsky questions one of Rayleigh’s problem’s on heat conduction
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arguing that temperature is not an independent dimension since tem-

perature is related to molecular kinetic energy. Rayleigh’s reply states

that “it would be a paradox if further knowledge of the nature of heat

afforded us by molecular theory put us in a worse position than before.”

Pointing to this full exchange, Bridgman says:

The reply of Lord Rayleigh is, I think, likely to leave us a little cold. Of
course we do not question the ability of Lord Rayleigh to obtain the correct
result by the use of dimensional analysis, but must we have the experience
and physical intuition of Lord Rayleigh to obtain the correct result also?

For the students, except in the simplest of problems, dimensional

analysis via the Pi Theorem, with no additional physical insight and

no model from which to extract the right parameters can lead to little

insight into the problem and not always a simplification. It usually takes

several attempts to understand even a simple problem. As Bridgman

says

The problem cannot be solved by the philosopher in his armchair... only by
someone at some time soiling his hands with direct contact.

Thus, when starting to learn dimensional analysis it is important to

realize that you will rarely be able to get the right result. You are

not Lord Rayleigh. Applying the technique is simple, getting the right

parameters is difficult.

As we will soon see, in many problems we know the equations and

through a proper formulation of the problem in dimensionless form,

we can often extract the right parameters without actually solving the

problem. Knowing the equations and being able to formulate a problem

mathematically can help us identify the parameters and dimensionless

groupings that matter. This approach is the one that will dominate this

book.

2.2.4 Drag on a sphere

A simple problem in fluid mechanics is the question, given a sphere of

diameter,D, moving at speed, U , through a fluid, what is the drag force,

F? It seems reasonable to assume that the flow will depend upon some

fluid properties. We haven’t talked about fluid properties much, but we

introduced the two key properties in the opening chapter. Viscosity has

the symbol µ and is expressed in units of M/(LT ). Clearly it will be
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harder for the sphere to move through the more viscous fluid all other

things being equal. It also seems reasonable to suspect that the fluids

density, ρ, might matter as well. These are the only two fluid properties

that really matter in this problem. We are starting to already see the

comments of Bridgman come in. We have to know something about the

physics of the problem to know that these are the only fluid properties

that matter. Why doesn’t the speed of sound in the fluid matter? Or its

surface tension? In later chapters as we develop the full theory of fluid

flow, we will see that these are the only two properties that emerge for

this problem. For now you will have to accept what I am suggesting.

Applying the Pi Theorem helps our problem immensely. There are

5 parameters, F , D, U , µ, and ρ. There are the 3 dimensions of M ,

L, and T . The Pi Theorem says there are only two parameters that

matter. We can proceed by constructing the table and writing all the

parameters and their units.

F [ML
T 2 ] D [L] U [LT ] ρ [ML3 ] µ [ MLT ]

Immediately we see some arbitrary choices to make. If we try to

eliminate mass, we can divide the drag force by the density or the vis-

cosity. According to the Pi Theorem, any choice is just as good. Which

choice is “better” is a matter of experience and even an experienced

person might try several combinations before deciding which choice

they prefer. We will proceed to apply the theorem making arbitrary

choices about how to remove the dimensions. (Of course the choices

are not arbitrary, they are ones that I selected.) Here is one possibility

in the table below. Note that with each line of the table I remove one

parameter and one of the independent dimensions.

F [ML
T 2 ] D [L] U [LT ] ρ [ML3 ] µ [ MLT ]

F
ρ [L

4

T 2 ] D [L] U [LT ] µ
ρ [L

2

T ] Remove M

F
ρU2 [L2] D [L] ρU

µ [ 1
L ] Remove T

F
ρU2D2

ρUD
µ Remove L

The result says there are two parameters. One parameter is ubiqui-

tous in fluid dynamics and we will discuss it extensively in this course.

It is called the Reynolds number, Re = ρUD
µ . If you have the chance

to make a grouping that looks like (density·velocity·length)/viscosity,
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Figure 2.3 Drag coefficient as a function of Reynolds number for
flow around a sphere.

you should do so. The other parameter is the dimensionless drag force,

known as the drag coefficient. Typically, the drag coefficient is defined

by convention to be Cd = F
1
2ρU

2πR2 ; which is the same as we got from

the table only with a few different arbitrary constants; namely a factor

of 1/2 and πR2 instead of D2. There are good reasons that we will

come to later in the course for using the constants in the classic form

of the drag coefficient. The dimensional analysis result is powerful as

the result says there is a single master curve, namely

Cd = f(Re).

This single master curve, the function f , captures the drag behavior of

all spheres in all fluids. It turns out the details of this curve can be quite

complicated and very difficult to calculate from the basic equations of

fluid dynamics. However, we can conduct experiments. The dimensional

analysis says that if we conduct the experiment of measuring drag as a

function of speed once - for one size sphere in a wind tunnel - we now

know the result for any other sphere in any fluid. A fit to experimental

data on a logarithmic scale is shown as the solid curve in Figure 3.1.

I want to emphasize that dimensional analysis let’s us represent data

that depends on multiple parameters in a simpler way. In dimensional

terms the drag force is given as F (U,D, µ, ρ). Parameterizing this func-

tion experimentally for all four variables requires a lot of experiments.

Lets say we would want 10 experimental data points to establish a
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reasonable empirical functional relationship of one variable. A single

curve on a graph could display force as a function of velocity for a

given diameter and given fluid. We could vary sphere diameter to show

a family of 10 curves. One graph on one page could summarize 100

experiments. But now we need to vary viscosity. We are now up to

1000 experiments and 10 pages of graphs. Varying the density we need

10,000 experiments and 100 pages (a book). In dimensionless terms,

there is a universal master curve of one parameter and that curve is

good for all drag experiments with a sphere that have ever been done

and all that will be done in the future. The master curve works for all

fluids and spheres of any size. We will elaborate on this example in the

next chapter.

2.2.5 Pipe flow

Another classic example of a practical use of dimensional analysis is the

problem of flow in a pipe. A simple question to ask is given a length

of pipe `, with a constant diameter D, with a pressure difference ∆P

applied across it, what is the mean flow velocity U? Here, we already

have four parameters. Clearly the fluid matters as well so as with the

previous problem we will assume that the fluids density and viscosity

matter as well.

Before the theory of fluid dynamics was firmly established and the

power of dimensional analysis understood, a problem emerged from this

seemingly simple example. It is clear that understanding the pressure-

flow relationship in a pipe is of great practical importance. While it

seems straight forward to establish an experiment to measure flow as

a function of applied pressure, there are a lot of parameters to vary in

order to obtain a complete model experimentally. Before dimensional

analysis was really understood and used, this extensive experimentation

is precisely what was done to describe this simple pipe flow problem.

There used to be page after page of numerous graphs showing pressure-

flow relationships for different pipes and different fluids.

Applying the Pi Theorem helps our problem. There are 6 parameters,

`, D, ∆P , U , µ, and ρ. There are the 3 dimensions of M , L, and T .

The Pi Theorem says there are only three parameters that matter. This

helps quite a bit. We can proceed by constructing the table and writing

all the parameters and their units.
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U [LT ] ` [L] D [L] ∆P [ M
LT 2 ] ρ [ML3 ] µ [ MLT ]

As before, there are some arbitrary choices to make about how to

proceed. If we try to eliminate mass, we already see that we could

divide the pressure drop by either the density or viscosity. While any

choice is just as good as the other, one possibility is worked out below,

U [L
T

] ` [L] D [L] ∆P [ M
LT2 ] ρ [ M

L3 ] µ [ M
LT

]

U [L
T

] ` [L] D [L] ∆P
ρ

[L
2

T2 ] ρ
µ

[ T
L2 ] Remove M

ρU
µ

[ 1
L

] ` [L] D [L] ∆P
ρ2U2 Remove T

ρUD
µ

`
D

∆P
ρU2 Remove L

This result is one of many possibilities. My result says there are three

parameters. The first is again the Reynolds number - it will show up

in nearly every fluid mechanics problem. The second parameter is a

geometric parameter, the length to diameter ratio. The final parameter

is the dimensionless pressure drop. Now, conducting experiments for

three parameters is a lot easier than 6. We could fit all the results on a

single graph plotting the dimensionless pressure drop versus Reynolds

number for a family of curves for different `/D. We need a sheet of

paper rather than a book to display all results.

We can actually do even better, but the comment by Bridgman again

applies. We need a little physical reasoning and some knowledge of the

problem. This step might seem a leap now, however, as we learn more

throughout this course we will make this step more easily. The pressure

drop and pipe length are not really independent. It is the parameter

∆P/` that matters most, the pressure gradient. The assumption we

make here is that when the pipe is long that any section of pipe is

basically the same. If we look at the flow here or there in the pipe, it

is just a length of pipe and the flow doesn’t change. If the character

of the flow doesn’t change as a function of length, then doubling the

length should not change anything if we double the pressure drop. The

pressure drop per unit length is the parameter that really matters.

We could confirm this assumption experimentally by measuring the

pressure as a function of length and we would find that it is essentially

linear with distance. This assumption that pressure gradient matters

really only applies to pipes that are long relative to their diameters.

If we use the pressure gradient as our parameter our result is sim-



2.2 Buckingham Pi Theorem 21

a) b)

Figure 2.4 Dimensional (a) and dimensionless (b) plots of the flow-
pressure drop data for the pipe flow problem. This data was taken
in a simple apparatus and consisted of 21 separate configurations
varying fluids (water and oil), pipe diameter, and pipe length. The
experimental dimensional data in (a) is collapsed to a single master
curve in (b). I took this data with a simple table-top device thus
the data at high Reynolds number show some significant scatter
that can be reduced with some care.

plified as the number of variables is reduced to 5 and the Pi Theorem

states we will only have two parameters that matter. Proceeding in the

same way to remove dimensions, we could obtain.

U [LT ] D [L] ∆P
` [ M

L2T 2 ] ρ [ML3 ] µ [ MLT ]

U [LT ] D [L] ∆P
`ρ [ LT 2 ] ρ

µ [ TL2 ] Remove M

ρU
µ [ 1

L ] D [L] ∆P
`ρU2 [ 1

L ] Remove T

ρUD
µ

∆PD
`ρU2 Remove L

This result is powerful as this is a single master curve. This master

curve captures the pressure flow relationship for all pipe sizes, all fluids,

and all pressure drops. This is a very powerful result. The punchline

of the work is shown in Figure 2.4 where we show the dimensional

and dimensionless pressure-flow relationship for pipe flow. I took this

data myself in a simple apparatus. There are 21 different experiments

in these plots. The pipe diameter and length were varied and data

was taken with both water and oil to vary the fluid properties. In

dimensional form, the data spans 3 orders of magnitude in velocity. In

dimensionless form, all the data collapse to a single master curve. All

21 experiments are described by one curve.

An interesting feature of the data is the kink in the slope. This feature
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Figure 2.5 Experimental images on pipe flow at different Reynolds
number. In the upper image the flow is laminar and injected dye just
goes right down the center in a straight line. At higher Reynolds
number the flow begins to fluctuate and become unstable. These
images were taken in Orbourne Reynold’s original experimental ap-
paratus but a century later. In Reynold’s original paper he included
hand sketches of the flow field. From Album of Fluid Motion.

of the curve was first described by Osbourne Reynolds in one of the

most well-known papers in all of fluid dynamics (Reynolds (1883)). At

low flow and low pressure, the relationship between pressure and flow

is linear. This linear regime is analogous to Ohms law for a resistor,

V = iR, where voltage drop is replaced by pressure drop and current is

replaced by flow. At higher flow rates (pressures) something happens.

We will discuss this transition in more detail later, but it represents a

transition from a smooth laminar flow to a turbulent one.

Visualization of this instability is shown in Figure 2.5 at three Reynolds

number from low to high. In the laminar flow case, the relationship be-

tween pressure and flow is easily described by a theory which we will

discuss later. In the turbulent case, at high flow, there is no theory

that can predict the behavior and even today’s fastest computers are

limited in calculating turbulent flows. Because the turbulent case is dif-

ficult to describe theoretically, the collapse of the experimental data is

important. It means from a limited set of experiments we could predict
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turbulent flow in any pipe with any fluid. It is also important to real-

ize that he images seen in Figure 2.5 only depend upon the Reynolds

number. If we repeated the experiment in water, air, and oil - but we

changed the size of the pipe to keep the Reynolds number the same

across the three experiments - we would make the same visualizations.

2.2.6 Drag on a boat

Let’s consider the problem of drag on a boat. If my boat were a subma-

rine, then the analysis we conducted for the sphere immersed in a fluid

would be all we would need. That analysis said the only dimension-

less parameter that mattered was the Reynolds number. That result

means that if I build a model submarine of the same geometrical pro-

portions as the actual one and place it in an experiment that matches

the Reynolds number, then my model experiment is an exact replica of

the real thing. My model could be in air instead of water, as long as

the Reynolds number matched.

With a boat that sits on the surface of the water, the situation is a

little different. Not only is there drag due to the hull moving through the

fluid (like drag on the submarine), but there is clearly energy radiated

away in the waves of the wake. The waves carry energy and therefore

must be taking away energy that would otherwise be put toward moving

the object. For this problem we need to determine which parameters

matter, again unleashing our inner Lord Rayleigh.

Let’s consider a case where our model will have the same proportions

as the real ship and we will weigh down the model such that it sits at

the same depth as the real ship. Under these restrictions, the geometry

is captured by the single length of the boat, `, since all other length

scales would change in proportion. We would expect the boat’s drag to

at least depend upon the speed, U , fluid density, ρ, and fluid viscosity

µ. We could hypothesize that the air and it’s properties don’t matter.

Since the air is 1000 times less dense than the air, it seems reasonable to

neglect the influence of the air. One parameter we can think that might

play a role in the making of waves is the acceleration due to gravity, g.

In the limit of no gravity, the waves would be really weird - so clearly

g should play some role. The final parameter we might consider is the

surface tension of water, σ. While we could include this in our analysis,

once we knew more about surface tension we would find it is a very
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small force for large objects on the size of boats with people in them.

So our physical intuition (that we are just building) says that g is the

only new parameter.

The drag force, F , is a dimensional function, F (`, U, ρ, µ, g). The Pi

theorem has 6 parameters expressed in 3 independent dimensions. We

expect one new dimensionless parameter over what we would find for

the submarine problem. Let’s proceed with the table and see what we

get,

F [ML
T 2 ] ` [L] U [LT ] ρ [ML3 ] µ [ MLT ] g [ LT 2 ]

F
ρ [L

4

T 2 ] ` [L] U [LT ] µ
ρ [L

2

T ] g [ LT 2 ] Remove M

F
ρU2 [L2] ` [L] ρU

µ [ 1
L ] g

U2 [ 1
L ] Remove T

F
ρU2`2

ρU`
µ

g`
U2 Remove L

Again, the exact choices at each step above are arbitrary and I could

have come up with a number of equivalent solutions. I took a path that

leads toward the standard way the result is presented. The new di-

mensionless parameter, is called the Froude number, and is historically

defined as

Fr =
U√
g`
.

The dimensionless drag force can be expressed as,

F

ρU2`2
= f

(
ρU`

µ
,
U√
g`

)
= f (Re,Fr)

This result has an important implication for our idea of using model

experiments for testing drag on boats. We can’t change the dimension-

less parameters to arbitrary values in practice. We are pretty much

stuck with g, at least until we can colonize other planets. We also can-

not change ρ by much - most liquids tend to have similar densities as

water. We could change the density by 20% by adding salt to water.

We could take an extreme case and use liquid mercury. However, we

are limited in what choices we can make. We also can easily increase

µ, but decreasing it from a value much less than that of water becomes

challenging. It is not practical to be able to set the Reynolds number

and Froude number completely independently.

The things we can vary with some degree of control are the veloc-

ity and the length. The relationship between velocity and length are
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different in the two dimensionless groups. If I shrink the boat, to keep

the Reynolds number the same I would need to increase the velocity in

proportion. On the other hand, to keep the Froude number the same

for a small boat model, I would need to decrease the velocity. So even

though the dimensional analysis has in theory made our lives simpler

by reducing our number of parameters from 6 to 3, we actually still

have some challenges ahead.

2.3 Making equations dimensionless

In many cases (in fact, most of them in this course), we can actually

write down in reasonably compact form the mathematical description

of the problem of interest. As we will learn, there are often many dif-

ficulties with mathematically solving the problem. In some cases it is

hard, in others it is impossible. Recall in the introduction that if you

could solve the basic equations of fluid dynamics, the Navier-Stokes

equations, in general form you would win a million dollars.

However, in cases where we know the equations but cannot solve

them, making the model equations dimensionless can help guide us to

pick the ”right” dimensionless groups. This equation based approach

can be equivalent to working the units through the table approach

but is a little bit different in methodology. The table approach will

always lead to the same result as the working through the equations.

When we have the equations at hand, we can ”see” the parameters that

matter and will often see where groupings of parameters only appear

together in certain ways, which is something that the table approach

cannot tell us. Working through the equations can remove a little of

the guess work as to what parameters should matter. However, working

with the equations does not fully absolve us from the responsibility of

knowing the physics of the problem - how do we know what equations

are appropriate?

The typical procedure is to define a new set of variables that have

no units by scaling the usual dimensional variables by a constant. This

sounds crazy but is no different than changing units. In an equation

if we have a variable time, t, we could express that time in seconds,

minutes, hours, or years. Similarly we can define a dimensionless time,

t̃ = t/t0, where both t and t0 are measured in seconds. The constant t0
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is just some constant that we pick to measure our unit of time in. There

is nothing special about the second or the minute, so we can change the

unit to whatever we feel like. Picking the ”right” scale for t0 can be a

bit of an art form that comes with experience. However, the equations

will serve as out guide us to a ”good” answer. Mathematically, t0 could

be anything.

Lets do a few examples to make this clear.

2.3.1 Pendulum

Since we started the chapter with the pendulum example, let’s repeat

this example using the equation approach. Newton’s law, F = ma, for

a simple pendulum with no friction is,

m`
d2θ

dt2
= mg sin(θ),

which is easily rewritten as

d2θ

dt2
=
g

`
sin(θ).

We have already recovered the basic result of the Pi Theorem. We have

shown that the mass doesn’t matter and that the only parameter that

matters is g/`. However, the equation still has units so let’s proceed to

remove them all. The angle, θ, has no units so we leave it alone. Time,

t, has units so lets make the transformation t̃ = t/t0 (or equivalently

t = t̃t0).

d2θ

d(t̃ t0)2
=
g

`
sin(θ).

Note how we made the derivative dimensionless. This step seems strange

to most students the first time they see it but we have to remember

that a second derivative in time has units of 1/seconds2. Thus, the dt2

in the derivative is replaced by d(t̃ t0)2. All we did was the substitution

t = t̃ t0. Since t0 is a constant it can be moved in or out of the derivative

operator. This step is no different than changing the time derivative to

be measured in minutes instead of seconds.

Our equation can be rewritten as

d2θ

dt̃2
=
gt20
l

sin(θ).
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which is a dimensionless equation with one parameter. However, we

have left t0 unspecified. I am allowed to make it anything I want. It

seems convenient then to define t20 = `/g and our equation then be-

comes,

d2θ

dt̃2
= sin(θ). (2.1)

This final equation has no units and no free parameters.

The solution to the equation requires two initial conditions for the

position and the velocity. Expressed mathematically our initial condi-

tions are

θ(t = 0) = θ0 and
dθ

dt

∣∣∣∣
t=0

=
V

l

where V is the velocity in units of L/T . We now must make these initial

conditions dimensionless in the same way as the equations. Under the

change of variables we obtain,

θ(t = 0) = θ0 and
dθ

dt̃

∣∣∣∣
t̃=0

=
V√
gl

(2.2)

Thus our general problem comprises Equation 2.1 and the initial con-

dition 2.2. The final equation has no parameters and there are two pa-

rameters that enter into the initial condition. All pendulums (started

from rest and from the same angle) are the same when time is plotted

in units of
√
`/g instead of seconds. The scaling for time is exactly as

we obtained from the Pi Theorem. We have no new information from

this approach than we got from the table.

2.3.2 Mass-spring-damper

As an example where we have additional parameters, consider a simple

mass-spring-damper system,

m
d2x

dt2
= −β dx

dt
− kx

with the initial conditions that x(t = 0) = x0 and the velocity initially

is zero.

We will make the equations dimensionless by defining x̃ = x/x0 and

t̃ = t/t0. Here, t0 is arbitrary, but x0 is the initial position. Using

the initial position seems like a good choice to make x dimensionless



28 Dimensional analysis

because the solution for x will always be bounded in magnitude by 1.

Applying the change of variables we obtain

m
d2(x̃ x0)

d(t̃ t0)2
= −β d(x̃ x0)

d(t̃ t0)
− kx0x̃

Be careful to note the units of d2x/dt2. Its units are length/time2. Thus

t0 is squared whereas x0 is not. The placement of the squares when we

write d2x/dt2 are literal; t is squared and x is not. Since x0 appears in

each term it cancels out and we can group t0 together to obtain,

d2x̃

dt̃2
= −βt0

m

dx̃

dt̃
− kt20

m
x̃.

Since t0 is arbitrary we select t20 = m/k to obtain,

d2x̃

dt̃2
= − β√

mk

dx̃

dt̃
− x̃. (2.3)

with the initial conditions that x(t = 0) = 1 and dx/dt = 0. Thus,

the all mass-spring-damper problems reduce to an equation and initial

condition with one free parameter, the dimensionless damping constant.

In the absence of damping, all mass-spring systems are reduced to a

single problem.

Let’s compare our result to what we would obtain by the Pi Theorem,

proceeding to remove units using our table method.

x [L] t [T ] x0 [L] k [MT 2 ] β [MT ] m [M ]

x [L] t [T ] x0 [L] k
m [ 1

T 2 ] β
m [ 1

T ] Remove M
x
x0

t [T ] k
m [ 1

T 2 ] β
m [ 1

T ] Remove L

x
x0

t
√

k
m

β√
km

Remove T

The result is consistent with what we obtained from making the

equations dimensionless. We can write the result from the table as

x

x0
= f

(
t

√
k

m
,

β√
km

)
.

2.3.3 Derivatives have units too

An important point that came out in the previous two examples is that

derivatives have units too. Whenever we define a dimensionless time
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variable based on some ”natural” time scale such as t̃ = t/t0, then we

need to remember that the dimensionless time derivative will become,

∂

∂t
=

1

to

∂

∂t̃
.

Whenever we define a dimensionless space variable based on some ge-

ometric length scale such as x̃ = x/L, then we need to remember that

the dimensionless spatial derivatives will become,

∂

∂x
=

1

L

∂

∂x̃
,

or
∂2

∂x2
=

1

L2

∂2

∂x̃2
.

It is also important to remember to apply this result to our vector

operators which will begin to appear soon. We will work with these

ideas in context in the coming chapters, but I want to highlight it now

so you don’t forget.

2.4 Summary

Throughout this book we will continue to return to the idea of work-

ing in dimensionless terms. We will periodically appeal to both the

table and equation based approach - realizing that we can get the same

results from both approaches. We will see many examples where the

mathematical description of a problem can be stated, but it is too dif-

ficult (or impossible) to solve the problem. In these cases we can still

obtain insight to the problem by appealing to dimensional analysis.
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The empirical approach

In the last chapter we found that by using physical insight and know-

ing the important parameters in a problem we could use dimensional

analysis to dramatically reduce the number of parameters needed to

characterize a problem. We saw through the example of drag on a

sphere and flow in a pipe that the complexity of a problem in terms of

how many experiments need to be done could be dramatically reduced.

All the behavior is described on a single plot or with a single number.

After this current chapter, we will spend much of the rest of the

book developing the underlying theory for fluid flow. We will find that

this theory can be extremely accurate when compared to experiments

and has great predictive power. We will also find that in many cases

of practical interest even with great computational resources and so-

phisticated mathematical tools, many problems are just too difficult

to solve. Fortunately, many of these cases are pretty easy to measure

experimentally. We often find that dimensional analysis coupled with

experimental data can lead to practical solutions and accurate esti-

mates to real world problems. Many times there is no real need for a

time consuming or computationally expensive solution.

The focus of this chapter will be to show how dimensional analysis

plus experimental data can be put to practical use in an engineering

setting. We can think of this approach as purely empirical, While we will

only go through a few examples, this approach in a sense could be the

end of our practical study. We might not have a lot of physical insight or

deep understanding - but we could perform simple calculations, make

predictions, and design useful things.

While all the interesting stuff (to me, anyway) will come up in later
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chapters, this chapter may be the most useful when you just need to

solve problems. We will revisit two examples from the last chapter on

drag and pipe flow and explore them in more depth. The chapter here

is meant to be illustrative and not comprehensive. Many textbooks

on engineering fluid dynamics and have numerous details and practical

situations that have been studied. My aim here is to show this empirical

approach first, and then dig into the details a little later in the book.

3.1 Drag revisited

In the last chapter we described a simple problem (well, at least simple

to state); given a sphere of diameter, D, moving at speed, U , through

a fluid, what is the drag force, F? We stated that the behavior will

depend upon two fluid properties - density and viscosity. There are

thus 5 parameters, F , D, U , µ, and ρ expressed in the 3 independent

dimensions of M , L, and T and thus the Pi Theorem says there are

only two dimensionless parameters. The table with all the parameters

and their units was found to be

F [ML
T 2 ] D [L] U [LT ] ρ [ML3 ] µ [ MLT ]

F
ρ [L

4

T 2 ] D [L] U [LT ] µ
ρ [L

2

T ] Remove M

F
ρU2 [L2] D [L] ρU

µ [ 1
L ] Remove T

F
ρU2D2

ρUD
µ Remove L

Defining the drag coefficient as Cd = F
1
2ρU

2πR2 and the Reynolds

number as Re = ρUD/µ, dimensional analysis says there is a single

master curve, namely

Cd = f(Re).

This single master curve, the function f , is shown again in 3.1.

What is interesting is that we can find two simple limits that work

over a wide range of Reynolds number in this data. At values of Reynolds

number less than 1, the data is fit by a function Cd = 24
Re and for the

range of 103 < Re < 105 the data is fit by a constant Cd ≈ 0.4. Between

1 < Re < 103 we see the data smoothly transitions from one limit to

the other. Above Re > 105 a strange dip in the drag coefficient happens

that we will discuss later. We can actually derive the two limits using
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Figure 3.1 Drag coefficient as a function of Reynolds number for
flow around a sphere is shown as the solid curve. The dashed lines
are for the fit Cd = 24/Re and a constant of Cd = 0.4.

dimensional analysis. Low values of Reynolds numbers occur for small

objects, moving slowly, through a very viscous medium (i.e. look how

the terms D, U , and µ show up). These are flows that are dominated

by viscosity. The fact that the fluid has mass or inertia turns out to

be irrelevant. It takes much more effort to drag the fluid along at low

Reynolds number than it takes to push fluid out of the way. If fluid

inertia is irrelevant to the physics, then we can remove density from

our list of parameters and rework the dimensional analysis.

F [ML
T 2 ] D [L] U [LT ] µ [ MLT ]

F
µ [L

2

T ] D [L] U [LT ] Remove M

F
µU [L] D [L] Remove T

F
µUD Remove L

Our result now says there is one dimensionless parameter, therefore

it doesn’t depend on anything and must be a constant,

F

µUD
= Constant.

Recasting in terms of the drag coefficient we can multiply both sides

of the equation by the inverse Reynolds number,

F

µUD

µ

ρUD
=

F

ρU2D2
= Constant

µ

ρUD
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which states that the drag coefficient will be equal to a constant divided

by the Reynolds number. The data supports the function of Cd = 24
Re .

The factor of 24 comes from a full calculation of the laws of fluid flow

and is also validated by experiments. Constants simply cannot come

from dimensional analysis.

The result I just “derived” probably seems suspicious to you. If it

doesn’t, it should. Why am I allowed to throw out density from my list

of parameters? My derivation again relies on this comment by Bridg-

man. You have to understand the physics of the problem to successfully

apply dimensional analysis. Since this is just the start of your study,

you should have no reason to accept that density is unimportant at low

Reynolds number. Remember that I have studied fluid mechanics since

graduate school, have read about this problem in numerous books, and

have run the experiment and plotted data myself. This problem is easy

for me at this point; however, faced with a new unfamiliar problem I

have to work hard to get the right answer. With a new problem, I would

also not typically believe an answer until is was backed up by a more

thorough analysis or experimental data. It will take some time until

we study fluid motion in more detail for this example to make physical

sense to you. However, the excellent fit to the experimental data at low

Reynolds number should convince you that we are on to something.

If we continued the graph in Figure 3.1 to lower and lower Reynolds

number we would see the fit to Cd = 24
Re continue to high precision.

The other limit at higher values of Reynolds number where the drag

coefficient is approximately constant can also be “derived” from dimen-

sional analysis. In this limit the fact that the fluid has viscosity matters

less than the fact that the fluid has inertia. At high speeds we have to

move the fluid, which has mass, out of the way for the ball to go by.

This explanation is actually a little too simplistic and the truth is more

subtle, but let’s just assume for now that the viscosity doesn’t matter

and see what the analysis says.

F [ML
T 2 ] D [L] U [LT ] ρ [ML3 ]

F
ρ [L

4

T 2 ] D [L] U [LT ] Remove M

F
ρU2 [L2] D [L] Remove T

F
ρU2D2 Remove L
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Our result now says there is one dimensionless parameter and it must

be a constant,

F

ρU2D2
= Constant.

We see the above equation is the definition of drag coefficient. The

analysis says that drag coefficient is constant if the viscosity of the

fluid is irrelevant. Again, I should not have convinced you that it is

acceptable to ignore the fluid’s viscosity, however the data between a

Reynolds number of 103 and 105 supports this view. If we look at the

data we see a dip in the drag coefficient that we will later explain - but

it turns out the dip occurs because the fluid has viscosity.

In dimensionless terms, there is a universal master curve of one pa-

rameter (the Reynolds number) and that curve is good for all drag

experiments with a sphere that have ever been done and all that will

be done in the future. The master curve works for all fluids and spheres

of any size. However, we demonstrate here that if we understand even

a little something about the physics of our problem, we can often find

even simpler limits that can be good over a wide range of the parameter

space.

That the behavior changes dramatically with Reynolds number can

be seen through the flow visualization images in Figure 3.2. At low

Reynolds number (here Re=1.5 or lower) the flow looks very symmetric

from left to right. In this regime the flow is dominated be viscosity. At

Re=26, we see asymmetry and a recirculating wake forming behind

the cylinder. This is the effect of inertia - the fluid approaching the

cylinder has momentum that causes the flow to tend to “overshoot” on

the backside of the cylinder. As the Reynolds number increases to 2000

and 10,000 the wake becomes very complex and has no resemblance to

the flow at low Reynolds number. It is also interesting to realize that

the flow field is only dependent on Reynolds number. The experiments

in Figure 3.2 could be repeated in water, air, or oil and as long as the

Reynolds number was matched the flow would look identical.

3.2 Drag coefficients

In summary we have the following two simple formulas for the drag

force on a sphere. If the flow is dominated by viscosity then dimensional
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a) b)

c) d)

Figure 3.2 Flow around a cylinder at different Reynolds numbers
(From Album of Fluid Motion). The Reynolds number is 1.5, 26,
2000, and 10,000 going from figures a to d.

analysis gave a force on a sphere to have a form

F = CµUD,

where C is constant. If the flow was dominated by inertia the force had

a form

F = CρU2D2.

In both cases, the constant C (or Drag Coefficient) is unknown un-

til one conducts additional analysis, numerical simulations, or exper-

iments. Fortunately, for many common shapes drag coefficients have

been measured and can be found in books or the internet. When us-

ing drag coefficient data you must take care in noting the form of the

formula, and what area or length scale is used.

Most (but not all) drag formulas are written assuming inertia domi-

nated flow. The reason is that most ”human scale” problems are in the

inertia dominated regime. The transition between the inertia dominated

flows and viscosity dominated flows is determined by the Reynolds num-
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ber, defined as

Re =
ρUD

µ
.

The Reynolds number is usually large for things that you interact with

on a daily basis - a 1 mm object traveling at 1 mm/s in water will

have a Reynolds number of 1. What counts as high or low Reynolds

number depends on the situation, but usually greater than 1000 would

be considered well in the high Reynolds number regime. The exact

number really depends on the situation.

The most common way that the drag coefficient is characterized is,

F = Cd
1

2
ρU2A,

where A is the area projected by the object to the flow. It is important

to note that this choice of area used in the formula is arbitrary. The

area used must be reported along with the drag coefficient to avoid any

ambiguity. If the drag coefficient is measured but the area that was

used to compute Cd is not reported, then the result is useless.

For many objects, the drag coefficient would be reported as a con-

stant. In some cases it will be given as a chart as a function of Reynolds

number. If the number is given as a constant, then most likely it is as-

sumed that the Reynolds number is large. Note that if it is given as

a constant in a table, it doesn’t mean that it is truly constant with

Reynolds number as seen in the sphere example. However, looking at

Figure 3.1, note how the assumption of constant drag coefficient is

pretty good over a wide range of conditions.

With a simple search will can find a lot of resources and tables of drag

coefficients. You will notice that most are around 1 for blunt objects

(sometimes around 2, but never 10) and as low as 0.04 for relatively

streamlined shapes. We will dig into the physics of this problem again

in a later chapter. For now, if you need to figure out the drag force on

an object it is pretty simple (at least conceptually),

• Compute (or estimate) the Reynolds number.

• Search for drag coefficients on the shape of interest.

• Understand what area was used on the reported drag coefficient.

Without the area defined, the coefficient is useless.

• If the coefficient is given as a function of Reynolds number, you can

just look get the coefficient for your Reynolds number.
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• If a single number for drag coefficients is reported, it is most common

for that number to assume high Reynolds number. Be careful that

you are using the right Reynolds number range.

3.3 Pipe flow

Another useful example of dimensional analysis is the problem of flow

in a pipe which we introduced in the last chapter. Given a length of pipe

`, with a constant diameter D, with a pressure difference ∆P applied

across it, what is the mean flow velocity U? This problem was discussed

previously and the dimensionless table is repeated below.

U [LT ] D [L] ∆P
` [ M

L2T 2 ] ρ [ML3 ] µ [ MLT ]

U [LT ] D [L] ∆P
`ρ [ LT 2 ] ρ

µ [ TL2 ] Remove M

ρU
µ [ 1

L ] D [L] ∆P
`ρU2 [ 1

L ] Remove T

ρUD
µ

∆PD
`ρU2 Remove L

The final result is often written in the following way,

∆P =
1

2
ρU2f(Re)

`

D

where f is called the friction factor and is a function of Reynolds num-

ber only f(Re). As with drag coefficients, the friction factor must come

from experiments or theory. Note that the Reynolds number is defined

using the tube diameter as the appropriate length scale and uses the

average fluid velocity, U . Experimental friction factor data for a range

of Reynolds numbers is shown in Figure 3.3. Earlier I presented my

own data, but here I am taking the data from the professionals that

is very high quality. Note that the Reynolds number spans 6 orders of

magnitude in Reynolds number.

When the Reynolds number is less than 2300 (this is the most com-

monly reported transition number), the flow is smooth and laminar and

the friction factor can be found analytically,

f =
64

Re
for Re < 2300.

We will compute this solution later in the course. When the Reynolds

number is larger than 2300 the flow becomes turbulent and f is found
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Figure 3.3 Experimental data for friction factor versus Reynolds
numbers. Plot is from from McKeon et al. Journal of Fluid Me-
chanics, 2004. The transition from laminar to turbulent flow at
Re ≈ 2000 is very clearly seen as the jump.

by fitting experimental measurements. There is no analytical solution

for the turbulent regime - however the overall friction factor is easy to

characterize experimentally. It is important to note that the transition

around Re ≈ 2300 is only seen this cleanly in a careful experiment. In

a practical application or more careless experiment (like my own data

that I presented in the last chapter) the transition would be seen at

a lower Reynolds number and may not be as neatly repeatable as in

Figure 3.3.

For turbulent flows, f is also experimentally determined to depend

upon roughness of the pipe. In Figure Figure 3.3 the data were taken

in a smooth pipe. However, in many practical situations the pipe is

not perfectly smooth and the roughness of the pipe is critical. The

dimensionless term is the relative roughness, ε/D, the size of the bumps

on the pipe wall relative to the diameter of the pipe. So the general

formula from dimensional analysis is

∆P =
1

2
ρU2f

(
Re,

ε

D

) `

D
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Figure 3.4 Moody diagram for the friction factor in pipe flow. This
figure is a reproduction of the way the data are classically presented.

The diagram in it’s classical presentation is reproduced in Figure 3.4

and is called the Moody diagram.

The form of the result is essentially identical to the case of drag on

an object. The Reynolds number is the key parameter and the rest of

the complexity of fluid flow is wrapped up in the single parameter, f .

When the viscosity dominates at low Reynolds number, just as in the

drag problem, we have the friction factor varying as f = 64/Re. Note

that the form of this result can be obtained from dimensional analysis

(just as in the drag problem) though the factor of 64 can only come

from analysis.

3.3.1 Calculations with the Moody diagram

In order to solve practical problems, we can simply use the Moody

diagram as a tool along with the expression,

∆P =
1

2
ρU2f(Re)

`

D
.
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If the velocity of the flow (or volumetric flow rate) is known, then the

solution procedure for the needed pressure to drive the flow is straight-

forward. The procedure is,

• For the given pipe size and fluid, compute the Reynolds number.

• Decide on a good estimate of the pipe roughness.

• Look up f(Re) on the diagram.

• Compute the pressure drop.

If the applied pressure is known, then the solution procedure for the

flow velocity is not as straightforward. The procedure is,

• Guess a Reynolds number (you can’t compute it since you don’t know

the velocity).

• Decide on a good estimate of the pipe roughness.

• Look up f(Re) on the Moody diagram.

• Compute the flow velocity as for the known pressure case.

• Compute the Reynolds number for this new flow velocity.

• Look up f(Re) on the Moody diagram.

• Compute the flow velocity again.

• Repeat (if needed) until you get a converged solution.

If at anytime in either procedure (or based on your intuition or

knowledge of the problem) you suspect that the flow is laminar with

Re < 2300, then the Moody chart is not needed. For laminar flow we

will later derive an analytical solution f = 64/Re, but for now you

could consider this to just as equally come from experimental data. For

laminar flow we have the simplified relation,

∆P =
1

2
ρU2 64

Re

`

D
.

or

∆P =
32µ`

D2
U.

For laminar flow there is a simple linear relationship between pressure

and flow velocity.
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3.4 Summary

These two examples show how we can combine dimensional analysis

with experimental measurements such that we can make accurate pre-

dictions. There is no satisfactory ”why” embedded in any of these re-

sults. However, the results can be used to design and build real devices.

Predictions can be made that will be really accurate, since they are

rooted in experiments. I again want to emphasize that we covered only

a few examples here and other books provide many more examples of

piping losses and drag on objects. We will revisit the physics of drag in

a later chapter.
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Vector calculus notation and review

Starting in the next chapter we will begin to formulate the laws which

govern fluid flow. So far we have relied on observations, experiments,

and dimensional analysis to guide us. As we develop our more complete

theory, we will find laws will allow us to compute quantities such as the

temperature field which can vary both in time and space. Our laws

will be ”local” in that they can tell us quantities at a point (in the

continuum sense) in space. Inherent in our derivations of these local

laws will be volumes, surfaces, and integrals. Using the language of

vector calculus will become essential to maintain our results in a form

compact enough to provide some physical insight.

I am assuming that upon reading this that you have taken a course

in vector calculus but have likely forgotten many of the finer details.

This chapter is meant to review the notation and some of the useful

theorems. If you have never come across these topics then my coverage

here will not be sufficient. Our use of vector calculus will be as the

language we use to describe the physics. We will not need to carry

out complicated surface and volume integrals, however, we will need to

come to understand an intuitive and physical level what a surface or

volume integral is.

4.1 Scalar and vector functions

Many physical things we will want to describe are scalar functions. A

scalar function means that there is a single value at every location in

space. That value at each point can also change with time, but the
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field has no sense of direction. Two examples of scalar functions are

temperature, T , and pressure, P . When we are being explicit, we will

write scalar functions as T (x, y, z, t) to denote that temperature can

vary at every location in 3D space and evolve with time. In two dimen-

sional problems, we will most commonly visualize the scalar function

with a contour plot, where lines show values of constant temperature.

The contour plot is just like reading a topographic map; follow a con-

tour line and your elevation doesn’t change. Follow an contour line of a

temperature field and the temperature does not change along the path.

We will also want to describe quantities that have directionality to

them and these will be vector functions. We will use a boldface notation

for vector functions. The most common quantity we will discuss is a

fluid flow’s velocity field, v. If we are being explicit we will sometimes

write v(x, y, z, t). In two dimensional problems we will visualize the

velocity field with a set of arrows at many locations in space, showing

the velocity vector’s magnitude and direction. The velocity vector has

three components, thus it is important to always remember that the

vector function is comprised of three scalar functions for each compo-

nent. For velocity, we will commonly use the notation u, v and w for

the x, y, and z components respectively. We will sometimes write out

vector functions as a column vector

v =

 u

v

w

 ,
or sometimes as components using unit vectors,

v = ui + vj + wk

Examples of scalar and vector fields in a 2D world are shown in Figure

4.1 in the context of weather. The contour map of atmospheric pressure

is shown at one instant in time during a classic “Nor’easter” snowstorm

that is common in New England. The low pressure contour off the coast

generates a strong counterclockwise wind that brings moisture in from

the ocean. The image of velocity vectors from Hurricane Katrina in

2005. The color image shows the magnitude of the velocity field (a

scalar field) and the vectors are superimposed on top.
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Figure 4.1 Examples of scalar and vector functions in weather appli-
cations. On the left are pressure contours during a classic Nor’easter
snowstorm (image from the National Weather Service archives). On
the right are velocity vectors from Hurricane Katrina in 2005 (from
Nasa’s Earth Observatory). The velocity vectors are placed on top
of an image of another scalar field, which is the magnitude of the
velocity at that point.

4.2 Gradient, divergence, and curl

There are three operations that we will use repeatedly in our study are

divergence, gradient and curl. These three operations that derivative

with respect to space. While all three have some similarities we will

think of them all as pretty distinct physical things. For all three, it is

convenient to use the notation for “del”, with the symbol ∇, written

as a column vector,

∇ =


∂
∂x

∂
∂y

∂
∂z

 ,

or equivalently using unit vectors,

∇ =
∂

∂x
i +

∂

∂y
j +

∂

∂z
k,

where i, j,k are the unit vectors in the x, y, z direction.

When we apply ”del” to a scalar function (P in the example below)



46 Vector calculus notation and review

we define the gradient which gives back a vector,

∇P =


∂P
∂x

∂P
∂y

∂P
∂z

 ,
or equivalently using unit vectors,

∇P =
∂P

∂x
i +

∂P

∂y
j +

∂P

∂z
k.

Remember, the gradient of a scalar field gives a vector. We can also take

a gradient of a vector field, but let’s leave that issue to the side for now.

The most important property of the gradient is that the resulting vector

field always points perpendicular to the contours and points ”uphill”. If

you see closely spaced contour lines on a topographical map you know

the terrain is very steep.

When we take the dot product of ”del” with a vector field we define

the divergence which gives back a scalar field. The divergence of the

velocity vector is defined as,

∇ · v =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
.

The divergence is a measure of how much a vector field is, well, diverg-

ing. If you see a point in the vector field where all the velocity vectors

were flowing out of a point, this would have positive divergence. If all

the vectors were flowing into a point, then that would have negative

divergence. If some vectors were flowing in and some out, and if they

were in perfect balance there would be zero divergence. The divergence

is shown schematically in Figure 4.2. We will see that divergence is con-

nected to the idea of conservation. In a fluid flow if there is non zero

divergence of the velocity field, then it means that mass is accumulat-

ing at that point. Non-zero divergence can only occur in a compressible

flow. Remember, the divergence of a vector field gives a scalar field. It

does not make sense to take the divergence of a scalar field.

Our final operator of interest occurs when we take the cross prod-

uct of ”del” with a vector. This operation is defined as the curl. For
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v

v = 0

v

v < 0

v

v > 0

Figure 4.2 Schematic of the divergence of velocity.

example, the curl of the velocity field is (known by the symbol ω),

ω = ∇× v =


∂w
∂y −

∂v
∂z

∂u
∂z −

∂w
∂x

∂v
∂x −

∂u
∂y

 .
The curl has to do with whether the vector field is spinning or not. We

need to be a little careful, we can have circular looking vector fields

that have zero curl. The physical interpretation of curl will be put to

the side for now and we will dig into a little deeper later in the book.

The curl of a vector results in a vector. It does not make sense to take

the curl of a scalar.

It is important to remember that del has units of 1/Length; for ex-

ample the units of ∇T are Kelvin/meter. If we work in dimensionless

terms we would very often (but not always!) decide to scale the x, y,

and z coordinate directions by the same length scale L. In this case our

dimensionless del would become,

∇ =
1

L
∇̃.

Note that the same units apply to divergence, gradient and curl.

4.3 Normal vectors and flow through a surface

Consider an arbitrary surface. This could be a surface of a distinct

piece of material, i.e. the outer skin of a ball. We could also be taking

an imaginary slice or cross section through a solid body. Whenever

we define a surface, we also need to define a normal vector. A normal
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n
ρv

Figure 4.3 Schematic of the normal vector and mass flux at a sur-
face. Here the vector field and the normal vector are not aligned so
only some fraction of the total mass flux at this location is cross the
surface.

vector is a unit vector (magnitude of 1) which points perpendicular to

a surface. When we have a closed surface, by convention we point the

normal vector outward. If we don’t have a closed surface, then we need

to define which direction the normal vector points.

We will commonly take the dot product of a vector field with the

normal vector of a surface. This product provides the the local rate

that “stuff” is flowing across the surface. For example, consider the

vector field ρv where ρ is the fluid density and v is the velocity field.

The units are kg/s ·m2. The meaning is the local mass flux, the rate

that fluid mass is being carried by the velocity field per unit area. The

dot product ρv · n gives the rate, per unit area, that mass is crossing

the surface at that point. If the mass flux vector field is aligned with

the normal vector of the surface, then all the matter that is moving

is also crossing the surface. If the flow is perpendicular to the surface

then ρv · n = 0 and nothing is crossing the surface even things are

flowing. The dot product gives us a measure of how well aligned the

flow is to crossing the surface. The surface normal and mass flux are

shown schematically in Figure 4.3.

4.4 Volume integrals

Imagine we have an arbitrary volume of material and we break the

volume up into a bunch of little discrete “bricks”. We weigh each brick,

sum them up and we have the total mass of the volume; M =
∑
mi.

We can also compute the mass of an individual brick by multiplying

the density by the volume, mi = ρiVi. Now, you should be familiar with
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the idea that if we break the such a sum up into smaller and smaller

bricks that in the limit of lots of little pieces we have an integral,

M =

∫
ρdV.

What we mean by this notation is that we integrate over x, y, and z;

M =

∫∫∫
ρ(x, y, z)dxdydz.

We will typically use the former notation for simplicity. If we actually

want to compute the integral above, we would need the density as a

function of x, y, and z as a known. If the density is a constant then we

can pull the density out of the integral in which case V =
∫
dV ; just

the total volume of the region.

We will need to remember that the element dV is a little volume

element, like a single brick in the wall. We also need to always keep

in mind that dV has units of volume. Above when we integrate mass

density (mass per unit volume) over the volume we are left with total

mass; the units of density turned to mass. Most often we will use the

volume integral to count up how much total “stuff” is contained in

a volume of material. By “stuff” we will mean total mass, energy, or

momentum. These type of total volume integrals are crucial in our

conservation laws.

We will also use the volume integral to give us a measure of the aver-

age value of some function, for example one useful average temperature

of an object could be computed as,

Tave =
1

V

∫
TdV.

Volume integrals can be computed of either scalar or vector fields. The

volume integral of a scalar field is a single number and the the volume

integral of a 3D vector field is a single 3D vector.

4.5 Surface integrals

In addition to volume integrals, we will also very commonly describe

physical things using surface integrals. The concept is in many ways

similar to the volume integral only now we think about little patches
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Figure 4.4 Latitude and longitude grid for the earth (from Encyclo-
pedia Britannica).

of surface area. Take for example the grid of latitude and longitude

on the globe shown in Figure 4.4. The grid patches are not equal in

area, thus we would need to weight any sort of sum by the area of each

patch. This weighting of the different area patches in a sum is what the

expression for the surface integral naturally does for us. We will use

surface integrals in many ways.

One example is the average of some scalar function on the surface.

If we wanted to compute the average surface temperature of the earth,

for example, we would express the calculation as,

Tave =
1

A

∫
TdS,

where T varies at every point along the surface.

Very often we will compute the surface integral of a quantity which

has some dot product with the surface normal. These expressions will

be useful for telling us how much ”stuff” is crossing a surface. For

example ρv gives the total mass flux (in units of kg/s ·m2), ρv ·n gives
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the how aligned the mass flux is with normal vector, and∫
ρv · ndS,

would give the total mass flow (in units of kg/s) through the surface.

We will very often apply the surface integral to an entire closed sur-

face which encases some volume of material. A more formal notation

for the surface integral of a close surface would be,∫����∫ ρv · ndS.

This notation is explicit because it uses two integrals to highlight that

we are integrating over an area. The circle in the surface integral is to

remind us that we are integrating over a closed area which bounds the

volume. To keep our notation simpler (as with the volume integral) we

will not use the full notation with two integrals.

Can also compute surface integrals for vector quantities. Later in the

course we will discuss pressure a lot. In a fluid, pressure is an inward

internal force of the fluid. Pressure has units of force per unit area.

Pressure multiplied by the surface normal gives a stress vector, a force

per unit area acted at a point along the surface. If we add up all the

little stress vectors and weight them by the area over which they locally

act, we have the total force due to pressure acting on this surface. Thus,

the net force due to pressure.

F =

∫
PndS

The volume integral of a scalar field is a single number and the the

volume integral of a 3D vector field is a single 3D vector.

4.6 Surfaces and volumes in 2D

Through this course I will often use 2D problems as examples since

they are illustrative, easy to sketch, and easier to solve than 3D. I am a

poor artist and a little lazy, so 2D works great for me. It is often a point

of confusion as what is a 2D volume? What is a 2D surface? Simply

put, a 2D volume is a plane that we can sketch on a piece of paper

and a 2D surface is the line that encloses that plane. When we think
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about what this means for our 3D world, just imagine that the thing

you draw extends outward and into the page forever. The 2D object

that we draw is a cross section of an infinitely long object. Working in

2D can sometimes confuse our units, so you have to remember that we

are computing things per units depth into the page.

4.7 Divergence theorem

The primary vector calculus theorem we will use is the divergence the-

orem, which states for any vector field v,∫
∇ · vdV =

∫
v · ndS.

Even though we are using v as our vector field here, the above result

is a general result from calculus and has nothing to do with whether v

is a physical velocity.

We can derive this result by sticking to a simple 2D example using

vector field v with x and y components u and v. The components of the

vector field are functions of space; u(x, y) and v(x, y). For simplicity

we will take our region of interest to be a unit square. We will start by

evaluating the surface integral. On the left boundary v · n = −u and

on the right boundary v · n = u. The change in sign is that on the left

the normal vector and the positive x component of the velocity vector

point in opposite directions whereas on the right they point in the same

direction. The dot product means that the sign will be opposite for the

two terms. The same holds for the upper and lower surfaces, only here

it is the y component of the velocity that shows up from v · n. At this

point, ∫
v · ndS = −

∫ y=1

y=0

u(x = 0, y)dy +

∫ y=1

y=0

u(x = 1, y)dy

−
∫ x=1

x=0

v(x, y = 0)dy +

∫ x=1

x=0

v(x, y = 1)dx

or by grouping terms,∫
v · ndS =

∫ y=1

y=0

(u(x = 1, y)− u(x = 0, y)) dy
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+

∫ x=1

x=0

(v(x, y = 1)− v(x, y = 0)) dx.

Recall that the fundamental theorem of calculus states that for any

function,

u(x = 1)− u(x = 0) =

∫ x=1

x=0

∂u

∂x
dx.

Therefore, our first expression can be rewritten as∫
v · ndS =

∫ y=1

y=0

(∫ x=1

x=0

∂u

∂x
dx

)
dy +

∫ x=1

x=0

(∫ y=1

y=0

∂v

∂y
dy

)
dx.

Since the order of integration doesn’t matter,∫
v · ndS =

∫ y=1

y=0

∫ x=1

x=0

(
∂u

∂x
+
∂v

∂y

)
dxdy.

Therefore, we can write the final result in our vector calculus language,∫
v · ndS =

∫
∇ · vdV.

Note that we did this derivation for a unit square in 2D. We could have

been a little more general and the result would have held up. This is

one of the most useful theorems in this course. The theorem relates the

total flux of a vector field through a closed surface to the divergence of

the same field inside the volume.

4.8 Summary

As stated in the beginning, I am assuming that the notation is fa-

miliar to you and you are not completely new to vector calculus. If

you are new to the topic, then this “introduction” is going to be too

brief. You probably noticed that I focused more on the physical inter-

pretation of various surface and volume integrals rather than actually

computing surface and volume integrals. This focus on the meaning will

continue through the book. We will use the language of vector calculus

to describe our fundamental conservation laws and the notation is used

throughout the derivations.
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Diffusive mass transfer

In this chapter we will consider an inert and dilute chemical species

mixed with a fluid; think of a little food coloring or dye added to water.

The notion of dye implies something passive (no chemical reactions) and

we have a way to measure and visualize the concentration. Starting with

the behavior a passive dye is a good place to begin our development of

theory since traces of dye is how we often visualize and measure fluid

flows in practice. Motion and transport of a dye is something we can

see, measure, and have some intuition for.

Through our discussion I will refer to the dye as comprised of molecules

since the microscopic physical picture is helpful for providing physical

intuition. Even though we will talk of molecules, it is important not

to forget that our core analysis is in the continuum realm. Over any

length scale of interest, there are many dye molecules in that volume -

there are just far fewer dye molecules than water molecules.

There are two mechanisms by which we can mix a dye with a fluid;

convection and diffusion. This chapter will only be concerned with

molecular diffusion in a stationary fluid. This chapter will set the stage

for the next chapter where we will start to see what happens when the

fluid starts moving. Starting with diffusion is also useful as it gives us

a simple case where we can start to connect our physical intuition with

the formal framework of vector calculus.
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5.1 Physical picture of mass diffusion

We will ultimately describe mass diffusion as a continuous problem and

will consider the dye concentration as a local continuum quantity. It is

useful, however, to start with a discrete picture where we follow a single

dye molecule. If we get our imaginary microscope we see dye molecules

are moving about even though the fluid is stationary. Each individual

dye particle undergoes a wayward path. The dye particle is constantly

colliding with the randomly jiggling and wiggling fluid molecules. All

this thermal motion of the fluid causes the dye particle to change direc-

tion and speed often. The path of any particle is random and cannot be

predicted. We can however, speak of a statistical average of the random

motion. This average motion of many wiggling and jiggling molecules

is what we call diffusion.

The random motion of a single particle is known as Brownian motion.

In 1828 Robert Brown noticed that small pollen grains in a liquid had

paths like that shown in Figure 5.1. If you ever look under a microscope

at very small particles a few microns in size, you can see this motion for

yourself. Einstein considered this problem in 1905 (the same year that

he wrote the theory of relativity) and put the motion of such particles

on a theoretical basis. From his analysis, he derived an expression that

allowed one of the first accurate measurements of Avogadro’s number

and other molecular properties. The Einstein analysis helped connect

the microscopic to the macroscopic (or continuum worlds). Brownian

motion is observed with particles, but the same type of motion would

be observed with our consideration of dilute dye molecules.

The random walk that a single particle takes is often called the

drunken sailor problem. The drunk sailor walks out of the bar has

no idea where he is going and does not remember where he has been.

Every step is taken at complete random. I do not know why we are so

quick to stereotype sailors, but that is beside the point. Some of his

steps will be small, some long; some to the left, some to the right. A

simulation of this situation is easy to do. Simply start at known x, y

coordinate location and with each time step, move a random distance

in both x and y. In doing so we use the Gaussian, or normal, distri-

bution to determine the direction and magnitude of each step. Every

time we run the simulation we will get something different, a sample is

shown in Figure 5.1.
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Figure 5.1 On the left, an example of a random path taken by the
drunken sailor. The sailor starts at zero,zero and at each instant in
time takes a step that has random direction and magnitude. On the
right, distance squared, r2, as a function of time averaged for 100
random walking particles. The straight line is a linear relationship
for reference.

Since each simulation is different we can repeat the experiment many

times and ask the question, on average how far away from the bar is

the sailor? If we plot the total distance squared from the bar versus

time for the average of many simulations on log-log coordinates we

obtain a result as shown in Figure 5.1. We find that in this case that

an individual sailor gets further from the bar in a random way, but

that on average r2 increases linearly with time. To end up twice the

distance from the bar takes 4 times as long. This fact will come back

to us when we consider the continuous diffusion problem.

If we start a closed box filled with random walkers all concentrated

in the center, we expect after time passes for the distribution to spread.

If we wait a long time, the molecules should be evenly distributed

throughout the box since it becomes equally likely for a dye molecule to

be at any location within the box. Diffusion tends to make the dye con-

centration uniform. Statistically speaking, given the very large number

of 1023 molecules it is impossible for the system to evolve to any state

far in the future other than uniform distribution.

Imagine a 2D closed box and drawing a vertical line along the cen-

ter, Figure 5.2. It seems reasonable to believe that the rate that dye

molecules on average cross this imaginary line from left to right would

be proportional to the concentration of dye particles on the left side of

the line. Likewise, the rate that dye particles cross the imaginary line
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Figure 5.2 Box where the left has higher concentration than the
right. .

from right to left is proportional to the concentration of dye particles on

the right side of the line. The net flux across this imaginary line is the

difference of the two values. Flux will be defined more formally soon,

but it is the number of dye molecules moving through an imaginary

surface per unit time per unit area.

If the concentration is the same on the left and right side of the

line, there is no net flux in any direction even though individual dye

molecules are constantly swapping sides. If the concentration is not

uniform as in Figure 5.2, then it should be clear that if each particle

is undergoing a random walk within the box that the left side will be

losing dye particles while the right side will be gaining them. All the

dye molecules are acting the same (on average) there are just more dye

particles on the left when we start. This difference in concentration

results in a net flux of molecules from the more concentrated to least

concentrated regions. Ultimately we would expect the particles to be

evenly distributed throughout the box, just based on probability, and

at that time the flux at the center of the box would be zero.

The important observation is that for their to be a net flux, we need

to have a concentration gradient. If the concentration is not uniform,

then the concentration at any location, just a small distance dx away,

is given by a Taylor series as

c(x+ dx) = c(x) +
∂c

∂x
dx.

where c(x) is the concentration on the left and c(x+ dx) is the concen-

tration on the right. If the net flux at a point were to be proportional

to the difference in concentration just to the left and right side of an
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imaginary line (i.e. c(x+ dx)− c(x)), then the net flux would propor-

tional to the concentration gradient. The relationship between flux and

concentration gradient is in fact what is observed with the random walk

and is known as Fick’s law. We will formalize Fick’s law very soon.

5.2 Continuum concentration

Now we are going to move from thinking about individual dye molecules

to thinking about concentration as a continuum concept. We define the

continuum concentration, c, to be the number of dye molecules per unit

volume. Let’s take a 1 liter container of water and mix in 6.022× 1020

dye molecules. When dye is evenly distributed, I have a concentration

of 6.022× 1020 particles per liter, or 1 milli-molar (mM). This concen-

tration would be considered very dilute as there would be on the order

of 1 dye molecule per 100,000 water molecules. If we shrunk down and

took a sample volume the size of red blood cell, there would be on the

order of 10,000 dye molecules at that scale. These numbers should give

some sense by what we mean with a continuum value of concentration.

If we shrink down to describe a continuum “point” as something the

size of a single cell, we are fine talking about continuum concentration.

However, it is clear if we kept taking a smaller and smaller sampling

volume we would eventually have a small, countable number of dye

molecules. When the problem length scales is large compared to scale

where we would only find a few dye molecules, then we are pretty safe

working in the continuum realm.

If the concentration is uniform the total number of dye molecules,

N , is related to the concentration, c, simply through the volume,

N = cV.

Now let’s take a case where the dye is not evenly distributed. We could

imagine breaking the liter volume up into 1000 mL size samples and

count the molecules in each sub-volume. The total number of molecules

would then be the sum of the numbers in each element. In the contin-

uum limit when we can describe the concentration as a local scalar

field, c(t, x, y, z), then we formally find the total number of molecules
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through volume integration,

N =

∫
cdV. (5.1)

I keep referring to counting the number of dye molecules. In a real

experiment we would never count molecules. We could measure the

concentration many different ways, depending on the nature of the dye.

With dye or food coloring, we can visually see the concentration by the

darkness or lightness of the color.

5.2.1 Mass flux and conservation

Since the dye molecules do not chemically react we can (at least in

principle) track their numbers. If we consider any arbitrary volume

then the change in the number of molecules stored inside that volume

must equal the difference between how many dye molecules entered and

left the volume,

∆N = Nin −Nout.

This equation is nothing more than like counting the number of people

in a room. Stand at the door and count how many people come in

and out and you know by how much the total number of people in the

room has changed. In the subject of fluid dynamics, we typically work

in rate form, which we can obtain by taking the time derivative of the

expression,

dN

dt
= Ṅin − Ṅout. (5.2)

I should comment on the use of Ṅin to denote the rate of molecules

coming into our volume. It is common notation to use a dot above a

variable to denote a rate. This dot should not be confused with the

one often used in mathematics books where df/dt ≡ f ′(t) ≡ ḟ(t).

Making the analogy of the doorman, if I count 60 people entering into

a room in one minute, then I would have and average rate of Ṅin = 1

person/second.

In analyzing this equation in a continuum sense, we will need a way

to describe the rate that particles are leaving an arbitrary volume ele-

ment. To provide more formalism, we need to define a mass flux vector,
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j. The boldface notation denotes a vector quantity. Mass flux has mag-

nitude and the direction points in the direction, on average, that the

dye molecules are moving. We saw previously that we expect the flux

to point from more to less concentrated areas of dye. The units of flux

are number of dye molecules per unit time per unit area. It is fine to

think of the flux as related to the average velocity of the continuum

collection of the dye molecules at that point in space. Remember, for

now we consider that the carrying fluid remains stationary.

If we take the surface of an arbitrary volume, and draw a surface nor-

mal vector n to point outward, then j ·n is the rate that dye molecules

cross the surface at that point, per unit area. The dot product with the

surface normal vector is important since the mass flux is a vector. If

the mass flux is pointing tangential to a surface, then no dye molecules

are crossing the surface. If the flux vector and the normal vector are

aligned, then all the movement of the dye is such that it is cross the

surface. See the schematic in Figure 5.3.

The net rate that dye molecules flow across the entire boundary of a

closed volume is given by a surface integral. If we consider our surface,

S, which encloses our entire volume of interest the net rate that dye

molecules cross that surface is

Ṅin − Ṅout = −
∫

j · ndS. (5.3)

The minus sign is there because the convention is to define the normal

vector to point outwards from a closed surface. The dot product of the

normal vector and the mass flux vector automatically gets the sign for

inward and outward flux from the volume correctly.

Making the analogy with people coming and going from a room,

the surface integral would be equivalent to giving 1000 bouncers, 1000

doors around the large room to watch. Each bouncer would count the

number of people coming and going. The surface integral would be the

summary report from all the bouncers. The surface integral counts the

amount of dye coming and going per unit area all along the surface,

and the adds it all up.
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n
j

Figure 5.3 Schematic of mass flux and normal vector on an arbi-
trary, closed surface. The concentration of dye inside the volume
is sketched to be higher than outside. This case would have a net
flux outward from the volume, decreasing the total number of dye
molecules inside.

5.2.2 Conservation of mass

If we now consider a closed, arbitrary volume in the fluid, Equation 5.2

written in vector form is,

d

dt

∫
cdV = −

∫
j · ndS.

This equation makes the statement that the time rate of change of

the number of molecules inside the volume must equal the net rate

that molecules cross the surface. For now, we consider mass transfer in

a stationary supporting material and our volume of integration remains

fixed and does not move. If the volume is fixed, on the left hand side

the order of the derivative and integral can be switched,∫
∂c

∂t
dV = −

∫
j · ndS.

Applying the divergence theorem to the right hand side converts the

surface integral to a volume integral. Grouping the two volume integral

terms together yields, ∫ (
∂c

∂t
+∇ · j

)
dV = 0.

Putting the equation in this final integral form allows us to turn

the expression into a local differential equation. The equation above

says the integral of some quantity in parenthesis must equal to zero.
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Figure 5.4 Schematic of the divergence of the mass flux. The con-
centration at a point rises, falls, or stays the same depending on the
local divergence of the mass flux vectors.

An integral can be equal to zero when the thing you are integrating is

non-zero. Think about sin(x) integrated from 0 to 2π. The function is

positive some of the time and negative the rest and in perfect balance.

However, in our problem the volume of integration is arbitrary. I could

make the integration region bigger, smaller or move it to another place.

The only way the integral can always be zero is if the thing we are

integrating is zero. Everywhere. Therefore our integral equation can be

written in differential form as,

∂c

∂t
+∇ · j = 0. (5.4)

This equation is valid at every point.

The physical interpretation of the equation using what we know from

vector calculus is simple. If all the mass flux vectors point toward a sin-

gle location then dye is flowing toward that point and we expect the

local concentration to increase with time. Mathematically, when the

flux vectors point toward a single location, then the divergence is neg-

ative and thus our equation says that the rate of change of concentra-

tion at that location is positive. If all the mass flux vectors point away

from a point, then the concentration at that location decreases with

respect to time. At a point, the mass flux vectors could be converging

in the x-direction but diverging in the y direction, thus local amount of

dye flowing to that point on net zero and thus the concentration does

not change. The regimes of positive, negative, and zero divergence are

shown in Figure 5.4.



64 Diffusive mass transfer

5.2.3 Fick’s law

So our equation is beautiful to look at,

∂c

∂t
+∇ · j = 0,

but it is not complete. There are four unknowns, 3 components of the

mass flux vector and concentration, and only one equation. Closure to

the problem is provided via Fick’s law. Ficks’s law is an example of a

constitutive law. Constitutive laws capture the microscopic behavior of

our continuum. The use of a constitutive law is always needed to close

conservation laws. The conservation law is based on the assertion that

the number of dye molecules is fixed. We will then require a constitutive

relationship to complete the problem.

Fick’s Law states that

j = −D∇c. (5.5)

The law, which is not really a fundamental law, states there is a linear

relationship between diffusive mass flux and concentration gradients.

Concentration has units of number of molecules per unit volume. The

mass flux has units of number of molecules per unit area per unit time.

The diffusivity D has units of m2/s. We treat D as a material property

that we can look up. Typically the constant is quite small if the medium

is a liquid. For a small molecule in water D ∼ 10−9 m2/s. For larger

molecules it can be an order of magnitude smaller. It is important to

remember that Fick’s law is a constitutive law which is not necessarily

valid for non-dilute systems. For the system of random walkers, Fick’s

law turns out to hold true.

5.2.4 Diffusion equation

The use of Fick’s law in our conservation equation yields,

∂c

∂t
= ∇ · (D∇c).

When the diffusivity is a constant, which is often but not always the

case, our equation simplifies to,

∂c

∂t
= D∇2c. (5.6)
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It is a single equation for the concentration at every point in space

and time. It can (at least in principle) be solved when provided an

initial condition and appropriate boundary conditions. The equation is

also sometimes called the heat equation as it is the same equation that

governs heat conduction.

In order to solve the above equation, we need boundary and ini-

tial conditions. The equation itself is good for the region of interest.

The boundary conditions are the mathematical expression of what is

happening just outside the region where we are solving the equation.

The initial condition represents the state of the system when we start

watching it.

There are some common classes of boundary conditions which are

show up in a number of problems. For diffusion of dye, the most com-

mon physically realizable condition is insulating. Here, we set the

mass flux through the surface to be zero, j · n = 0. This condition

would be realized at an impenetrable wall where the dye cannot leave

the system. Another possible condition is fixed concentration. This

condition simply means that we know and prescribe the concentration

along the boundary. This might be a condition at a solid surface where

the solid dye was dissolving into a liquid (or being generated through

a chemical reaction). We could also prescribe the mass flux at the

boundary, which would be stated as −D∇c · n = q.

The boundary conditions can be a great source of uncertainty. While

many conditions realize the insulating condition in practice, it is more

difficult to prescribe an exact concentration or flux at a surface. With

the exception of the insulating condition, many other boundary condi-

tions would be approximations and the source of the largest error when

comparing theory to experiments.

5.3 Equation in 1D

While we derived the equation in 3D, it is easiest to solve the equation

and gain some insight by focusing on a simpler 1D case. In 1D the

partial differential equation which relates changes in concentration with

respect to time and space is,

∂c

∂t
= D ∂

2c

∂x2
.
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Figure 5.5 Graphical interpretation of the mass diffusion equation.
We show three sample spatial concentration profiles at a particular
instant in time. Consider whether the concentration at the center
(x=0.5) increases, decreases, or stays the same (in time) based on
the spatial curvature.

The equation says the first derivative of concentration in time is propor-

tional to the second derivative in space. The second derivative in space

is the curvature. If the spatial concentration field is locally curved, then

the concentration at that point will change with time. This behavior

is shown graphically in Figure 5.5. Here we show three concentration

profiles in space at a snapshot in time. One profile is linear while the

others are concave up and concave down. Lets consider the concentra-

tion at the center point in space. In the concave upward case, curvature

at the center is positive. The center concentration therefore increases

with time. Physically this make sense because the material a little to

the left and a little to the right is more concentrated with dye than the

center, pulling the center concentration upwards. In the concave up sit-

uation, there are mass flux vectors pointing and converging toward the

center. The situation is reversed for the concave down example. When

the concentration gradient is linear, the point to the right is pulling

up and the concentration to the left is pulling down and thus the con-

centration remains constant with time. In the linear case, there is a

constant mass flux through the system. The flux is everywhere uniform

and thus no local accumulation.
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Figure 5.6 Solution to the diffusion equation. The initial condi-
tion is that the left half of the domain starts at a concentration
of 1 and the right half is zero. Snapshots in time are shown at
t = 0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 1. Here D = 1.

Now let us consider a specific 1D problem. Consider a 1D region

that initially has dye concentrated on the left half and no dye in the

right half. A partition separating the two regions initially keeps the

left concentration uniform and allows nothing to the other side. We

then suddenly make the partition disappear and diffusion allows dye to

migrate from left to right. The end walls are insulated such that dye

cannot leave the system from either boundary. The region has a total

width of `, thus our domain will be 0 < x < `. The equation, initial

condition and two boundary conditions would be stated as

∂c

∂t
= D ∂

2c

∂x2
(5.7)

c(x < `/2, t = 0) = c0; c(x > `/2, t = 0) = 0,

∂c

∂x

∣∣∣∣
x=0

= 0,

∂c

∂x

∣∣∣∣
x=`

= 0. .

We want to understand the rate at which the dye spreads and overtakes

the entire area.

The mathematical solution (which we will soon walk through) is
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shown in Figure 5.6. However, the solution probably makes some intu-

itive sense based in your experience. Pay attention to the curvature in

the solution. The left half always has curvature downward and the right

half is curvature upward. The curvature corresponds on the right where

the concentration always increases and the left it always decreases. The

center point is an inflection point with zero curvature and the value of

the concentration there doesn’t change. Note that the final state is uni-

form where the concentration field is flat. The equation says that steady

state (when things can no longer change in time) is reached when the

concentration field is uniform or linear. The boundary conditions re-

quire the concentration field to be flat at the boundary, thus the final

state can only be uniform concentration.

5.3.1 Pi Theorem

Without solving the equation, let’s use the Pi theorem and see what

that tells us. In dimensional terms we want to find c(x, t,D, `, c0). To

introduce the concentration we need a new independent dimension, the

number of molecules, N . The table for our dimensionless concentration

and the systematic removal of units is,

c [ N
L3 ] x [L] t [T] c0 [ N

L3 ] ` [L] D [L
2

T
]

c
c0

x [L] t [T] ` [L] D [L
2

T
] remove N

c
c0

x
`

t [T] D
`2

[ 1
T

] remove L

c
c0

x
`

tD
`2

remove T

The Pi Theorem yields the dimensionless concentration is a function

of the dimensionless spatial coordinate and the dimensionless time,

c

c0
= f

(
x

`
,
tD
`2

)
.

Dimensionless numbers time and space coordinates should bother you

no more than the arbitrary definitions of the meter and the second.

5.3.2 Scaling the equation

The equivalent approach is to explicitly take the governing equations

and convert the units from man made ones to dimensionless ones. We
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did this for a few simple problems in our first chapter on dimensional

analysis. To proceed, we introduce a non-dimensional spatial coordinate

x̃ = x/` so that the domain extends from 0 < x̃ < 1. We can also define

a non-dimensional time as t̃ = t/t0 where t0 is an arbitrary (for now)

time scale. Under this change of variables, the equation becomes,

∂c

∂(t̃ t0)
= D ∂2c

∂(`x̃)2
. (5.8)

Since ` and t0 are constant we can pull it outside the derivatives to

obtain

∂c

∂t̃
=
Dt0
`2

∂2c

∂x̃2
. (5.9)

Nothing is stopping us from arbitrarily setting t0 = `2/D so that the

diffusion equation becomes simplified with no material or geometric

parameters,

∂c

∂t̃
=
∂2c

∂x̃2
. (5.10)

It should be clear that since the left and right side of the equation

are proportional to the concentration, we can easily divide the overall

concentration by c0. Normalizing the concentration is really no different

that working with molar concentration units rather than with the actual

number of molecules.

The dimensionless equation and boundary conditions show that the

solution has to have a form

c

c0
= f(x̃, t̃) = f

(
x

`
,
tD
`2

)
The functional form is exactly that obtained via the Pi Theorem.

While it may not seem so, these results are very powerful and useful

even though we haven’t solved a problem yet. The units of the equation

says all diffusion problems (with this boundary condition) are the same.

We simply scale the geometry to have a length that ranges from zero

to one. The combination of the size and the diffusivity gives us the

appropriate time unit. On the scaled domain and in the proper time

units, problems of different size and material property will have the

same solution. Regardless of the size or material involved, if you solve

the diffusion equation for this problem you have solved it once and for

all. Once we have our solution we simply use the definitions above to
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move from the dimensionless solution to physical units by multiplying

by the appropriate constants.

This scaling for time in the diffusion equation is very important. It

provides us with an estimate for how long things take to spread and

come to equilibrium. If we know the material and the length scale, then

equilibrium will be reached on a time scale of the order of `2/D. This is

not a precise estimate, but a useful one nonetheless. The estimate tells

us the order of magnitude. If the estimate tells us the time scale is one

minute, we can’t be sure if it will take 1 minute or 3 minutes. However,

we can be confident that equilibrium will not occur in one second or

take hours. It is an order of magnitude estimate - that’s all. These types

of estimates based on arguments of units are useful because they are so

simple and can give some immediate intuition. Finally, note that the

scaling t ∼ `2/D is the same as the average displacement we found in

the first section where we considered the particles undergoing a random

walk. In diffusion problems time scales with `2 - double the thickness

and it will take four times as long.

5.3.3 Analytical solution in 1D

In one dimension, the diffusion equation is usually solvable analytically.

In another book of mine on partial differential equations (well, it’s in

progress anyway), I work through these solutions in much more detail

than I do here. Here, I just want sketch out a few results for you to be

familiar with and you can consult other resources for more detail. Let’s

consider the equation in 1D in dimensionless terms where D = 1 and

0 < x < 1. The equation in 1D reads,

∂c

∂t
=
∂2c

∂x2

It turns out that the general solution has the form,

c(x, t) = e−λ
2t (A sin(λx) +B cos(λx)) .

While I am not providing how I arrived at this form, you can check by

inspection that it in fact satisfies the partial differential equation. The

constants A, B, and λ are unknowns until we apply the two boundary

conditions and the initial conditions.

To show how we go about determining the constants, let’s consider
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the particular case where the two boundary conditions are insulating.

The boundary conditions were stated as,

∂c

∂x

∣∣∣∣
x=0,1

= 0.

Taking the first derivative in x of our solution form gives,

∂c

∂x
= e−λ

2tλ (A cos(λx)−B sin(λx)) .

Evaluating this derivative at x = 0 and applying the insulating bound-

ary condition gives,

∂c

∂x

∣∣∣∣
x=0

= e−λ
2tλA = 0.

This condition means that the solution should have A = 0. Applying

the boundary condition at x = 1 yields,

∂c

∂x

∣∣∣∣
x=1

= −e−λ
2tλB sin(λ) = 1.

While B = 0 or λ = 0 could be set such that the solution would satisfy

the boundary conditions, these choices would result in a trivial solution.

The only interesting solution that can satisfy the boundary condition

is when sin(λ) = 0. Thus λ = nπ where n is an integer. Therefore

on application of our two insulating boundary conditions, we have a

solution in the form of a sum of cosines with exponential decay in time,

c(x, t) =

∞∑
n=0

e−n
2π2tBn cos(nπx).

The constants Bn are determined by applying the initial condition.

The trick (and it really is a trick, at least until you have seen it once

before) to find the constants Bn relies on a fundamental property of

cosines,∫ 1

0

cos(nπx)cos(mπx)dx = 0; n and m are integers, n 6= m∫ 1

0

cos(nπx)cos(nπx)dx = 1/2; n is an integer

Let’s take an arbitrary initial condition, c(x, t = 0) = c0(x). The initial
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condition problem is to find Bn that satisfy,

∞∑
n=0

Bn cos(nπx) = c0(x).

We multiply the entire initial condition equation by cos(mπx) and in-

tegrate the entire equation across the domain we obtain,∫ 1

0

( ∞∑
n=0

Bncos(nπx)cos(mπx) = c0(x)cos(mπx)

)
dx.

If you apply the properties of products of cosines integrated over the

domain, you will note that of all the terms in the infinite sum on the

left side of the equation, only the case where n = m gives something

other than zero. Therefore the constant Bn is set by,

Bn = 2

∫ 1

0

c0(x)cos(nπx)dx

If we perform the above integral for the initial condition used in

Figure 5.6, we would be able to easily determine the constants Bn. The

solution in this case would be

c(x, t) =
1

2
+

∞∑
n=1

2 sin
(
nπ
2

)
nπ

e−n
2π2t cos(nπx).

While we can plot the solution to see what it looks like, let’s think

about it a little more. First, note that all the terms with even values

of n would be zero due to the sin(nπ/2) part of the equation. Now

imagine carrying out the sum for the first few odd values of n,

c(x, t) =
1

2
+

2

π
e−π

2t cos(πx)− 2

3π
e−9π2t cos(3πx)+

2

5π
e−25π2t cos(5πx)+...

Note in the above solution that for n > 1, once a little time has passed

the coefficient in front of these terms would be really small. Imagine

the solution at t = 1/π2 ≈ 0.1. At this time e−9 << e−1. It should be

clear that once t is no longer small then the solution is dominated by

the first cosine term,

c(x, t) ≈ 1

2
+

2

π
e−π

2t cos(πx)

When you look at Figure 5.6, notice that not much time passes before

you see this single cosine term in the solution.
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If this is the first time you have come across this type of solution to

a partial differential equation, the method probably seems mysterious

at this point. More detail on the origins and meaning of this solution

as well as examples for different boundary conditions can be found in

my other resources.

5.4 Role of simulation

The equation,

∂c

∂t
= D∇2c, (5.11)

with appropriate boundary and initial conditions can provide the con-

centration as a function of time and all three spatial dimensions in a

stationary fluid. The equation is linear and well-behaved such that we

can usually obtain a solution to the problem of interest. If we make

some simplifying assumptions, we can often solve the problem analyti-

cally as in the last section.

In complicated geometries or with complicated boundary conditions

we can use computer simulation; usually finite element software to solve

the problem numerically. There are a number of free and commercial

codes that can be used to solve such problems. The equation is generally

well-behaved, thus numerical solutions are usually (but not always)

obtained without much difficulty with modern software.

If you use simulation, it will be important for you to keep the ba-

sic mathematical picture and physical problem formulation in mind.

In order to have a well defined problem you will need to specify the

following in software,

• The geometry of the physical domain. In this chapter, our geometry

was usually simple (e.g. a line) but in software you can easily have

any shape. The software will break your geometry up into a mesh of

a number of small elements. For mass diffusion, the default meshing

process will often be sufficient. In complex problems, meshing can

become an art form.

• The equation. While we have discussed the basic mass diffusion equa-

tion alone, the software might have additional terms which you can

activate, such as chemical reactions.
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• The diffusivity of the dye species in the fluid, D. Alternately, you

may want to solve a dimensionless problem and you can set your

properties to 1.

• The initial concentration distribution (unless you are only interested

in steady state).

• Appropriate boundary conditions. All endpoints, edges, or surfaces

of your geometry (whether in 1D, 2D, or 3D respectively) will need

boundary conditions specified. The most common conditions would

be insulated (no normal gradient), fixed concentration, or fixed mass

flow.

Before you start a simulation you should perform some estimations

and try to obtain a picture of what to expect. For example, if you are

solving a transient problem, use the dimensional analysis result that

t ∼ `2/D to determine approximately how long it will take to come

to equilibrium. Simple analytical solutions that are easy to evaluate,

provide the parameters that dominate a problem, or collapse all the

solutions to a single plot or equation are really handy to have. Even if

your problem has a complex geometry, having a simple 1D model can

still often be really handy.

5.5 Summary

Mass transfer by diffusion is generally a pretty slow process. If you

consider something like sugar mixed in water, the diffusivity is D =

6×10−10 m2/s. We discussed that you could estimate the time it takes

diffusion to occur over some distance as t ∼ `2/D. Using this argu-

ment and assuming your coffee cup is about ` ∼ 10 cm then it would

take about half a year for sugar to mix within your coffee cup. If you

wanted the molecules to diffuse over a length scale of your height, you

might need to wait 200 years. Diffusion is slow at the human scale. If

you consider a single cell, which might have a size of 10 microns (1

micron is 10−6 m), then we get diffusion times scales of on the order

of a second. Diffusion is not so slow if you happen to be really small.

When we observe fluid mixing in our everyday life, it is most certainly

dominated by convection. In the next chapter we will begin to describe

conservation laws in moving fluids.
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Convective mass transfer

In this chapter we again consider an inert and dilute chemical species

mixed with a fluid. In the previous chapter we considered diffusion only

and we saw that diffusion is generally very slow (at least at the human

scale). A common analogy for mass diffusion is the example of opening

a bottle of perfume at the front of the room. If I did this, the front of

the class would smell it first, then it will spread across the room toward

the back. The behavior would seem “diffusion-like” but it is not really

mass diffusion. The dominant transport mechanism of perfume would

be driven by air motion. Even if the air in the room feels still, it is

not. Slight currents dominate over the very slow process of molecular

diffusion. In the perfume example we might have to wait years for

molecular diffusion to do the trick while convection in seemingly still

air takes less than a minute.

We will use the example of a passive dye to introduce how fluid flow

can dramatically change the behavior and analysis. This chapter will

introduce much of the formalism need to analyze fluid flows.

6.1 Convective mass transfer

The formulation derived in the last chapter is useful when the support-

ing medium is stationary. However, when fluids are involved it is often

not the case that things are still. If you drip a little food coloring in

water very carefully, you will probably see that after it sinks to the

bottom of the cup it just sits there. You would have to wait quite some

time for the dye to fully mix by molecular motion. Give the water a
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quick flip with a spoon and mixing occurs seemingly in an instant. In

general, at the scale of everyday things that you and I are intuitively

familiar with, mixing by convection in a fluid is much more efficient

than by molecular diffusion. When we observe mixing in our everyday

life, it is most certainly dominated by convection. In this section we will

start to describe how to describe conservation laws in moving fluids.

In describing fluid flow, we will refer to the carrying fluid’s velocity

field. We will describe the velocity vector field v(t, x, y, z) as a function

of space and time. By convention, we will refer to the x, y and z com-

ponents of the velocity vector as v = [u, v, w]. For the purposes of this

chapter we will assume by some magic that the fluid’s velocity field is

known. In the next chapter and for much of the rest of this book we

will discuss how to calculate that velocity field - a non-trivial matter.

6.2 Material point of view - be one with the fluid

Imagine a river which meanders through the countryside. The river has

some wide regions with very slow flow and some narrow regions with

faster flow along with some rapids and waterfalls. The river however, is

in a state that is constant with time and does change from hour to hour

or day to day. Imagine you are sitting on the bank of this river studying

the flow of water. Your reference frame is fixed and everything seems

constant and nothing changes if you come back the next day to the

same spot. If you measured any property of the river at your particular

location, and you would see the same value every day and might be

tempted to say nothing is changing. The river is static. Now imagine

you are on a raft studying the same river. The river seems anything but

steady and constant. You are constantly speeding up, slowing down,

twisting left and right, and generally being thrown about. From the

raft you would surely report that the river is dynamic. Whether some

property of a flow seems constant in time or not, is a matter of whether

you like to sit on the river bank or go with the flow.

In formulating our conservation laws, it is useful to take a point of

view of the fluid. In analyzing flow we often will refer to a “fluid parti-

cle”. This is a nomenclature that is common, but perhaps misleading.

There are no particles per se in our description of the flow. By a fluid

particle, we mean that we attach an imaginary massless membrane to
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a fixed amount of fluid. We then watch where this fluid blob goes as

it flows and deforms. The fluid particle is considered to be composed

of the same material for all time. This consideration is not literal from

a molecular point of view, it is surely true that the random motion

of molecules means that individual molecules are exchanged from one

fluid particle to the next.

6.3 The material derivative

Let us continue with the river example and quantify the idea of change

from the fluids perspective. Imagine that upstream, someone is illegally

dumping some pollutants and you are tasked with figuring what is

going on. Let’s imagine a case where the river water flow is constant

in time. In principle, if you had enough sensors you could describe the

concentration field of the pollutant at every point in space and time;

i.e. c(x, y, z, t). This is difficult to do, so you set about to do some more

localized sampling.

First, you decide to fix your reference frame by standing in one spot

on a river bank. For this point of view we measure the rate of change

of pollutant by simply taking the time derivative of the measured con-

centration, ∂c/∂t. Since the river’s flow is constant, if you measure the

concentration changing in time we would assume this must have some-

thing to do with changes in the rate that pollutants are dumped in the

river upstream.

Now imagine that we decide to do some sampling of the river on a

small boat. We get on a small boat and drift down the river, just going

with the flow. If we monitored the concentration of pollutant from the

perspective of the flow, we would sense something different. If we are

upstream of the source, we sense no pollutant. As we pass the source,

we would presumably measure an increase in concentration. Now that

we have become a fluid particle the rate of change of concentration

with respect to time from the perspective of the fluid, is different than

in the fixed frame. We will find it useful to describe the rate of change

of something with respect to time from the perspective of the fluid.

Even though we measure a different rate of change depending on

the perspective, it is important to remember that there is only one

concentration field. If you are measuring from the river bank and me
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from the boat, we better get the same instantaneous measurement at

the time I drift over your fixed sensor. We are making measurements

of the exact same thing and ultimately our perspectives must line up.

6.3.1 Derivation in 1D

Let’s start with a simplified example. Imagine the pollutants in a par-

ticular region of the river follow a linear and steady concentration field

that only varies in the downstream coordinate x. If you walk along

the river in this location and keep taking measurements of the concen-

tration field from the river bank you find a region that concentration

increases linearly, Figure 6.1. For this example, the concentration field

at the location of change is

c(x) = c0 + ∆c
x

L
,

where ∆c is the increase in concentration over distance L. The slope of

the concentration field in this region is constant,

dc

dx
=

∆c

L
.

The measurement from the bank shows the concentration field to be

fixed in time. If I return to the same point on the river bank tomor-

row, I will get the same measurement. However, this is a straight river

with constant flow from day to day and at every location. In a boat

we would just float right down the middle at constant velocity. If we

take measurements from the boat moving at constant velocity, u, then

from that perspective we would sense an increase in concentration with

respect to time. Since we traverse distance L in a time of ∆t = L/u

then from the boat’s perspective the time rate of change is,

dcboat

dt
=

∆c

∆t
= u

∆c

L
,

which can be written as,

dcboat

dt
= u

dc

dx
.

The above expression should make sense, the faster we move through

the fixed concentration field the higher rate of change we will see from

the boat’s perspective.
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x

c

L

∆c

Figure 6.1 Example concentration field, c(x), with a region of linear
change in concentration. The field is considered steady in time. If
you transport yourself through this fixed concentration field from
left to right you will sense an increase in concentration with respect
to time. The rate of change you sense will depend upon the speed
with which you move through this field.

We can also get the same result appealing to the chain rule. The boat

follows a simple path,

xboat(t) = xo + ut

The stationary concentration field, c(x) would be seen from the boat

as a function of time by c(xo + ut). Taking the derivative with respect

to time using the chain rule yields,

dc(x(t))

dt
=
dc

dx

dx

dt
= u

dc

dx

6.3.2 General derivation

To more formally describe change from the perspective of the fluid, we

take the variable a, to be the location of a fluid particle at time t = 0

and r(a, t) is the location of the same particle at some later time t; see

Figure 6.2. If we knew the function r(a, t) we would know everything

about the flow. Think about this for a minute, the notation above is
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x

y
a

r(a,t)

t=0
particle path

Figure 6.2 Schematic of the material point of view. The vector a
describes where the chosen particle is at t = 0. The vector r describes
where the particle is a little later.

perhaps not intuitive at first glance. We are defining everything about

the flow based on tracking where each and every blob of fluid goes.

In this frame, the velocity of a fluid particle is defined as

∂r(a, t)

∂t

∣∣∣∣
a=const

= v

The notation above says we take the derivative of r and hold a constant.

It is perfectly valid for us to define the velocity as a function of a,

“material” or as a function of r “space”. Note that this expression is a

vector equation as denoted by the boldface notation.

To demonstrate the material derivative, consider the concentration

field, c that is a function of space and time. Normally, we would think to

write the concentration in our fixed frame as c(x, y, z, t). However, we

could equivalently write the concentration field through the mapping,

c(r(x, y, z, t)) = c(x(a, t), y(a, t), z(a, t), t)

where x(a, t) is the first component of the vector r. While this mapping

seems confusing written as an equation, intuitively the idea is simple. If

I am on the bank of the river sampling the concentration at a particular

point, and you pass through that point on your raft, at the instant you

pass through my point, our measurements must agree.

The derivative with respect to time for a fixed fluid particle is found
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using the chain rule,

∂c(r(a, t), t)

∂t

∣∣∣∣
a=const

=
∂c

∂t
+
∂c

∂r

∂r

∂t
.

Note that v = ∂r
∂t is the same as the fluid particle velocity. In vector

form, ∂c
∂r = ∇c, the gradient of the concentration field. Thus,

∂c(r(a, t), t)

∂t

∣∣∣∣
a=const

=
∂c

∂t
+ v · ∇c =

(
∂

∂t
+ v · ∇

)
c =

Dc

Dt
(6.1)

The notation D/Dt = ∂/∂t+ v · ∇ is commonly used for compactness

and is called the material derivative. The material derivative’s purpose

in life is to tell us the rate of change of something in time from the per-

spective of the fluid. It captures the two effects; the field itself changing

with time and a fluid particle moving about in space where the field

changes from point to point. If we expand into component form we have

Dc

Dt
=
∂c

∂t
+ v · ∇c =

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
+ w

∂c

∂z
.

If you got a little lost in the detail of the 3D derivation, don’t be

dismayed. The 1D example captures all the essential ideas, we are just

generalizing our derivations.

6.4 Liebniz and Reynold’s transport theorem

We can also discuss the material point of view in integral form. To do

so we need the Leibniz rule from calculus. The Leibniz rule allows us

to calculate the derivative of an integral when the limits are changing

with time. In 1D this rule is,

d

dt

∫ b(t)

a(t)

f(t, x)dx =

∫ b

a

∂f

∂t
dx+

db

dt
f(t, x = b)− da

dt
f(t, x = a).

The three terms represent the change in the integral in time due to the

change in the function itself, the change in the upper limit of integration

and the change in the lower limit of integration. Here f is just some

arbitrary function - this is a mathematical statement.

In three spatial dimensions this theorem changes to;

d

dt

∫
V (t)

f(x, t)dV =

∫
V (t)

∂f

∂t
dV +

∫
S(t)

fv · ndS. (6.2)
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In this expression instead of using d/dt to denote the rate of change of

the location of the interface, we have used the velocity, v, of the surface

of integration. We use the subscript V (t) on the integral to remind us

that the volume of integration can be changing with time. The above

theorem says that the rate of change of a scalar field inside a volume,

V , is composed of two parts; the change due to the change of f inside

the control volume and the change due to the movement of the surface.

When Equation 6.2 is applied to a material fluid particle, then the

velocity on the surface of integration is equal to the fluid velocity.

Also note that use of the divergence theorem would allow us to write

the second term as a volume integral, namely,

d

dt

∫
V (t)

f(x, t)dV =

∫
V (t)

(
∂f

∂t
+∇ · (fv)

)
dV. (6.3)

When Equation 6.2 or 6.3 is applied in fluid mechanics it is often called

Reynold’s Transport Theorem. While it can also be derived a few dif-

ferent ways, we will treat it as simply a mathematical theorem from

calculus. The usefulness of this theorem will be seen in the next section

where we consider conservation laws. The connection to the material

derivative D/Dt will become apparent in the next chapter.

6.5 Conservation of mass: the fluid

Now lets consider conservation of mass; we consider the fluid itself and

the dye separately. Remember we will be interested in the limit where

the dye is so dilute it has no impact on the fluid it is dissolved in. In

this limit we just ignore the dye for deriving conservation of mass for

the fluid. The total fluid mass inside a material volume, V(t), is given

as

M =

∫
V (t)

ρdV,

where ρ(x, t) is the fluid density field. The subscript V (t) reminds us

that the volume of integration is not fixed in time and may be changing

shape as the flow deforms the material. Our volume V (t) is going with

the flow and following the material for all times. Since our volume

of integration was taken to be a material volume (i.e. it encloses the
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same amount of material at all times) and since mass is conserved then
dM
dt = 0. Using the Transport Theorem (Equation 6.3),

dM

dt
=

d

dt

∫
V (t)

ρdV =

∫
V (t)

(
∂ρ

∂t
+∇ · (ρv)

)
dV = 0

Since the volume in our analysis was arbitrary and since the integral is

always equal to zero then the the integrand must be zero,

∂ρ

∂t
+∇ · (ρv) = 0. (6.4)

This equation must be true point-wise in the fluid and is the differential

statement of mass conservation. By rearrangement,

Dρ

Dt
+ ρ∇ · v = 0. (6.5)

This equation says that the density of a fluid particle can only change

if the velocity field has non-zero divergence. Divergence of the velocity

field is a measure of the net rate of fluid flowing into/out of a point.

If the velocity vectors are all pointing to one location, then the flow

must be accumulating mass at that point and the density should be

increasing. If the velocity vectors all point away from a point in the

flow, the density should be decreasing.

For an incompressible flow with constant density we have the simpli-

fied relation,

∇ · v = 0.

This assumption of incompressibility is one that we will use throughout

the course. For a liquid the assumption of incompressibility is a good

one. I challenge you to compress some water to any significant degree.

For a gas the assumption is questionable. It turns out that a rule of

thumb people use is that if the flow velocity is less than about 1/3

of the speed of sound in a gas, then the assumption of incompressible

flow is basically fine. For air this means we can safely treat cases with

flow velocities on the order of 100 m/s or less as an incompressible flow.

Flow around a car is incompressible, but flow around an airplane is not.

Compressible flows have many interesting features that will be beyond

the scope of our first course.

It is also important that we refer to a flow as incompressible and not

the fluid. For the flow of air, we have many examples of incompressible

flow despite the fact that air is quite compressible.
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6.5.1 Conservation of mass: dilute species

Now let’s consider conservation of the dilute passive dye. We take a

closed, arbitrary volume moving with the fluid and consider the conser-

vation of a trace dye species within that moving volume. The conser-

vation law states that,

d

dt

∫
V (t)

cdV = −
∫
S(t)

j · ndS,

The subscripts V (t) and S(t) remind us that the volume of integration

is not fixed in time and is changing shape as the flow deforms the carrier

fluid. Using the Transport Theorem (Equation 6.3) for the left side of

the equation and the divergence theorem for the right side we obtain,∫
V (t)

(
∂c

∂t
+∇ · (cv)

)
dV = −

∫
V (t)

∇ · jdV

We can group all the integrands together and since the volume in our

analysis was arbitrary the integrand must always be zero,

∂c

∂t
+∇ · (cv) = −∇ · j.

Substituting in Fick’s law from the previous chapter and assuming a

constant diffusivity,

∂c

∂t
+∇ · (cv) = D∇2c. (6.6)

Now, a new term has appeared in the equation ∇·(cv) which represents

convection of the dye molecules by fluid motion.

Let’s think about this equation for a minute. In the case where there

is no fluid motion, v = 0, we are back to the classic diffusion equation.

In another limit, let’s assume there is no molecular diffusion. As we

discussed earlier in the chapter, molecular diffusion is very slow and so

in many cases ignoring it is not an unreasonable assumption. In that

case the equation would be,

∂c

∂t
= −∇ · (cv).

The product cv is a vector which gives the convective flux or rate that

dye is carried by the fluid per unit time, per unit area at a point. If

you recall that c has units of number of molecules per unit volume,

you can check the units of cv yourself. Now recall that the divergence
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operator gives us a measure of whether a vector field is converging or

diverging at a point. If the convective flux vectors are converging at a

point, then the concentration field must be locally increasing in time.

If the convective flux is flowing outward from a point in space, the local

concentration should be decreasing.

By rearrangement, Equation 6.6 could be written as,

∂c

∂t
+ v · ∇c+ c∇ · v = D∇2c.

Substituting in the conservation of mass from the previous section we

can replace the divergence of the velocity field as,

∂c

∂t
+ v · ∇c− c

ρ

Dρ

Dt
= D∇2c,

which can be rewritten using the material derivative as

Dc

Dt
− c

ρ

Dρ

Dt
= D∇2c. (6.7)

This last equation has an interesting interpretation. The material deriva-

tive D/Dt describes the rate of change of concentration from the per-

spective of the fluid. The operator is accounting for convection by fluid

motion. The right hand side is the diffusion term. The term on the

left c
ρ
Dρ
Dt describes the concentration of dye (number per unit volume

of fluid) changing because the carrier fluid itself is being compressed

or expanded. If I have a container containing a fixed number of dye

molecules then I compress the closed contained to decrease the total

volume the dye concentration has increased even though the number

of molecules has not.

For incompressible flow (liquids are really pretty incompressible) the

density doesn’t change and thus the mass transfer equation is simplified

to

Dc

Dt
= D∇2c, (6.8)

where the equation is “exactly” what we found for diffusive transport

with no fluid motion only we must remember that we have replace the

material derivative with the normal partial derivative with time on the

left side of the equation.
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It is also interesting to note that in this form, if there were no molec-

ular diffusion then the equation would reduce to

Dc

Dt
= 0

which means that the fluid particle cannot change its concentration,

the fluid particle keeps it’s initial value and the dye just moves it with

the fluid. The equation Dc/Dt = 0 for a non-diffusive dye is at it’s

essence the very definition of the material derivative - something that

is just carried by the flow has zero material derivative. It is this physical

interpretation of this mathematical operator that I want to stress. The

material derivative is simply the change with respect to time from the

perspective of the moving fluid.

6.6 Dimensionless formulation

Let’s consider a specific problem. Consider a solid cylinder of radius R

made of solid “dye” in a fluid flow. The incompressible flow of the fluid is

steady in time. Far from the object the flow has velocity U and near the

object the flow field would be more complex as the fluid skirts around

the cylinder. Assume, though, by some sorcery we have calculated the

complete velocity field, v. Upstream, the fluid approaching the cylinder

has a zero dye concentration. The solid dye as it dissolves sets the

concentration at the fluid/solid interface to be c0. To solve the problem

for computing the dye concentration, we would state the formulation

as
∂c

∂t
+ v · ∇c = D∇2c,

where

c(r = R) = C0, c(r =∞) = 0.

The initial concentration everywhere at time zero is c = 0. We define

the dimensionless coordinates to be x̃ = x/R and ỹ = y/R. The dimen-

sionless concentration is c̃/C0 and time is made dimensionless by a (for

now) arbitrary constant t̃ = t/t0. Making these substitutions yields,

C0

t0

∂c̃

∂t̃
+
C0U

R
ṽ · ∇c̃ =

DC0

R2
∇2c̃.
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a) b)

c) d)

Figure 6.3 a) Velocity field for flow around a cylinder. Concentration
field where fluid enters with concentration of zero on the left and
the cylinder surface sets a concentration in the fluid. b) Pe = 1, c)
Pe = 10, d) Pe = 100.

setting t0 = R/U we get,

∂c̃

∂t̃
+ ṽ · ∇c̃ =

D
UR
∇2c̃. (6.9)

The chosen time scale was the time it takes to convect something the

distance of the cylinder radius. This time scale was a convenient choice

as it made the coefficient in the equation go to 1.

The parameter UR/D is called the Peclet number (pronounced, peck-

lay) and is a dimensionless measure of the strength of convection to

the strength of diffusion. A high Peclet number occurs when the flow is

fast around a large object. A high Peclet number means that the fluid

carries the dye downstream. We might expect at high Peclet number

the dye is mostly concentrated in a wake downstream of the cylinder.

For a small Peclet number diffusion dominates, and in this limit we

would expect the dye to work its way upstream against the incoming

flow. Physically, since D ∼ 10−9m2/s for small molecules in water, a 1

mm/s flow around a 1 mm object would have a Peclet number of about

1000. Thus, in water it is only flows truly at the microscale that have

low Peclet numbers.
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Conservation of momentum in a fluid

The basic conservation law for momentum is developed in this chapter.

The law takes a form different than the law for particles that you may be

used to, but in the end the equations are nothing more than Netwonian

mechanics. The analysis in this chapter does not actually assume we

have a fluid, the laws work equally well for solids or materials that are

between fluid and solid. However, the fact that the fluid moves, flows,

and deforms makes the development of our laws seem different than

you might see in a solid mechanics course. We will want to use our

conservation laws to set up equations that (at least in principle) can be

used to calculate the velocity vector v(t, x, y, z) as a function of space

and time. It should be stressed that the velocity is not the velocity of

individual molecules, but is the averaged velocity for all the molecules

at a point. The velocity is that of the fluid in a continuum sense.

In the last chapter we discussed how fluid motion can carry dye

molecules around in a fluid flow. We applied conservation of mass and

our vector calculus theorems to work out how an equation for mass

being transported by a fluid flow. Now we will apply the same strategy

to conservation of momentum. One difference we find with momentum

transport is that the fluid motion that transports momentum around

also has momentum itself (think about that for a minute). This realiza-

tion introduces a non-linearity to the momentum equation that is the

source of much of the interesting behavior we find in fluid flows and

the source of the real mathematical difficulty with the equations.

Before we proceed, let’s remind ourselves of two important results

from the last chapter. We discussed the Transport theorem, a result
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that is central to the development in this chapter,

d

dt

∫
V (t)

f(x, t)dV =

∫
V (t)

(
∂f

∂t
+∇ · (fv)

)
dV. (7.1)

It is important to keep in mind that this theorem is a mathematical

result from calculus. We also discussed conservation of mass for a fluid

which we derived as,

Dρ

Dt
+ ρ∇ · v = 0, (7.2)

which for incompressible flows became ∇ · v = 0.

7.1 Transport theorem revisited

Previously we stated the Reynolds Transport Theorem for an arbitrary

function f in Equation 7.1. Lets apply this theorem to some quantity

which is measured per unit mass, b. We would be interested in know-

ing about the behavior of the integral of ρb over a volume. Apply the

transport theorem and simply substituting f = ρb, we obtain,

d

dt

∫
V (t)

ρbdV =

∫
V (t)

(
∂ρb

∂t
+∇ · (ρbv)

)
dV.

We can expand the derivatives on the right side to write this expression

as

d

dt

∫
V (t)

ρbdV =

∫
V (t)

[
b

(
∂ρ

∂t
+∇ · (ρv)

)
+ ρ

(
∂b

∂t
+ v · ∇b

)]
dV.

This form is convenient since the first term in parenthesis is zero from

mass conservation, Equation 7.2. Our final result is then,

d

dt

∫
V (t)

ρbdV =

∫
V (t)

ρ

(
∂b

∂t
+ v · ∇b

)
dV =

∫
V (t)

ρ
Db

Dt
dV, (7.3)

which is useful for subsequent analysis. Note that we made no assump-

tions about incompressibility here, so this relationship is one that is

always true. This relationship is convenient because it already sepa-

rates out conservation of mass.
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7.2 Linear momentum

The total linear momentum, p, inside a material volume, V(t), is given

as

p =

∫
V (t)

ρvdV,

where ρ(x, t) is the density field and v(x, t) is the velocity vector field.

Note that this is a vector expression as the momentum has an x, y,

and z component. In Newton’s law we know that we need to be able

to take the time derivative of momentum. To take the time derivative

wef can use Equation 7.3, simply replacing b with v,

dp

dt
=

d

dt

∫
V (t)

ρvdV =

∫
V (t)

ρ
Dv

Dt
dV (7.4)

This form might make you uncomfortable since this is a vector equa-

tion and we only discussed the transport theorem with scalar functions.

If it does you could proceed with only the x component of the momen-

tum instead,

dpx
dt

=
d

dt

∫
V (t)

ρudV =

∫
V (t)

ρ
Du

Dt
dV.

We could repeat the same procedure for py and pz. In working through

the three components, we would return to the compact vector form of

the equation in Equation 7.4.

Note that in our vector notation,

Dv

Dt
=
∂v

∂t
+ v · ∇v.

The term v · ∇v takes a little explanation. It is probably easiest to

remember what it means if you write the term as (v ·∇)v. Expand the

part in parenthesis first, (v·∇) = u ∂
∂x+v ∂

∂y+w ∂
∂z ; which is just the dot

product of the velocity vector and the gradient operator. Now apply

this operator to the velocity vector to get the components of (v · ∇)v.

For example, the x component of (v · ∇)v is (u ∂
∂x + v ∂

∂y + w ∂
∂z )u =

(u∂u∂x +v ∂u∂y +w ∂u
∂z ). The entire operator expanded into component form
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is a vector,

v · ∇v =


u∂u∂x + v ∂u∂y + w ∂u

∂z

u ∂v∂x + v ∂v∂y + w ∂v
∂z

u∂w∂x + v ∂w∂y + w ∂w
∂z

 ,
where the first, second, and third rows are the x, y, and z components

of the vector.

The expression 7.4 allows us to compute the rate of change of mo-

mentum of a material volume. Newton’s laws requires that this vector

must equal the sum of the forces acting on the control volume. Deter-

mining the forces acting on the fluid is not a simple matter and will

take some work. Before we turn to computing forces, let’s make sure

we really understand the idea of acceleration in fluid flows.

7.2.1 Interpretation of acceleration

The material derivative of the velocity,

Dv

Dt
=
∂v

∂t
+ v · ∇v,

is the expression for acceleration of a fluid particle. The expression says

there are two components to the acceleration in a fluid. The first term
∂v
∂t has to do with the velocity field changing with time. The second

term v · ∇v is acceleration from the perspective of the flow.

Imagine our river again. I go to the river every day to the same

point on the banks and measure the river’s flow velocity. Day to day,

nothing changes and I conclude that at this location that ∂v
∂t = 0. There

is no local acceleration in the flow due to the velocity field changing

with time. However, that does not mean the acceleration that the fluid

feels is zero. Downstream from our measurement point there is a set of

rapids. If I go down the river on the raft, from the perspective of the

fluid I certainly feel acceleration as I speed up and slow down through

the rapids. This acceleration arises from the v · ∇v term. Now imagine

that one day there is a big storm and when I go out to measure the

river, the velocity at my special point has increased. Thus it must be

true that ∂v
∂t > 0, at least for some of the time between now and the

previous day. So there are two different types of acceleration, one is due
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x

x = 0 x = dx

U(t=0) U(t=dt)

dx
=Udt

Figure 7.1 Schematic of acceleration in a fluid flow from the per-
spective of the fluid. A person riding a raft through a narrowing
river feels acceleration even if the fluid flow is constant when ob-
served from the banks of the river.

to the velocity field changing in time and the other is from the velocity

field changing in space.

We can see that the spatial acceleration must follow a form like v·∇v

in a simple 1D example. Imagine a smooth river with a constant flow

in time. The river has a constant depth but there is a region where the

banks narrow down in width. Since the cross sectional area of the river

has been reduced, the flow velocity must increase in the narrow region,

shown in Figure 7.1.

Now let’s measure the acceleration of the fluid from the perspective

of the flow and the fixed river banks. Let’s assume that I am on a raft

and you are on the river bank. We are going to measure the acceleration

that a raft feels at the same location from our two different perspectives.

Even though we are observing from different points of view, in the end

our measurements should be the same. If I go right down the center of

the river on a raft, I sense the x component of the river flow velocity.

If I want to know my acceleration, I simply measure the raft velocity,

U , at two instances, t = 0 and a short time later, t = dt;

Acceleration =
Uraft(t = dt)− Uraft(t = 0)

dt

Now you are observing from the river bank and want to know the

fluid acceleration at the same point. If you watch me go past you could

measure my acceleration the same way. However, assume there is no
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tracer for you to observe in the flow and you are stuck taking point

measurements of the river’s flow velocity. The previous formula for

acceleration is still valid, however from the bank you can only measure

the river velocity as a function of position. The equivalent measurement

of the fluid acceleration would would be,

Acceleration =
u(x = dx)− u(x = 0)

dt
.

The distance dx that I would have moved on the raft over time dt is

related to the flow velocity as dx = u dt. Therefore substituting for dt,

Acceleration = u
u(x = dx)− u(x = 0)

dx
.

Now the fraction in this equation is the definition of the spatial deriva-

tive of the flow velocity in the limit that dx goes to zero,

Acceleration = u
∂u

∂x
.

The expression above is simply the 1D version of v·∇v, the acceleration

of a fluid particle due to changes in the velocity field in space.

7.3 F = m a

In particle mechanics, we usually think of Newton’s Law expressed as

the equation F = m a. However, this is for a constant mass particle

and a more general statement would be

dp

dt
= F,

where p is the linear momentum and F is the sum of the forces acting

on the particle. So we have developed a way to describe the rate of

change of the momentum for a fluid particle. Now we need to work

on the forces. We will account for body forces acting on the whole of

the material volume, fb and surface forces fs acting on the boundary

separately. Generally then, conservation of momentum can be stated

as, ∫
V (t)

ρ
Dv

Dt
dV = fb + fs. (7.5)
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7.3.1 Body forces

Obtaining an expression for the body forces is relatively straightfor-

ward. The only body force we will consider in this course is that due to

gravity. The gravitational body force is simply the continuous version

of f = mg, namely,

fb =

∫
V (t)

ρgdV (7.6)

We could also consider electrostatic forces (if the fluid were charged

and subjected to an electric field) or Lorenz forces (if the fluid were

passing a current and subject to magnetic fields). These are interesting

topics for another day, however their inclusion into our theory would

not be difficult. If we know how to calculate the force per unit volume,

we only need to integrate this force density over our volume.

7.3.2 Surface forces

Describing the stress along the surface of an arbitrary material volume

inside the fluid takes a little work. First lets define a stress vector, s,

as

s(x, t).

The vector is interpreted as force per unit area at some location on our

surface of our arbitrary material volume. The total surface force that

is exerted on the enclosed volume is then given as,

fs =

∫
sdS

Figure 7.2 shows a schematic where we need to add up, or integrate, all

the little surface forces acting over the entire material volume’s surface.

The general description of the state of stress within the fluid requires

us to introduce the idea of a tensor. A tensor has a structure like a ma-

trix. In three dimensions, a tensor is a 3x3 matrix with 9 components. A

tensor is needs to describe the state of stress in a material as there are 9

things that are important. The stress at a location has magnitude and

direction; it is a vector with 3 components. However, what happens to

the material under this force depends upon which face the stress acts.

A stress with only an x component which acts on the surface with the
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S

dS

s

s

s

s
s

s

Figure 7.2 The local stress vector, s, acts everywhere on the surface,
S, of an arbitrary region. Integrating that stress over the surface area
gives the net force acting on the surface of the volume.

Figure 7.3 Schematic of a square differential element of fluid. A force
in the x direction deforms the material differently depending on
which face the force acts upon. The element is stretched or sheared,
depending upon which face the force acts.

normal vector in the x direction will stretch a chunk of fluid. A stress

in the same direction but acting on a face with a normal vector in the y

direction will shear a chunk of fluid. This effect is shown schematically

in Figure 7.3. Thus the deformation of the material depends upon the

direction of the force and which face it acts upon. Thus the state of

stress requires more information than can be contained in a vector, so

we go to a tensor. We will follow the convention that tensors are bold-

face capital letters and vectors are boldface lowercase letters. Note that

we could spend a whole course on tensor calculus, thus we are covering

only the highest of high points here.

We can define a stress tensor with nine components that define the

state of stress on an arbitrary element within the fluid. The convention

is

Txz
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Txx

Txz

Txy

Tyy

Tzz
Tzx

Tzy

Tyz
Tyx

Figure 7.4 Schematic the 9 components of the stress tensor, T.

where x is the direction of the normal plane and z is the direction of

the force associated with the stress. The tensor can be represented as,

state of stress at point = T =

 Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz


with the components shown schematically in Figure 7.4. Each row of

the tensor is for a different face of the cube and each column is for the

three components of the force.

Just as we have seen scalar fields and vector fields, the stress tensor,

T, is a tensor field, i.e.

T(x, y, z, t).

The relationship between the stress tensor at a point, T, and stress

vector s is,

s = n ·T

The dot product projects the tensor onto the surface with a normal

vector n to get the stress vector at that point on the surface. The dot

product of two vectors gives a scalar, while the dot product of vector

and a tensor gives a vector. To remember what n ·T means, it is like
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the vector-matrix operation,

s =
[
nx ny nz

]  Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz


You can test this yourself by taking a normal vector pointing in the x-

direction, n = [1 0 0]. Taking n ·T with this normal vector returns the

first row of T which are the three forces acting on that face. Fortunately,

conservation of angular momentum will require the stress tensor to be

symmetric, thus if you forget the order of multiplying the tensor and

vector, you will get the right answer anyway. I still to this day confuse

(without looking it up) the what components go in the rows and which

go in the columns of T but since the tensor is symmetric I am saved.

Also, you might be tempted to confuse n ·T as being Tn (i.e. the usual

matrix vector multiply), and again symmetry of the tensor will give you

the right answer. Since we won’t use the tensor notation much outside

of deriving equations and since this is likely the first class where you

have seen tensors, I’ll cut you some slack on keeping everything straight!

The total force exerted on an arbitrary volume element by the surface

forces, fs, is given as simply the integral of the stress vector around the

closed surface, i.e.

fs =

∫
sdS =

∫
n ·TdS.

By the divergence theorem, which also works for tensors just as it does

for matrices,

fs =

∫
n ·TdS =

∫
∇ ·TdV. (7.7)

In component form, the divergence of the stress tensor is,

∇ ·T =
[

∂
∂x

∂
∂y

∂
∂z

] Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz

 =

[
∂Txx

∂x +
∂Tyx

∂y + ∂Tzx

∂z ,
∂Txy

∂x +
∂Tyy

∂y +
∂Tzy

∂z , ∂Txz

∂x +
∂Tyz

∂y + ∂Tzz

∂z

]
Note that the divergence of the tensor returns a vector. So far we

haven’t done anything, really. We have just described a way in which we
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will compactly describe the internal state of stress of the fluid. That’s

all. This approach is not limited to the mechanics of fluids, but works

equally well in solid mechanics. In solid mechanics, we are often only

concerned with equilibrium and thus the commonly used equilibrium

statement in solid mechanics that ∇ ·T = 0.

7.3.3 Meaning of ∇ ·T

Above we used the definition of the stress tensor and our vector calculus

to show that the net surface force acting on an arbitrary volume is the

divergence of the stress tensor. We can get the same result using a free

body diagram for a infinitesimal element of fluid. Consider a small cube

that is dx, dy, and dz on each side. Consider the point P in the middle

of the cube. To find the forces on the face of the cube in the x-direction,

we must consider that the stress tensor varies in space.

The value of the stress at one point is related to the value at a

nearby point through a Taylor series. Don’t groan. Students always

groan at Taylor series. Taylor series is your friend. Taylor series says

any complicated crazy function, is just a line as long as you zoom in

enough. The Taylor Series expansion of the stress tensor on the right

face of the square relative to the center is,

Txx +
dx

2

∂Txx
∂x

.

Here Txx is the component of the stress tensor at the center of the cube.

Likewise, the stress on the left hand face of the cube in the x-direction

is,

Txx −
dx

2

∂Txx
∂x

.

A schematic of the x component of the forces is shown for a 2D square

in Figure 7.5.

Considering all the forces acting in the x-direction for a 3D cube, we
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dx

dy

x

y

∂Txx dx
∂x   2Txx+

∂Txx dx
∂x   2Txx-

∂Tyx dy
∂x   2Tyx+

∂Tyx dy
∂x   2Tyx-

Figure 7.5 Schematic a square differential element of fluid where
the stress tensor is non-constant is space. Here, we show the x com-
ponent of the forces acting on the 2D differential square.

have

dfsx =

(
Txx +

dx

2

∂Txx
∂x

)
dydz −

(
Txx −

dx

2

∂Txx
∂x

)
dydz +(

Tyx +
dy

2

∂Tyx
∂y

)
dxdz −

(
Tyx −

dy

2

∂Tyx
∂y

)
dxdz +(

Tzx +
dz

2

∂Tzx
∂z

)
dxdy −

(
Tzx −

dz

2

∂Tzx
∂z

)
dxdy

Which reduces to

dfsx =

(
∂Txx
∂x

+
∂Tyx
∂y

+
∂Tzx
∂z

)
dxdydz.

Similarly, we would find

dfsy =

(
∂Txy
∂x

+
∂Tyy
∂y

+
∂Tzy
∂z

)
dxdydz,

dfsz =

(
∂Txz
∂x

+
∂Tyz
∂y

+
∂Tzz
∂z

)
dxdydz.

Using vector notation,

dfs = (∇ ·T)dV.

Thus the total force is

fs =

∫
∇ ·TdV.

and we get the same result as the previous section. The net surface
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force at a point in space is given by the divergence of the stress tensor.

If the stress tensor is constant in space, then there is no net force on

the fluid.

7.3.4 Linear momentum, all together

Taking our definition of the rate of change of momentum and the ex-

pressions for the gravitational and surface forces we obtain,∫
V (t)

ρ
Dv

Dt
dV =

∫
V (t)

ρgdV +

∫
V (t)

∇ ·TdV. (7.8)

Since all the integrals are volume integrals over any arbitrary volume

in the fluid, the equation holds at every point,

ρ
Dv

Dt
= ρg +∇ ·T. (7.9)

While this looks like a beautifully simple equation, there is a seri-

ous problem. There are too many unknowns. The equation is actually

three equations for the 3 unknown components of the velocity vector.

However, there are 9 components of the stress tensor. If we considered

conservation of angular momentum (we will skip the derivation) we

would find that the stress tensor must be symmetric. Thus there are

only 6 unknown components of the tensor. This is a better situation

but still 6 equations short.

What is needed to close the problem is the same type of relationship

as Fourier’s law provided when we studied heat conduction. We need a

law that relates the unknown forces to the deformation of the material.

This is called a constitutive law and cannot be consider more than an

empirical relationship for the material of interest. The expression in

terms of the stress tensor is general and does not make any assumption

other than that of continuum. It works for fluids, solids, and other

crazy materials. The choice of constitutive law determines whether we

are working with fluids, solids, or something in between.

7.4 So what’s a tensor?

In this chapter we introduced the idea of a stress tensor, which may

seem a bit foreign to you, so it is worth emphasizing a few points again.
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A scalar is used for representing things like temperature or pressure

which just have a single value at a point. Temperature is not direc-

tional, it’s just a number. A vector is used for representing things like

velocity or heat flux because the quantity has magnitude and direction.

It matters not just what the velocity is, but what direction the flow is

going. We describe vectors in an orthogonal basis, i.e. i, j,k.

The tensor is used to represent stress because with stress it matters

which direction the force is applied as well as whether that force is

a shear or tensile force. So we need 9 numbers to describe the three

components of stress which can act on three faces of the material. Just

like with vectors, we can project the state of stress onto any other

surface from the stress tensor, but we describe it on the three orthogonal

faces with their normal vectors aligned with the unit vectors. The stress

tensor, represented as a 3x3 matrix, is just a way of describing the

physical state of stress of the material.

Just like vectors are useful for describing a host of physical quan-

tities. Tensors can be used for things other than the state of stress,

though the most prevalent 3x3 tensors come from describing stress and

deformations of materials such as fluids and solids.



8

The Navier Stokes equations

So far, for a continuum we have conservation of mass and momentum

expressed as,

Dρ

Dt
= −ρ∇ · v,

ρ
Dv

Dt
= ρg +∇ ·T.

These equations say nothing because we have not defined the stress ten-

sor, T. Defining the stress tensor requires knowledge of the material.

Its definition is essentially empirical or comes from a molecular model

of the material. The stress tensor is not a fundamental law of nature.

The situation is just like the case of heat conduction where our funda-

mental conservation law was written in terms of the heat flux vector

and Fourier’s law was needed to close the problem. The relationship

which defines the stress tensor is our constitutive law.

There are some constraints on what form the tensor must take. For

example, we stated in the previous chapter (without proof) that it is

symmetric due to conservation of angular momentum. It also can only

take limited forms if we want its definition to remain constant under

a change of coordinate systems (we always want this) or if we want it

to be isotropic (we often, but not always want this). We’ll save these

topics for a more advanced course on continuum mechanics and not

discuss them further.
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8.1 Euler’s equation

Euler’s equation (named after Leonhard Euler, one of the greatest

mathematicians in history) assumes a simple form for the stress ten-

sor. Euler’s equation assume that the only stress internal to the fluid

is pressure. Pressure acts only normal to a surface and thus the tensor

only has diagonal elements. The tensor has the simple form,

T =

 −P 0 0

0 −P 0

0 0 −P


With this stress tensor and the definition of the divergence we write all

the terms out,

∇ ·T =
[

∂
∂x ,

∂
∂y ,

∂
∂z

] −P 0 0

0 −P 0

0 0 −P


= −

[
∂P

∂x
,
∂P

∂y
,
∂P

∂z

]
= −∇P

Substituting this expression into our conservation law would yield con-

servation of momentum to be,

ρ
Dv

Dt
= −∇P + ρg.

Now we have 4 equations (1 mass and 3 momentum) and 5 unknowns,

the density, velocity vector, and the pressure. This is a bit better but

still a problem. The final equation to close the problem must come from

thermodynamics, which relates temperature, pressure, and density. To

completely define the problem we would need to introduce conservation

of energy to our formulation, which we consider energy later.

However, if the flow is incompressible, we do not need to consider

energy or thermodynamics. For incompressible flow, the density is con-

stant and taken as a material property. For an incompressible flow,

Euler’s equations reduce to,

∇ · v = 0, (8.1)

ρ
Dv

Dt
= −∇P + ρg. (8.2)
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where the density is taken as a known and constant material property.

Finally, we have 4 equations and 4 unknowns (velocity vector and pres-

sure) and a closed set of equations. To solve the equations we need

initial and boundary conditions. The commonly used boundary equa-

tion at the interface between a fluid and solid in Euler’s equation is

that the velocity normal to the surface must be zero; i.e. fluid cannot

go into a solid surface.

The above formulation looks pretty good though there are some com-

plexities hidden in that equation. Too bad that the Euler equations turn

out not to be very useful. The reasons for Euler’s equations to be of

limited value are subtle and not obvious. We will discuss their failing

in more detail as we progress.

The main feature of the constitutive law is that Euler’s equation as-

sumes zero viscosity. It seems in many cases the force due to viscosity

should be quite small and neglecting it in the equations doesn’t seem

like a bad approximation. For now, you can comfort yourself in that

the failings of Euler’s equations to provide many predictions of practi-

cal utility stumped many smart people for many years. About 100 years

spanned between Euler’s development with no viscosity and the devel-

opment of the Navier-Stokes equations with viscosity. It took perhaps

another 50 years for to truly understand and appreciate why Euler’s

equations can fail as an approximation even when the viscosity is small.

If some of these points seem difficult, you are in good company.

Before we get too dismissive of Euler’s equations, we will see that

they can be used for simple calculations, estimations, and qualitative

explanations of flow behavior. So Euler’s equations still have a lot of

value and we will discuss them a lot in coming chapters.

Finally, there is an interesting subtlety when we made the incom-

pressible assumption, pressure loses its meaning as a thermodynamic

quantity. In an incompressible flow, information propagates infinitely

fast. If I start to move, the flow adjusts everywhere instantaneously.

In reality, information in a fluid propagates at the speed of sound.

Thermodynamics connects the speed of sound to the thermodynamic

function, ∂P/∂ρ. Since the change in density, dρ is zero, then the speed

of sound is infinite. However, thermodynamics is now unhappy with

our definition of pressure. None of this is important for our discussion,

its just interesting.
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8.2 Newtonian fluid & incompressible flow

In fluid mechanics the most common constitutive relationship that ac-

counts for viscosity is that of the Newtonian fluid. The law works well

for air, water, oils and other simple fluids. It does not work well for a

variety of complex fluids such as visco-elastic or polymeric liquids. The

experimental observation was discussed in the opening chapter. A sim-

ple device for quantifying viscosity comprises two concentric cylinders

with a very narrow gap between them. A fluid of interest is placed in

the gap. The inner cylinder is held fixed while the outer one rotates at a

constant angular speed, ω. The speed of the wall at the outer cylinder is

simply U = ωR, where R is the radius of the cylinder. If we conducted

this experiment for different gap sizes d and different speeds, we would

find the torque needed to spin at constant speed would follow a law,

Torque ∝ µU
d

In a more general form, the Newtonian assumption relates the shear

stress to the velocity gradient in the y-direction through the fluid vis-

cosity, µ,

τ = µ
∂u

∂y
.

This is a very important concept to commit to memory: A Newtonian

fluid relates stress to velocity gradients.

The general form of the Newtonian stress tensor is stated as,

T = −
(
P +

2

3
µ∇ · v

)
I + µ

(
∇v +∇vT

)
. (8.3)

Here, the superscript T denotes the transpose and I the identity matrix.

You can start to notice a few things. First the pressure term is just

like in Euler’s equation, if I set the viscosity, µ, to zero then the tensor

limits to that in Euler’s equation. The other term added to the pressure

is the proportional to the divergence of the velocity field. Recall the

divergence of the velocity is a scalar. This term has to do with viscosity

resisting changes in volume of the fluid. We will typically only deal with

incompressible flows in this course and we can use the incompressible

form,

T = −P I + µ
(
∇v +∇vT

)
. (8.4)
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The terms with the velocity gradients is a little more complicated and

will be the subject of much discussion later in this chapter. Since ve-

locity is a vector, it’s gradient is a tensor. The velocity gradient tensor

is written out as,

∇v =


∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z


By adding the velocity gradient tensor to it’s transpose we obtain a

symmetric tensor. If we worked through the details, we would find we

could express the divergence of this stress tensor as,

∇ ·T = −∇P + µ∇2v.

Substituting into the balance of linear momentum yields,

ρ

(
∂v

∂t
+ v · ∇v

)
= ρg −∇P + µ∇2v. (8.5)

Coupled with mass conservation for an incompressible flow, our prob-

lem is closed;

∇ · v = 0. (8.6)

Equations 8.5 and 8.6 represent four equations for four unknowns; the

three components of velocity and the pressure. These equations are

known as the incompressible Navier Stokes equations and comprise the

mathematical foundation for describing fluid flow.

Just to be clear on the notation, if we expand the momentum equa-

tion in component form for a Cartesian coordinate system we obtain,

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= ρgx −

∂P

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= ρgy −

∂P

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= ρgz−

∂P

∂z
+µ

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
The great thing about expressing the formulation in our vector calculus

notation is that we can change coordinate systems and simply look
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up the operators in different coordinates. The most common alternate

coordinate systems are cylindrical and spherical.

Note that for incompressible flows where the density is constant,

conservation of momentum can be written as,

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇(P + ρgz) + µ∇2v.

where (without loss of generality) we aligned the coordinate system

such that gravity is pointing in the negative z direction. We can intro-

duce the dynamic pressure as Pdyn = P +ρgz and rewrite the equation

as

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇Pdyn + µ∇2v,

The dynamic pressure is the pressure that results from fluid motion

and subtracts out the hydrostatic component.

This form is convenient as it allows us to essentially ignore the effect

of gravity when computing fluid motion in a constant density fluid.

From the above equation we can see that if there is no fluid velocity

and we are at equilibrium then ∇Pdyn = 0. At equilibrium the dynamic

pressure (pressure due to fluid flow) is constant and does not impact the

flow. At equilibrium the measured pressure is given as ∇(P +ρgz) = 0,

meaning the pressure is only hydrostatic. In constant density flows,

gravity does not play a role in determining the flow field, but it does

effect the pressure. If the density is constant then gravity acts equally

on the whole fluid and thus there is no flow driven by gravity. If the

density of the fluid is not constant, then we could have buoyancy driven

flows.

8.2.1 So what does viscosity do?

If we look at the term in the equation that has the viscosity coefficient

in front of it, we might see something reminiscent of the heat equation.

In fact if we find a special class of constant density flows (which we will

discuss in the next chapter) which have no spatial acceleration, and

no pressure gradients, then we would have flows which are governed

by the heat equation, i.e. ∂v
∂t = µ

ρ∇
2v. Since this limited form of the

momentum equation looks like the heat equation, it will act in the

same way. Viscosity will act to smooth out the flow and “kill” spatial
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curvature in the velocity field. While the full Navier Stokes equations

have other more complicated terms, we can think that viscosity will

always act to smooth the velocity field and pull the velocity to some

uniform or simple state - just like the heat equation.

The ratio of µ/ρ appears often that it is given its own symbol,

ν = µ/ρ. This parameter is called the kinematic viscosity and has units

of m2/s. The material property, µ, is properly called the dynamic vis-

cosity. The kinematic viscosity plays a role like the thermal diffusivity,

α, or the diffusion coefficient D. In thermal problems, α, sets the rate

that heat propagated over some distance; the kinematic viscosity plays

a similar role. The kinematic viscosity sets the rate that momentum is

transferred from one sliding fluid layer to another.

8.3 Boundary conditions

In order to solve the Navier Stokes equations, boundary conditions are

needed. Boundary conditions tell you how the region of interest where

your equations are valid are coupled to the rest of the universe. When

there is a solid surface, we typically assume that all components of the

fluid velocity equal the velocity of that solid surface. For a stationary

object, the velocity vector goes to zero, v = 0. This statement means

that there is no flow through the solid surface (no normal velocity)

and no-slip at the surface (no tangential velocity). The condition of

no flow through the solid seems obvious. The no-slip condition, on the

other hand, is not a fundamental law with a very strong theoretical

backing. What boundary condition to use was a serious debate in the

fluid mechanics world up to the early 1900s. Today, many people still

study whether the condition is strictly true or only approximately true.

Recently, there have been experiments with superhydrophobic surfaces

with significant amounts of fluid slip in liquid systems. The no-slip con-

dition can also be violated in rarefied gas flows where the length scale

of the object is not that large compared to the molecules mean free

path. However, for most practical cases it is experimentally observed

that the no-slip condition is obeyed to a very high degree of approxi-

mation. At a free surface of liquid, we can also have a condition of no

stress. However, in this course we will usually consider problems of flow

around some object and thus will use the condition that v = 0.
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u

n = [  ]0
1

y
x

Figure 8.1 A solid surface with no slip is oriented with a normal
vector in the vertical direction.

8.4 Computing stress from flows

In many cases we want to know the total force acting on an object

immersed in a fluid flow. If we know the velocity field we have a way of

computing the stresses at a solid surface from the stress tensor. To make

our lives simpler, lets consider a 2D world. Consider the solid surface

and we have aligned our coordinate system such that the normal vector

for that surface points only in the y direction n = [0, 1]; see Figure 8.1.

Assume that we have through some sorcery solved the Navier Stokes

equations for the full velocity field above that surface. Now we want to

use that solution to calculate the force exerted on a body. In a 2D world,

the Newtonian stress tensor in component form would be denoted as,

T = −
[
P 0

0 P

]
+

[
2∂u∂x

∂u
∂y + ∂v

∂x
∂u
∂y + ∂v

∂x 2∂v∂y

]
.

The stress vector at that surface would in general be,

s = n ·T =
[

0 1
] [
−
[
P 0

0 P

]
+ µ

[
2∂u∂x

∂u
∂y + ∂v

∂x
∂u
∂y + ∂v

∂x 2∂v∂y

]]
.

However, at our surface the vertical velocity v is zero everywhere on

the surface (it is impenetrable). Therefore, ∂v/∂x is zero everywhere

on the surface. Also the horizontal velocity is zero everywhere on the

surface by the no slip condition, thus ∂u/∂x = 0 along the surface.
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Conservation of mass for an incompressible flow states that

∂u

∂x
+
∂v

∂y
= 0.

At the surface, since ∂u/∂x = 0 then ∂v/∂y = 0. Using all the relations

above which hold at the surface the problem simplifies to

s = n ·T =
[

0 1
] [
−
[
P 0

0 P

]
+ µ

[
0 ∂u

∂y
∂u
∂y 0

]]
.

Thus the stress vector at our point simplifies to,

s =
[
µ∂u∂y , − P

]
The result says that the x component of the stress is given by the

horizontal velocity gradient, just as we described when defining a New-

tonian fluid. This is the force that would cause a fluids viscosity to drag

a solid along with the flow. The y component of the stress is given by

the pressure.

8.5 Comments on kinematics

While the Navier-Stokes equation may look beautiful (or frightening),

our derivation based on the stress tensor might seem arbitrary. What

does the expression for the stress tensor mean and why should the stress

depend upon the velocity gradient in the following way,

T = −P I + µ
(
∇v +∇vT

)
. (8.7)

In this section we will provide some interpretation of the velocity gra-

dient and the velocity gradient tensor. The development here follows

that of Kundu and Cohen (2004) quite closely.

However, we first need to emphasize again this Newtonian fluid con-

stitutive law is not a “law”. To derive it you need a molecular model

of the material. This can be done for simple gases, but not many other

fluids. So, in the end, we can consider this an empirical relationship

and nothing more. The general form of the tensor does have some con-

straints placed by more fundamental laws. For example, conservation of

angular momentum demands the tensor to be symmetric. Requiring the

tensor to not depend on our coordinate system places restrictions on
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the form. However, in the end the constitutive relationship is something

that works well for many fluids, but it is not a law of nature.

8.5.1 Linear rate of strain

Consider a line element in a steady flow which is oriented in the x

direction. A schematic is shown in Figure 8.2. Lets assume there is

only an x component of the velocity field at this location. The element

is dx in length. The left point, A, at time zero, t = 0 is at position

XA(0). The right point B is at position XB(0). The positions XA and

XB are a material points that go with the flow and are only functions

of time. A short time later, dt, the material point A has gone with the

flow and moved to position,

XA(dt) = XA(0) + u(XA)dt.

For simplicity, the velocity field is only a function of space. The point

B has moved to position,

XB(dt) = XB(0) + u(XB)dt.

The distance XB −XA = dx is meant to be infinitesimally small. The

strain is defined as the change in length divided by the initial length,

thus

Strain =
(XB(dt)−XA(dt))− dx

dx

=
XB(0) + u(XB)dt−XA(0)− u(XA)dt− dx

dx

=
(XB(0)−XA(0)− dx) + u(XB)dt− u(XA)dt

dx

=
u(XB)dt− u(XA)dt

dx

Therefore, in terms of a rate equation,

d Strain

dt
=
u(XB)− u(XA)

dx
.

The velocity at point B is related to A through a Taylor Series, since

the distance is assumed small. The expansion for the velocity at point

XB = XA + dx is

u(XB) = u(XA) +
∂u

∂x
dx.
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t=0

t=dt

t
x

XA(dt) XB(dt) 

U(XA) U(XB)

XA(0) XB(0) 

Figure 8.2 Schematic of a material line in a 1D flow. The points A
and B are subjected to different velocities and thus move different
distances in one instant of time, dt.

Therefore the rate of change of linear strain is related to the velocity

gradient,

d Strain

dt
=
∂u

∂x
.

The velocity gradient, ∂u∂x , provides the linear strain rate that a ma-

terial line elongates or shrinks. This makes sense. Imagine you and a

friend are in hot air balloons up above the earth. Since the length scale

of the earth is so big we can take dx at the human scale to be infinites-

imal. If the distance between you and your friend is growing, it means

there are velocity gradients in the flow. Your friend, even though close

by, is subjected to a different fluid velocity than you, thus you separate

from each other. The rate that you separate is a measure of the flows

velocity gradient.

8.5.2 Shear rate of strain

Now imagine a more complicated fluid motion in 2D. We have velocity

(and velocity gradients) in both the x and y components. Now we will

consider the motion of three material points, O (the origin), A, and

B. As in the previous section, the location of the material points are

only functions of time. However, since we are in 2D we need to consider

the motion in the plane, i.e. follow (XA, YA), (XB , YB), and (XO, YO) .

The velocity field is taken as steady for simplicity of notation. Similar
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t=0

t=dt

Figure 8.3 Schematic of material points O,A, and B in a 2D flow.
The points are subjected to different velocities and thus move dif-
ferent distances in one instant of time, dt. The sides of the square
are dx in length.

to the previous section, each point moves by an amount,

Xi(dt) = Xi(0) + u(Xi, Yi)dt; and Yi(dt) = Yi(0) + v(Xi, Yi)dt.

Here, the index i refers to point A, B or O. The above equation simply

says the points move in the flow and we update their position using

Euler integration in time. A schematic is shown in Figure 8.3. The

three points move to new locations due to the different fluid velocities.

Using these relations and a little bit of geometry, you can find the

tangent of the angles β and α in terms of the velocities at points A, B,

and O as,

tan(β) =
(vB − v0)dt

dx+ (uB − u0)dt
,

tan(α) =
(uA − u0)dt

dx+ (vA − v0)dt
.

You can then use the Taylor Series to relate the velocities at point

A and B to that of point O, i.e. uB = u0 + ∂u
∂xdx. Substituting the
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Taylor Series results and taking the limit, these geometric relationships

become rate equations for the rate of change of the angles,

dβ

dt
=
∂v

∂x
;

dα

dt
=
∂u

∂y
.

Note that in the limit of small angles which occur over small times,

tan(α) ≈ α. Thus the sum of these two rates,

dβ

dt
+
dα

dt
=
∂v

∂x
+
∂u

∂y
,

is the rate the angle between the two lines OA and OB close or open

up. This is the shear strain rate.

This relationship makes sense. Hold your hands together in front of

you, pointing upwards. Sliding your hands up and down relative to each

other creates shear. The right hand has a different vertical velocity than

the left hand. Therefore ∂v
∂x is not zero. Holding your hands horizontal

creates velocity gradient as ∂u/∂y. The shearing motion of your hands

would act to deform a material held between them.

8.5.3 Rotation

Using the results from the prior section we can also ask what is the

difference of the rate of change of the two angles. This difference is

twice the rate of solid body rotation of the line elements at that point,

dβ

dt
− dα

dt
=
∂v

∂x
− ∂u

∂y
.

In two dimensions, you may recognize this quantity is the same as the

curl of the velocity, which is referred to in the fluid mechanics world

as vorticity, ω. The curl is denoted by ω = ∇× v. In component form,

the vorticity vector is

ω = ∇× v =

 ∂w
∂y −

∂v
∂z

∂u
∂z −

∂w
∂x

∂v
∂x −

∂u
∂y

 .
The curl is the vector cross product of the gradient operator ∇ and the

velocity vector v. In two dimensions where the velocity is constrained

to the x-y plane, the vorticity only has a component normal to this
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plane, the z plane.

ωz =
∂v

∂x
− ∂u

∂y
.

The curl of the velocity is equivalent to twice the angular velocity of

the fluid particle at a point. While we only made the argument in 2D,

the argument holds up in a more general 3D flow.

8.5.4 Generalized to 3D

In three dimensions, the results of this section are summarized as fol-

lows. The strain rate tensor is defined as

S =
1

2

(
∇v +∇vT

)
. (8.8)

In component form this tensor is

S =
1

2

 2∂u∂x
∂u
∂y + ∂v

∂x
∂u
∂z + ∂w

∂x
∂u
∂y + ∂v

∂x 2∂v∂y
∂v
∂z + ∂w

∂y
∂u
∂z + ∂w

∂x
∂v
∂z + ∂w

∂y 2∂w∂z


The strain rate tensor is symmetric and provides the rate of strain

of fluid elements in the different directions. The diagonal components

of the tensor are the linear strain rates in the three dimensions. The

off-diagonal components are the shear strain rates in the three planes;

x− y, x− z, and y − z.
To rotation tensor is defined as

R =
1

2

 0 −ωz ωy
ωz 0 ωx
−ωy −ωx 0

 (8.9)

where ω are three components of the vorticity vector, ω = ∇ × v.

The off diagonal elements of the rotation tensor provide the amount

of rotation in the three planes x − y, x − z, and y − z. The tensor is

anti-symmetric. It is fairly easy to see that the velocity gradient is the

sum of the strain rate and the rotation tensors,

∇v = S + R.

Velocity gradients lead to both strain of material elements and rotation

of those elements. The strain rate tensor provides the rate of strain of

the material. The rotation tensor provides the amount of rotation.
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Using the above tensors, the Newtonian constitutive law for an in-

compressible flow states that

T = P I + 2µS.

The forces exerted on the fluid are proportional the strain rate, but not

the rotation of the fluid.

Please note that this discussion of kinematics is quite brief and more

detailed derivations can be found in the references. The main point is

to demonstrate that the form of the Newtonian stress tensor is con-

nected to the kinematics of rate of deformation of the material. The

stress is related to the velocity gradients. However, the use of the sym-

metric strain rate tensor subtracts our solid body rotation which does

not generate stress. In a Newtonian fluid only the rate of deformation

generates stress.

8.6 Non-dimensionalization

Consider the Navier-Stokes equations for incompressible constant den-

sity flow,

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇P + µ∇2v,

∇ · v = 0.

Let’s say the geometry of the problem provides some characteristic

length, L, and some characteristic flow velocity, U0. The equations can

be made dimensionless following the same procedure as in previous

chapters. Let’s define ṽ = v/U0, [x̃, ỹ, z̃] = [x, y, z]/L, t̃ = tU0/L,

and P̃ = P/P0. Our time scale is picked so that it takes one time

unit for a fluid particle to travel the length L; i.e. our dimensionless

time is t̃ = tU/L. When making equations dimensionless, it is always

important to recall that derivatives have units. The derivative, ∂/∂x has

units of 1/Length, for example. Therefore, when we make our operator

∇ dimensionless, we make the substitution ∇̃ = L∇. The dimensionless

version of the Laplacian is given as ∇̃2 = L2∇2. Making this change of

variables would yield,

ρU2
0

L

(
∂ṽ

∂t̃
+ ṽ · ∇̃ṽ

)
= −P0

L
∇̃P̃ +

µU0

L2
∇2ṽ,
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∇̃ · ṽ = 0.

Rearranging the momentum equation and defining P0 ≡ ρU2
0 we would

obtain, (
∂ṽ

∂t̃
+ ṽ · ∇̃ṽ

)
= ∇̃P̃ +

µ

ρU0L
∇2ṽ,

∇̃ · ṽ = 0.

Thus the problem has only one dimensionless parameter that matters,

the Reynolds number,

Re ≡ ρU0L

µ
.

The Reynolds number came out in several of our problems early in this

book when we discussed dimensional analysis.

8.7 The Reynolds number

From the non-dimensionalization the Reynolds number shows up as the

parameter upon which the flow field depends. This parameter showed

up in the first chapter where we showed that it could be used to scale

all the drag coefficient and pipe flow data onto a single master curve.

The Reynolds number shows up as the most important parameter in

the Navier-Stokes equations. The Reynolds number is the parameter

when it comes to determining the character of incompressible flow.

Physically, the Reynolds number is the ratio of inertia to viscosity.

When the Reynolds number is large, then inertia dominates and when

it is small then viscosity dominates. Often in practice high Reynolds

number flows are unstable and subject to turbulence. Low Reynolds

number flows are smooth. What counts as a “high” or “low” Reynolds

number often depends on the situation.

The interesting thing is that since the flow only depends upon the

Reynold number, a model experiment is perfectly valid if you match

the Reynolds number. If I am interested in the character of the flow

around a tall building, I can create a small model, match the flow in

my wind tunnel to have the same Reynolds number as the thing I am

interested and I will get the same flow.

Just to get a feel for what the magnitude of the Reynolds number
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is, lets consider a few hypothetical cases. For water, the density is ρ =

1000 kg/m3 and the viscosity is approximately µ = 0.001 Ns/m2. So

lets say a person 2m tall who can swim at 1 m/s would have a Reynolds

number of 2× 106. A small organism that is 100 µm and can swim one

body length per second would have a Reynolds number of 0.01. For

you to match the Reynolds number of this organism you would need to

swim at about the same speed (100 µm/s) in molasses!

In a pipe flow, a standard rule of thumb is that the flow will transition

from laminar to turbulent at a Reynolds number of 2300. Here the

Reynolds number is defined on the diameter of the pipe. To get a sense

of where a Reynolds number of 2300 is - water flowing in a 1/4 inch pipe

(6.35 mm) at a velocity of 1 ft/s (0.3 m/s) we would be at a Reynolds

number of about 2000. The transition number is only a rule of thumb. If

you try this experimentally you will find the transition number changes

based on how carefully you set up the experiment. If you just hook up

some tubing and push water through it without worrying about keeping

everything smooth, straight, and well conditioned, you will probably

observe a transition at a much lower Reynolds number, probably under

1000. If you are extremely careful and take great pains to do a perfect

experiment the flow will transition at a much high Reynolds number. In

2011, the best theoretical determination of a true transition Reynolds

number to sustained turbulence was determined to be Re = 2040. While

a seemingly simple problem, the details are quite complex.

Reynolds original 1885 experimental apparatus survived at the Uni-

versity of Manchester, where he was a professor. A century later, his

exact experiments were recreated with his apparatus. The experiment

showed a transition Reynolds number much lower than he reported.

The difference was found to be due to cars in modern day Manchester,

the small amount of shaking from the streets perturbed the simple but

delicate experiments.

8.8 Summary

The starting point for much of our discussion in future chapters are the

Navier-Stokes equations for incompressible constant density flow,

ρ

(
∂v

∂t
+ v · ∇v

)
= ρg −∇P + µ∇2v,
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∇ · v = 0.

These equations are the formal statement of conservation of mass and

momentum (i.e. Newton’s laws of motion). The equations in this form

assume a Newtonian fluid constitutive law which relate the instanta-

neous rate of strain to stresses. Not all fluids follow the Newtonian

assumption but it is a good model of simple fluids such as air, water,

and oil. To achieve Euler’s equations simply take the limit that the

viscosity is zero and remove that term from the equations. This zero

viscosity limit is a funny one which we will address in a later chapter.

In the past two chapters we worked through the derivation of these

equations. The discussion of the past two chapters was not as complete

or detailed as can be found in many excellent textbooks. The aim of my

discussion was to try to give you a sense of where the equations come

from and how to think about the physical meaning of the different

terms. At this point in your study, I would expect that many of the

details seem at least somewhat confusing.

Of course the equations on their own don’t mean much. We will need

to understand the solution of these equations in order to connect to

physical phenomena. Even though you now have a complete mathe-

matical formulation for fluid flow in hand, your study (and mine) of

the subject is just beginning. To move forward in our understanding of

fluid flow we need to learn how to use these equations to explain phe-

nomena that we observe everyday. As explained previously, the Navier

Stokes equations are very difficult to solve, so we will need to use sim-

ple solutions to give us insight to the fundamentals and learn to use

the equations to guide our qualitative thinking. There is no one better

to make this point than Richard Feynman in his famous Lectures on

Physics. Italicized words are ones I changed to switch the context from

electromagnetism to fluid dynamics;

Mathematicians, or people who have very mathematical minds, are often led
astray when “studying” physics because they lose sight of the physics. They
say: “Look, these differential equations - the Navier-Stokes equations - are
all there is to fluid dynamics; it is admitted by the physicists and engineers
that there is nothing which is not contained in the equations. The equations
are complicated, but after all they are only mathematical equations and if
I understand them mathematically inside out, I will understand the physics
inside out”. Only it doesn’t work that way. ... They fail because the actual
physical situations in the real world are so complicated that it is necessary to
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have a much broader understanding of the equations. What it means to really
understand an equation - that is, in more than a strictly mathematical sense
- was described by Dirac. He said: “I understand what an equation means if
I have a way of figuring out the characteristics of the solution without actu-
ally solving it”. A physical understanding is a completely unmathematical,
imprecise, and inexact thing, but absolutely necessary for a physicist and
engineer.

My hope with the subsequent chapters is to begin to help you “un-

derstand” the Navier-Stokes equations in this imprecise and inexact

sense.
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Solutions to the Navier-Stokes equations

The Navier-Stokes equations are hard to solve. A general solution or

technique for all problems does not exist. Solutions to flow problems are

an active area of current research and fluid dynamics has continually

driven a large number of techniques in applied mathematics going back

all the way to the original work of Euler. There is no way we can

cover many of the varied mathematical techniques for analyzing fluid

mechanics in a first course. Going much further than we do in this text

would require a stronger background in partial differential equations,

a challenging topic in its own right. Computationally, the situation is

perhaps equally challenging. We can use modern computational fluid

dynamics (CFD) packages to solve numerous flow problems, however

in many cases these solutions must be approached with caution.

But do not despair. There are some simple (and practical) cases

where the Navier Stokes equations can be easily solved with hand cal-

culations. These simple problems are insightful as they can lead to

physical intuition and help connect the mathematical formulation to

observable phenomena. We will show some examples in this chapter of

some classical flow problems. It is important to realize that the Navier

Stokes equations are non-linear equations and their solutions are not

unique. If you find a solution, it might not be the one you observe in

the lab. Often the simple mathematical solutions turn out to be un-

stable ones. While these facts might seem annoying to you, it is these

facts exactly that give fluid flows some of the their beautiful patterns

and makes the subject still interesting even though it has existed in its

modern form for over a century.

In this chapter, we will ignore all these complexities for now and
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Figure 9.1 Schematic for Poiseuille flow between two parallel plates.

solve some simple problems. In all the examples that follow we will

study flows where there is no acceleration and force due to viscosity

will balance some driving force.

9.1 Flow between parallel plates - Poiseuille flow

The following problem is often referred to as Poiseuille flow after the

French physicist and physiologist who experimentally studied the flow

of liquid in narrow tubes to understand the flow of blood in the human

body. We will work this problem in great detail and then use what we

learned to quickly solve other related problems. We will consider here

the two-dimensional version of the problem. Imagine a flow in 2D slot

between solid walls with a steady, pressure driven flow. The channel

height is H and we will take y = 0 to be the lower wall. Gravity will

point in the negative y direction. We will assume that the channel is

infinite in the axial x-direction. We assume the flow is not only steady

in time and also flow is “steady” in the axial direction meaning that

since the channel is long and the flow has no variation in the x direction.

Since the channel is infinite in x we assume that there is no reason the

flow at any x location will be different than any other. Thus the axial

gradients are zero; ∂u/∂x = 0 and ∂v/∂x = 0. Making the assumption

of uniform, steady flow, we can rewrite the Navier-Stokes equations,

crossing all the terms with x derivatives and time derivatives as follows,

ρ

(
�
��S
SS

∂u

∂t
+
�
��@
@@

u
∂u

∂x
+ v

∂u

∂y

)
= −∂P

∂x
+ µ

(
�
��S
SS

∂2u

∂x2
+
∂2u

∂y2

)
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ρ

(
�
��A
AA

∂v

∂t
+
�
��@
@@

u
∂v

∂x
+ v

∂v

∂y

)
= −∂P

∂y
− ρg + µ

(
�
��S
SS

∂2v

∂x2
+
∂2v

∂y2

)

�
��S
SS

∂u

∂x
+
∂v

∂y
= 0.

Note that we keep the axial pressure gradient as the pressure drives the

flow and must drop continuously as we move down the channel.

From conservation of mass, ∂v/∂y = 0; an equation which states that

the vertical velocity is a constant in the y direction. Since v = 0 at the

wall, v = 0 everywhere. We can now cancel out all terms that have the

vertical velocity, v in them;

ρ

(
�
��S
SS

∂u

∂t
+
�
��@
@@

u
∂u

∂x
+
�
��S
SS

v
∂u

∂y

)
= −∂P

∂x
+ µ

(
�
��S
SS

∂2u

∂x2
+
∂2u

∂y2

)

ρ

(
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+
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u
∂v
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+
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SS

v
∂v

∂y

)
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∂y
− ρg + µ

(
�
��S
SS

∂2v

∂x2
+
�
�
�S
S
S

∂2v

∂y2

)
It makes sense that the left side of the Navier Stokes equations is zero.

The left side represents the acceleration of a fluid particle. There is

no acceleration in this system. There is neither acceleration due to

unsteadiness (change in velocity with respect to time) nor from the

perspective of a fluid particle. The channel is like a calm river whose

width doesn’t change; if you were on a raft you would translate at

constant velocity. Neither the observer on the raft or on the banks

would see any acceleration in this flow.

Thus, the momentum equations are simplified significantly to

∂P

∂x
= µ

∂2u

∂y2
. (9.1)

∂P

∂y
= −ρg. (9.2)

Integration of the second equation yields,

P = P (x, y = 0)− ρgy.

where P (x, y = 0) is the pressure along the lower wall, which is a func-

tion of x only. When we take the pressure gradient in the x direction,

the hydrostatic component (the term with ρg) does nothing to modify
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the axial flow. Since the flow was assumed invariant in x, the only con-

sistent solution would be that the axial pressure gradient, dP/dx, is a

constant. Since the left side of Equation 9.1 is a constant the equation

can be easily integrated twice with respect to y,

u(y) =
dP

dx

1

2µ
y2 + C1y + C2.

We are left with two constants of integration which are determined by

the no-slip boundary conditions at both walls. For the lower wall we set

u(y = 0) = 0. Substituting in this boundary condition states that the

constant C2 must be zero. The upper wall condition of u(y = H) = 0

allows us to determine C1. The final result is,

u(y) = −dP
dx

1

2µ
y(H − y).

The velocity profile follows a simple parabola which is zero at y = 0

and y = H. Recall from our discussion on diffusion that the second

derivative in space is equivalent to the curvature. Therefore, the gov-

erning equation states that the curvature of the x component of the

velocity field is proportional to a constant (the pressure gradient). The

parabola is the only function which has constant curvature, thus we

could obtain the qualitative shape of the velocity profile without even

solving the equation.

The total flow, per unit width is Q =
∫H

0
u(y)dy. Integrating our

velocity profile gives the total flow as

Q = −dP
dx

H3

12µ

Usually we use the fact that dP/dx is the same as the total applied

pressure difference divided by the total length of channel. We need to

be careful with the signs. Convention would usually define a positive

pressure difference, ∆P , as going from high pressure on the inlet to low

pressure on the outlet. With this convention, dP/dx = −∆P/L. Using

the total pressure drop notation gives,

∆P = Q
12µL

H3
.

The expression says that pressure and flow rate are linearly related

- double the pressure and you double the flow. This expression is a

hydraulic version of Ohm’s law (V = iR) where pressure difference
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acts like voltage and volumetric flow rate acts like current. The number

12µL/H3 is the hydraulic resistance.

There are a few things we should check with our resistance formula.

First, we can check the units to make sure they agree with what we

expect and that we did not make an error. The other check is that

the trends all go in the right way. It makes physical sense that the

resistance increases with viscosity, channel length, and with a decrease

in the channel height. It is always good to look at a result and see if

you believe the basic facts about that result before proceeding.

Note that the mean flow velocity is ū = Q/H,

ū =
∆PH2

12Lµ

and the maximum flow velocity (along the centerline) is found by eval-

uating the velocity profile at y = H/2,

u

(
y =

H

2

)
=

∆PH2

8Lµ
=

3

2
ū.

Since there is no acceleration in this flow we can check our result

with a simple force balance If we draw a box (control volume) the net

force (per unit depth into the page) exerted on the box due to pressure

is

FP = ∆PH.

This force must be balanced by the shear stress exerted at the two

walls. Recall the method of finding the stress on a surface discussed

in the chapter on the Navier-Stokes equations. The shear stress acting

tangential to the wall is given by n·T where T is the total stress tensor.

The normal vector for the lower wall is n = [0 1]. The stress tensor at

the wall for this simplified flow is

T = −P I + µ
(
∇v +∇vT

)
=

[
−P µ∂u∂y
µ∂u∂y −P

]
.

Thus the stress vector is,

s = n ·T =

[
µ∂u∂y
−P

]
The tangential stress is proportional to the velocity gradient ∂u/∂y
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which for our velocity field is,

∂u

∂y
=

∆P

L

1

2µ
(H − 2y).

The tangential stress, or x-component of the stress vector, acting on

the lower wall is then

sx(y = 0) = µ
∂u

∂y

∣∣∣∣
y=0

=
∆PH

2L
.

By symmetry we would expect the stress on the upper wall to be the

same. If you carry through the operation as we did above you only need

to be careful with the signs. The sign of the slope of the velocity field

is reversed at the upper wall, but the sign of the normal vector is also

reversed, thus giving a force in the same direction as the lower wall.

To get the force, the tangential stress is integrated over the length of

the channel, which is just the constant shear stress multiplied by the

length of channel. The total shear force per unit depth into the page,

Fs, is,

Fs = (sx(y = 0) + sx(y = H))L = FP = ∆PH.

The total shear force equals the total pressure force.

Could we have estimated our result from the start without actually

solving the problem? We can actually get a good estimate using the

force balance. The applied pressure force was given simply above. The

shear stress at the surface is τ = µ∂u/∂y. If we did not solve the

equation, we could have guessed that the velocity gradient would be of

the same order of magnitude as the flow velocity divided by half the

channel height; namely τ = µ∂u/∂y ∼ 2µU/H. The total shear stress

exerted on both walls is,

Fs ∼ 4µ
U

H
L.

Equating these two forces would yield an estimate of the maximum flow

velocity as

umax ∼
∆PH2

4µL
.

which is not the precise formula but has the right scaling with the pa-

rameters. A simple estimate in a simple problem seems useless (and

perhaps it is), but the same type of scaling arguments can be used in
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Figure 9.2 Schematic for Couette flow between two parallel plates.

more complicated problems to get a handle on the form of the answer,

the basic scaling, or the order of magnitude. It is very common prac-

tice to guess that the terms in the partial differential equation can be

approximated in simple ways just to get a handle on what the answer

might look like.

While the parabolic velocity profile is accurate and can be realized

in practice, the theoretical solution between parallel plates is only ob-

served when the Reynolds number is less than 1400 (or thereabouts). If

the Reynolds number is large, the flow becomes unstable and turbulent.

The simple laminar flow solution is lost. Instability is an issue we will

discuss later.

9.2 Flow driven by a wall - Couette flow

Another simple case is where the flow is driven by a moving wall, known

as Couette flow. We assume a 2D channel in cartesian coordinates. The

channel goes from 0 < y < H. Just like the previous example, we

will assume the channel is infinite in the x direction and is at steady

state (both with respect to time and distance along the channel). This

case can be realized in practice by placing fluid in a thin gap between

concentric cylinders and rotating the cylinders with respect to each

other. The fact that we use cartesian coordinates is akin to assuming

a flat earth (i.e. the curvature is so large compared to the length scale

across the channel). In this case we will assume that gravity acts normal

the x− y plane, and thus has no role in this problem.

We can write the full Navier-Stokes just as in the Poiseuille flow



130 Solutions to the Navier-Stokes equations

example and cross out all the time derivatives and x derivatives. We can

then apply conservation of mass to tell us there is no vertical velocity,

v. Crossing out all these terms again yields the x and y momentum

equations as in Equations 9.1 and 9.2,

∂P

∂x
= µ

∂2u

∂y2
.

∂P

∂y
= 0.

However, in this case the x momentum equation simplifies further as

there is no applied pressure gradient. In the example of the concentric

cylinders there could be no pressure gradient around the closed loop

of the fluid gap, otherwise the pressure would be discontinuous as we

went around the circle. For Couette flow, the x momentum equation

simplifies to,

0 =
∂2u

∂y2
.

The curvature of the velocity field is zero and thus we expect a lin-

ear velocity profile. Integrating this expression twice with respect to y

yields,

u(y) = C1y + C2.

The two boundary conditions used to determine the two constants of

integration are u(y = 0) = U and u(y = H) = 0. Applying these

conditions to get C1 and C2, the full velocity field is,

u(y) = U
H − y
H

.

The velocity varies linearly between the two plates. The total flow rate

between the plates is computed as

Q =

∫ H

0

u(y)dy =
UH

2
.

That’s all there is to it.

Note the analogy with steady state diffusion. The equation is the

same as found in one-dimensional diffusion at steady state. The Couette

flow equation states that the velocity field has no curvature. The only

possible solution to this equation is a linear velocity profile.
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Figure 9.3 Schematic for gravity driven flow down a ramp.

9.3 Flow down a ramp

Another variation of the class of problems in simple plane parallel flow

is that of a thin liquid film flowing down a ramp. Here, the ramp is

inclined at an angle θ and the flow is driven by gravity. Fluid is poured

in continuously at the top of the ramp. The upper surface of the fluid

film is exposed to the air. We will make the same assumptions as before

that the flow is steady and not varying with distance down the ramp.

We orient the coordinate system with the inclination of the ramp such

that the y direction goes across the film of liquid, and x goes down the

ramp. The surface of the ramp will be y = 0 and the surface of the film

will be y = H.

The development of the basic equations is identical to what we have

seen. The fluid acceleration is zero, the y component of the velocity is

zero, and all gradients of the flow velocity with respect to x are zero.

Following the same procedure as before, we obtain for the x and y

momentum,

∂P

∂x
= ρgsin(θ) + µ

∂2u

∂y2
.

∂P

∂y
= −ρgcos(θ).

Integrating the second equation across the thickness of the film and

using the boundary condition that the pressure at the surface of the

film is that of the air around, P∞, we obtain the pressure everywhere.

P = P∞ + ρgcos(θ)(H − y)
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The pressure does not depend on x, thus the x momentum equation is,

−ρgsin(θ) = µ
∂2u

∂y2
.

Integrating twice yields (since the left side is constant)

u(y) = −ρgsin(θ)

2µ
y2 + C1y + C2.

The two constants of integration are found from the boundary con-

dition. At the surface of the solid ramp, the no-slip condition holds,

u(y = 0) = 0. Applying this boundary condition shows that C2 = 0.

Therefore,

u(y) = −ρgsin(θ)

2µ
y2 + C1y.

The second boundary condition is that there is no shear stress at the

free surface of the liquid. Nothing is there (other than a little air) to

exert a force on the upper surface of the free fluid film. Thus we need

to set ∂u/∂y = 0 at the upper surface y = H. Applying this condition

yields,

u =
ρgsin(θ)

µ
y
(
H − y

2

)
.

You should always confirm at the end that the solution satisfies the

equation and the boundary conditions.

Also note that the solution here is half a parabola - or essentially one

half of the flow between two solid plates. The driving force in Poiseuille

flow is pressure whereas here it is gravity. Otherwise, the solutions look

very similar.

9.4 Combined Poiseuille and Couette flow

In cases where there is no fluid acceleration (or we can neglect it) the

Navier Stokes equations become linear equations. Linear equations are

wonderful since we can use the useful idea of superposition to con-

struct the solution to more complex problems. We can take solutions

to simple problems and add them up in clever ways to construct a new

solution. Rarely in fluid mechanics are we afforded the opportunity to

use superposition.
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One example where we can use superposition is imagine a case where

we have flow in a two-dimensional gap but that the flow is driven by a

pressure gradient and a sliding wall. Let’s take the lower wall moving

at velocity U . For this problem, let’s ignore gravity and assume it is

pointing out of the plane. If we started with the Navier Stokes equations

in two dimensions, we would cross out all the neglected terms exactly

as we did in the section on Poiseuille flow arriving again at Equations

9.1 and 9.2. When we integrate the resulting equation, nothing changes,

u(y) =
dP

dx

1

2µ
y2 + C1y + C2.

To find the constants of integration we would need to apply the bound-

ary conditions, u(y = 0) = U and u(y = H) = 0. Applying the first

condition yields,

u(y = 0) = U = C2.

Applying the second condition yields,

u(y = H) = 0 =
dP

dx

1

2µ
H2 + C1H + U → C1 = −U

H
− dP

dx

1

2µ
H.

The flow field is then given as

u(y) = −dP
dx

1

2µ
y(H − y) + U

H − y
H

.

The total flow rate

Q =

∫ H

0

u(y) = −dP
dx

H3

12µ
+
UH

2
.

If you look at the velocity profile and total flow rate derived for

Poiseuille and Couette flow independently, you will see the above result

is just the superposition of the two solutions. We could have guessed

this result from the start since under our assumptions the equations are

linear. When you have linear equations you can compose a solution to

a problem as the sum of other solutions. Superposition is a useful tech-

nique for solving more complex flow problems as we will demonstrate

in a few of the coming examples.
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Pressure = 0 Pressure = 0

High Pressure

U

Figure 9.4 Schematic for sliding block moving to the left over a
stationary surface. In the reference frame of the block the lower
wall appears to move to the right at constant velocity. While the
gap size is exaggerated here, the solution assumes the gap is very
thin relative to the length of the block.

9.5 Slider bearing

We can use the solutions derived in simple situations to piece together

what will happen in more complex situations. As an example, let’s

consider the motion of two solid surfaces sliding past each other as in

Couette flow. However, in this case the upper surface will have a step

change in the height of the gap. In Figure 9.4 we take the upper block of

length L1 +L2 moving to the left. We must realize that in the reference

frame of the stationary wall, the problem is unsteady. If we observe the

flow from the moving block the flow appears steady in time. Thus we

will take the perspective that rather than the object moving to the left,

the lower flat wall is moving to the right as shown in Figure 9.4.

We will assume the gap height is small relative to the length such

that we can ignore effects that might occur around the step. We will

assume the flow is essentially uniform in the x-direction other than a

small local region around the step. We might be tempted to think that

the flow would be a simple Couette flow in the two regions. However, if

that were true then the flow rate in the two regions (see the Couette flow

derivation) would be Q1 = UH1/2 and Q2 = UH2/2. A linear velocity

profile is not plausible since the total flow rate would be different in

the two regions. Since the flow is incompressible, the total volumetric

flow rate in each section under the slider must be the same. Thus, the

manner in which the problem rectifies itself is that a pressure develops

in the thin gap to push fluid out of the gap as shown schematically in
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Figure 9.4. If the pressure is high at the step then the flow rate will be

enhanced in region 2 and decreased in region 1.

The velocity profile in each region can be thought of as the superposi-

tion of Couette and Poiseuille flow. Using the results derived previously,

the total flow rate in region 1 will be

Q1 = − dP

dx

∣∣∣∣
1

H3
1

12µ
+
UH1

2
,

and similarly for region 2. Overall conservation of mass would state

that Q1 = Q2,

− dP

dx

∣∣∣∣
1

H3
1

12µ
+
UH1

2
= − dP

dx

∣∣∣∣
2

H3
2

12µ
+
UH2

2
.

The expression gives us the relationship between the two pressure gra-

dients in regions 1 and 2. To close the problem, we need additional

information. We need to know what is the overall applied pressure

across the entire fluid gap. Let’s assume the upper slider is open to the

fluid through which it moves. Therefore, the pressure at the two ends

would be the same and there is no overall applied pressure. Since only

pressure differences matter, we can take the far left and right ends of

the slider to be zero pressure. If P is the pressure at the step then the

pressure gradient in region 1 would be P/L1 and the pressure gradient

in region two is −P/L2. The difference in sign is because the pressure

rises from 0 to P in region 1 and falls from P to 0 in region 2. We now

have enough information to solve for the pressure at the step, P ,

P

(
1

L2
+

1

L1

H3
1

H3
2

)
=

6µU

H3
2

(H1 −H2).

Notice that when H1 = H2 the pressure is zero and we are back to

Couette flow. Also notice that the pressure under the slider is positive

when H1 > H2 and negative when the situation is reversed.

In order to understand the result a little easier, lets explore the case

where L1 = L2 = L/2 and H2 = H1/2. Substituting in these parame-

ters yields a pressure at the step of,

P =
4µUL

3H2
.

The pressure grows as the gap gets smaller. The positive pressure in

the gap (when H1 > H2) provides a lift force on the sliding object.
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Since the pressure grows as the layer is squeezed, the fluid can prevent

the two solids from coming into contact. The basic effect is used in

hydraulic bearings where the viscous fluid forces replaces those of solid-

solid contact.

Recall from the Poiseuille flow example that the stress acting on the

solid wall is,

s = n ·T =

[
µ∂u∂y
−P

]
.

The total normal load that could be supported by the pressure in the

lubrication layer is the integral of the pressure (the y component of

the stress) under the slider. Since the pressure gradient is a constant,

the pressure varies linearly with x and the total normal force per unit

width would be,

FN =
4µUL2

3H2
.

The force is directed upward due to the high pressure in the gap and

thus there is a lift force exerted on the block.

The tangential force is that required to drag the block through the

fluid. The tangential force is found by evaluating the shear stress τ =

µ∂u/∂y at the wall and then integrating over the length. The shear

stress in region one is

τ1 = µ
∂u

∂y

∣∣∣∣
y=0

= −PH
L
− Uµ

H
,

Substituting for P gives,

τ1 = −4µU

3H
− Uµ

H
= −7µU

3H
.

Likewise for region 2,

τ2 = µ
∂u

∂y

∣∣∣∣
y=0

=
P

2L
− 2Uµ

H
= −µU

3H
,

The total tangential force per unit width is then (τ1L1 + τ2L2), or

FT = −8µUL

3H
.

A variation of this problem is a classic one where instead of the step

change in the height, a smooth upper surface (with no step in height)
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Figure 9.5 Schematic of the equilibrium position of a shaft in a lu-
bricated bushing. From Machinery Lubrication - a trade publication
(www.machinerylubrication.com).

slides at an angle relative to the lower one. This problem was solved

by Reynolds (yes, the same one) shortly after his work on pipe flow

and the transition from laminar to turbulent flow. The basic behavior

Reynolds found is comparable to the case here, it just requires a little

more analysis. When the upper surface angles upward (same as the

incoming section is thicker than the trailing one) a high pressure is

found in the gap which provides a lift force. This lift force can keep the

upper block from contacting the lower surface. As the gap gets thinner,

the pressure and thus the lift force increases so there is a stabilizing

tendency. You can observe this effect by tossing playing cards across a

table. Incline the card upward and give it a good flick and it will slide

a long distance. You probably know this if you play a lot of poker (or

other card games). If you try this experiment, you can also try to punch

holes in the card such that the pressure can’t build up in the gap. The

cards with holes will come to a quick halt when you try to slide them.

A shaft rotating through a bushing is an important component of one

of our most useful inventions; the wheel. It has been long known that

lubricating the gap between the shaft and bushing with oil or other

viscous fluid can dramatically reduce friction. The problem we worked

in this section is the beginning of the study of this classic journal bear-

ing problem. If there is load on the shaft, there will be a tendency for

the shaft to move and contact the bushing. However, when the shaft
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is rotating, we now have flow in a thin gap of nonuniform height. A

lubrication pressure will build in the gap and push the shaft away from

the bushing. Since the smaller the gap the higher pressure, eventually

the system will come to an equilibrium position where the forces bal-

ances and the shaft is held off the bushing by the lubrication pressure.

It turns out that the lubrication force is not aligned with the load, so

the shaft will sit off center in the bushing as shown schematically in

Figure 9.5. The principle is also important in thrust bearings.

9.6 Impulsively started Couette flow

Now let’s consider a transient flow problem in the x− y plane. Imagine

the Couette flow problem where initially both plates and the fluid are at

rest. At t = 0, the plate is impulsively started to move with a constant

velocity U and we wish to know the velocity field at any time, t. There

is no applied axial pressure gradient in this example.

We can start with the reduction of the Navier-Stokes equations,

which will proceed along the same lines as all the previous examples.

Since the plate is infinite in x there is no reason to think that the flow

at any x location should be different than any other. Thus all terms

with ∂/∂x are set to zero. Applying this reduction to conservation of

mass yields,

�
��S
SS

∂u

∂x
+
∂v

∂y
= 0

Therefore, ∂v/∂y = 0, and the vertical velocity is a constant in the y

direction. Since v = 0 at the plate, v = 0 everywhere. Even though the

flow is transient in time, the argument from conservation of mass about

why the vertical velocity is zero remains the same since conservation of

mass is satisfied instantaneously in an incompressible flow.

We can now turn to the x component of the momentum in the Navier-

Stokes equations and we can discard terms that are multiplied by v or

have x gradients. The complete x-momentum equation with discarded

terms is,

ρ

(
∂u

∂t
+
�
��@
@@

u
∂u

∂x
+
�
��S
SS

v
∂u

∂y

)
=��HHρgx −�

��S
SS

∂P

∂x
+ µ

(
�
��S
SS

∂2u

∂x2
+
∂2u

∂y2

)
.
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The Navier-Stokes is simplified significantly to

ρ
∂u

∂t
= µ

∂2u

∂y2
.

The reduction for the Navier-Stokes is precisely as we had for steady

Couette flow, only now we have retained the transient term.

Dividing by the density and recalling the µ/ρ is the kinematic viscos-

ity ν, we have something that looks suspiciously like the 1D diffusion

equation,

∂u

∂t
= ν

∂2u

∂y2
.

The kinematic viscosity plays the same role in this equation as diffu-

sivity in the diffusion equation. We expect that the behavior would be

the same as applying an instantaneous change in temperature to one

side of a block of material while holding the other side cold. In this flow

case, we are talking about diffusion of momentum instead of diffusion

of thermal energy. The kinematic viscosity ν has the same units as the

thermal diffusivity.

Let’s make this equation dimensionless. Setting a scale for velocity

and length seems obvious; ũ = u/U , ỹ = y/H. However, what should

the time scale be? Using an arbitrary scale t̃ = t/t0 would yield,

∂ũ

∂t̃
=
νt0
H2

∂2ũ

∂ỹ2
.

So clearly the “right” choice is to set to ≡ H2/ν which yields the

problem,

∂ũ

∂t̃
=
∂2ũ

∂ỹ2
.

with initial condition ũ(t̃ = 0, ỹ) = 0, and boundary conditions

ũ(t̃, ỹ = 0) = 1, and ũ(t̃, ỹ = 1) = 0.

Therefore the solution at steady state will be ũ(ỹ) = 1− ỹ. The system

will approach this equilibrium state with a time scale on the order of

H2/ν. The dimensionless formulation of this problem is exactly as we

found for similar problems in diffusion.
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Figure 9.6 Schematic for Couette flow between two concentric cylin-
ders. The outer cylinder with radius Ro rotates with angular velocity
Ω.

9.7 Cylindrical Couette flow

Previously we solved the flow between two sliding plates. This flow can

be approximated in the lab by spinning two concentric cylinders relative

to each other. Rather than making the cartesian assumption for a thin

gap, let’s solve the problem in cylindrical coordinates (r, θ, z). The

nice thing about using the Navier-Stokes equations written in vector

form is that we can keep the equations the same and easily transform

to another coordinate system such as cylindrical or spherical. We will

not derive the equations in different coordinate system but they can be

found in a number of references and easily looked up. Lets take a outer

cylinder of radius Ro rotating at constant angular velocity of Ω. The

inner cylinder is stationary with radius Ri. The fluid is infinite in the z

direction, and gravity acts in the z direction. We will assume that the

solution is axisymmetric (there is no variation in the θ direction) and

that there is no fluid motion in the z direction. This seems reasonable

to start. We will use the notation that ur is the radial component of

velocity and vθ is the θ velocity.

The momentum equations in the r and θ directions are stated below

(by looking up the vector operators in cylindrical coordinates). To sim-

plify matters, we ignore gradients in the z direction and assume that

everything is constant in z. The momentum and mass equation are
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stated where we cancel unsteady terms and ones that disappear due to

the axisymmetric assumption. The equations with discarded terms are

for the r momentum,

ρ

(
�
��∂ur
∂t

+ ur
∂ur
∂r

+
�
�
��vθ

r

∂ur
∂θ
− v2

θ

r

)
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∂
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)
,

θ momentum,

ρ

(
�
��∂vθ
∂t

+ ur
∂vθ
∂r
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��vθ

r

∂vθ
∂θ
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r
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r
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)
,

and conservation of mass,

1

r

∂rur
∂r

+
�
�
�1

r

∂vθ
∂θ

= 0.

Integration of conservation of mass tells us the rur =Constant. Since

the radial velocity at the surface of the cylinder is zero, the radial veloc-

ity is zero everywhere. This further simplifies the momentum equations

to

ρ
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θ momentum,

ρ
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,
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The equations are significantly simplified just as in the other exam-

ples of this chapter. One difference however, is that there is one accel-

eration term that shows up in the radial momentum balance. This is

the centripetal acceleration. This acceleration is balanced by the radial

pressure gradient. The radial pressure is analogous to the case where

you swing an object tied to the string in a circle above your head and

the tension in the string balances the object’s acceleration. The equa-

tions we will solve are the radial momentum balance,

−ρv
2
θ

r
= −∂P

∂r

and the θ momentum,

0 = µ

(
∂

∂r

(
1

r

∂rvθ
∂r

))
Integrating the θ momentum equation once yields,

1

r

∂rvθ
∂r

= C1

which can be integrated again,

vθ =
C1

2
r +

C2

r
.

Solving for the constants of integration by applying the boundary con-

dition at the inner and outer cylinder gives the velocity field as,

vθ = ΩRo

r
Ri
− Ri

r
Ro

Ri
− Ri

Ro

It is easy to confirm that this solution satisfies the boundary conditions.

If you plot the solution for cases where the inner cylinder has a radius

which is 90 percent of the outer cylinder, you will notice little difference

between the true solution and the linear “flat earth” approximation.

The flow between concentric cylinders is a classic problem called

Taylor-Couette flow. The general Taylor-Couette problem considers the

ability to spin the inner and outer cylinder wall independently. You

should check out some movies of this flow on youtube. The simple

flow with the velocity field above can be only observed in some regions

of parameter space. As the relative rotation speeds of the cylinders

are changed, the flow can transition through a number of complicated
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Figure 9.7 Schematic for pressure driven Poiseuille flow in a pipe.

shapes and regular but complicated patterns. This behavior is indica-

tive of the non-linear behavior of the Navier-Stokes equations.

9.8 Poiseuille flow in a pipe

Analysis of flow in a circular pipe of radius R follows the same logic as

we discussed for Poiseuille flow in a slot. However, since in the labora-

tory or in application it is much easier and more common to have flow

in a circular pipe this is an important example. As in the slot example,

we will assume that the pipe is very long and we are interested in the

steady state behavior along the length of the pipe. We will assume that

we are only interested in flows that are axisymmetric. If we write the

Navier-Stokes in cylindrical coordinates, we can proceed by eliminating

terms based on the axisymmetric assumption and that the gradients in

the axial direction are zero. We will use the notation that ur is the

radial component of velocity, uθ is the θ velocity, and uz is the axial

velocity.

Writing conservation of mass in cylindrical coordinates and discard-

ing gradients in θ and z yields.

1

r

∂rur
∂r

+
�
�
�1

r

∂uθ
∂θ

+
�
��∂uz
∂z

= 0.

Conservation of mass states that rur is a constant. Since the radial

component of the velocity is zero at the wall r = R, it is zero every-

where.

Since there is no radial or swirling (θ) velocity those components of

the momentum equation will all be zero. We only need to consider the
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axial momentum equation,
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Since there is only one component of the velocity we drop the subscript

on the uz and just use u to denote the axial velocity for simplicity.

The final reduced momentum equation is analogous to Equation 9.1 in

cylindrical coordinates,

dP

dz
= µ

1

r

∂

∂r

(
r
∂u

∂r

)
. (9.3)

Integrating twice gives

u(r) =
1

4µ

dP

dz
r2 + C1ln(r) + C2

Since we don’t want a singularity at r = 0, C1 = 0. Applying the no-slip

boundary condition that u(r = R) = 0 gives,

u(r) =
dP

dz

1

4µ
(r2 −R2).

The total flow rate, Q, is found by

Q =

∫ R

0

2πru(r)dr = 2π
dP

dz

1

4µ

∫ R

0

r(r2 −R2)dr,

Note that we need to remember our factors of r and π when integrating

over the surface of the pipe inlet in cylindrical coordinates. Performing

the integral we obtain

Q =
π∆PR4

8µL
,

or written as the common pressure-flow relationship,

∆P = Q
128µL

πD4

Notice the term 128µL/πD4 is the hydraulic resistance which relates

pressure and flow. The pipe resistance is a strong function of the di-

ameter. One effect is the area, there is less volumetric flow if the area
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is reduced (for the same velocity). The other effect is that viscosity is

stronger when the diameter is small.

Taking the relationship for pressure and flow in a pipe and recasting

in terms of the velocity, we could rearrange the equation to obtain,

∆P = 32
uµL

D2
.

Here u would be the average velocity in the pipe, i.e. Q/(πD2/4). Re-

member from an earlier chapter that pressure drop is pipe flow is char-

acterized as

∆P =
1

2
ρu2 L

D
f(Re).

Equating the last two expression yield,

32
uµL

D2
=

1

2
ρu2 L

D
f(Re) → f =

64µ

ρuD
=

64

Re
.

the analytical solution for laminar flow friction factor that we saw on

the Moody diagram in Chapter 3. As we have described before, this

solution is only observed up to around a Reynolds number of 2300 and

then stability is lost and flow become turbulent.

9.9 Comments on the stability of solutions

In simple fluid flows as we have described in this chapter, we can often

find a solution to the Navier Stokes equations. As we have discussed,

these solutions are not guaranteed to be stable. Imagine trying to bal-

ance a pencil on its sharpened tip. While a free body diagram of a

vertical pencil on a table is a perfectly valid theoretical solution, you

can easily see that the situation is highly unstable and not realizable in

practice. If the pencil leans ever so slightly to one direction, the pencil

falls over. Now imagine an unsharpened pencil. You can balance this

one on its end, but if you hit the table it falls over. Both of these sit-

uations can occur in fluid flows where the solution to the equations is

valid, however it is not stable to either finite or infinitesimal pertur-

bations. There are many routes to instability in fluid flows, many of

which are an active area of research. Since the Navier-Stokes equations

are non-linear there are no guarantees of unique solutions to problems.
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However it is the issue of stability and non-linearity that make fluid

mechanics a fascinating area of study.

The most straightforward method of stability analysis is to take a sit-

uation where a simple solution to the Navier-Stokes equations is known.

We can then consider very small perturbations to this solution and then

decide if those perturbations grow or decay in time. Mathematically we

make a substitution where we would say the the velocity is u = u0 + û

where u0 is the known simple base state and û is an infinitesimal per-

turbation to that base state. We can do this for all the variables and

plug this into the Navier-Stokes equations. Since the perturbations to

the base state are assumed small, we can discard all the non-linear

terms (products of hat terms) which comprise the product of two small

things. The result are linearized partial differential equations for the

perturbations to the base state. In practice, we can usually solve this

linear problem (at least numerically). We can then look at the solutions

and see if they either grow or decay with time. If the solutions to the

perturbed equation grow with time, this indicates that if we provide

a slight random kick, the solution will grow in size until it dominates

the problem, noting that the flow is unstable. This type of analysis is

called linear stability analysis.

This type of stability prediction works remarkably well in some cases

and remarkably bad in others. Two cases where this analysis works

well are called Rayleigh-Benard convection and Taylor-Couette flow.

Rayleigh Benard convection is what occurs when a channel is heated

from below and the hot fluid near the lower surface wants to rise up due

to buoyancy. If the temperature difference is small the fluid stays still

and heat is transported by conduction. As the temperature difference

increases, convection cells form. These convection cells can result in

interesting large scale patterns in the flow, such as stripes and spirals.

The initial onset of convection is well-predicted by a linear stability

analysis.

The Taylor-Couette problem is the flow between two concentric cylin-

ders rotating relative to each other. If the inner cylinder is rotating

slowly, we have a Couette flow in the gap between the cylinders that

we studied earlier. At higher speeds there is a centrifugal instability

that causes a set of convection cells to set in. So rather than a sim-

ple shearing motion, a set of vortices spontaneously emerge that wrap

around the cylinder. An example image is shown in Figure 9.8. If one
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Figure 9.8 Image of the unstable vortices that wrap around the
cylinder in a Taylor-Couette device. On the right, the phase diagram
of the different types of flow observed if one can independently rotate
the inner and out cylinders in the device. Image from Album of Fluid
Motion. Phase diagram from Anderdeck, Liu, and Swinney, J. Fluid
Mech 1986.

controls the speed of both the inner and outer cylinder the flow is ex-

tremely complex and many different regimes of qualitative behavior

are seen in the phase diagram of Figure 9.8. The lower boundary of the

phase diagram from simple sheared Couette flow to the initial instabil-

ity is well predicted by linear stability analysis. The threshold and flow

patterns that one observes in experiment closely match those that are

predicted by linear analysis. The rest of the phase diagram beyond this

initial instability is much more complicated to predict. As you exceed

the threshold non-linear effects come into play and the patterns become

ever more complicated and beautiful. While the topic of linear stability

analysis is beyond what we will do in this class, it is not that difficult.

It is a topic found in a number of textbooks.

Flow in a pipe is a case where the linear stability analysis works

remarkably bad. In this case, the analysis predicts the flow is stable

at all Reynolds numbers, though we know in practice that is not true.

The mechanism for transition to turbulence in simple pipe flow is a

problem which is still worked on extensively to this day. While a lot is

understood about the laminar to turbulent transition in this problem,
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it is still an area of research 125 years after Reynolds first made his

observations.

There are many complications with the Navier-Stokes equations but

the point I want to emphasize is simple. It is not sufficient to simply

solve the Navier Stokes equations. We always need to ask whether those

solutions are stable. Predicting stability is sometimes straightforward

and sometimes not. Just be aware that asking the question of stability

is a big deal in fluid mechanics and the complications of stability lead a

number of interesting and beautiful phenomenon. In the end, however,

any analysis or simulations you conduct must be brought before the

ultimate judge - experiments.

9.10 Computational Fluid Dynamics (CFD)

Since the 1970s, the desire to simulate fluid flow has been one of the

great drivers for development of simulation software, numerical meth-

ods, and supercomputers. CFD remains a very large endeavor in both

industrial and academic settings. Due to Moore’s law and dramatic in-

crease in computing power, the possibilities with CFD changes quite

rapidly. Problems that would have challenged the fastest computers

and the best researchers some years ago can be done routinely with

commercial software and a typical personal computer. Based on look-

ing at the sample problems that come with modern CFD packages, I

would estimate that a problem that had the complexity to have been

a PhD thesis 10-15 years ago can be done routinely with commer-

cial software. In terms of practical available computing power I would

also estimate about a 10 year lag between when a cutting edge super-

computer problem becomes feasible with a typical low-cost computer.

These two forces, improving hardware and software, continually lower

the financial cost and required expertise to using CFD.

There are different numerical methods which all approximate the

solution of the Navier Stokes equations as discrete chunks. The most

common for commercial CFD packages are based on either finite ele-

ment, finite volume, or finite difference methods. I suggest that if you

ever work with CFD for a job or in graduate school you learn the dif-

ference. For linear problems such as diffusion, a commercial package

can accurately solve the diffusion equation for any arbitrary 3D geom-
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etry with very little effort. A novice user can quickly generate a good

simulation.

Due to the non-linear nature of the Navier-Stokes, we are not yet at

a state of “plug and play” for all problems. Laminar single phase flows

are at that point today. If we have a 2D or 3D flow where the Reynolds

number is low enough that the non-linear terms are not too “strong”,

then a modern CFD package can usually do a good job without the user

getting too involved in the details. This does not mean that laminar

flow is always easy, that there aren’t sometimes difficulties, that you

should run to the computer and shy away from analysis or that you

are always going to get a physical answer. But practically speaking, if

you are interested in a single phase laminar flow you could probably

simulate everything you need without too much trouble or expertise.

All the examples we worked in this section could be set up and run

very quickly using a commercial CFD package. However, as we dis-

cussed earlier in the diffusion chapter, when you just do a simulation

you can miss simple scaling laws, and simple formulas that are good

for basic understanding of trends and also very useful in design prob-

lems. Simulation is another tool that can work side by side with good

analysis, but is rarely the substitute.

We will discuss turbulent flows in a later chapter, but simulating

turbulent flows is a much trickier situation and one where you should

know what you are doing. There are fundamental limitations that make

high Reynold’s number flows challenging that we will address later. For

now, it is worth noting that if you use a CFD package and get good

results, turn up the Reynold’s number and it is guaranteed to stop

working.





10

Inviscid flow, Euler’s equation and Bernoulli

Previously we derived the Navier Stokes equations for a Newtonian

fluid with viscosity. If we take the limit of the Navier Stokes equations

of zero viscosity, we recover the Euler equations,

∇ · v = 0, (10.1)

ρ
Dv

Dt
= −∇P + ρg. (10.2)

We previously found that for a human swimming at a reasonable pace,

the Reynolds number was on the order of a million. We can imag-

ine for a car going down the highway it is even larger. For weather

related phenomena a Reynolds number of 1010 to 1015 would not be

uncommon. Since the Reynolds number is a measure of the ratio of

inertia to viscosity, it seems that perhaps dropping the viscous terms

and turning to Euler’s equation might be a good approximation for

high Reynolds numbers. Euler’s equation looks simpler but it’s behav-

ior can be quite different than the Navier-Stokes even in the limit of

high Reynolds number. The mathematical difference is in the number

of boundary conditions required. For flow over a solid surface, Euler’s

equation would only require (and could only enforce) the boundary

condition that flow does not penetrate the surface. Fluid would slip

over the surface in Euler’s equation. Since the Navier Stokes equations

has higher spatial derivatives (in the viscous terms), it requires more

boundary conditions. The Navier Stokes requires that flow does not

penetrate the surface and that the flow does not slip at the surface.

This subtle difference can lead to quite different behavior. Mathemat-

ically, the zero viscosity limit is called a singular perturbation. This
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means that we take the limit of the small parameter (viscosity) going

to zero and we fundamentally change the problem at hand.

In the last chapter on Navier-Stokes solutions we studied examples

where the balance of forces was between viscosity and some driving

force such as applied pressure. In all the problems in the last chapter,

the fluid had no acceleration. When using Euler’s equation we are ig-

noring viscosity and the balance of forces is between acceleration and

pressure (or gravity). A good strategy for cases of high Reynolds num-

ber flows where fluid acceleration is important is to start a problem

by assuming that Euler’s equations work. We could then check what

the predictions and trends are versus what experiments and experience

say to decide if the approximation was reasonable. We will begin to

understand the breakdown of Euler’s equations better after the next

chapter when we discuss boundary layers.

10.1 Flow along a streamline: Bernoulli

One of the most useful (and simple) relations for flows with no viscosity

is known as Bernoulli’s equation. Let’s start by a simple demonstration

of the where the derivation comes from and then we will follow with a

more general derivation.

Consider the flow through a constricted tube as shown in Figure 10.1.

Let’s consider steady, incompressible, and inviscid flow. For now, let’s

further neglect gravity. Without gravity, Euler equations become

ρv · ∇v = −∇P.

The balance here is that acceleration of the fluid particle is balanced

by the net force due to the pressure gradient. In component form the

x momentum equation is

ρ

(
u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= −∂P

∂x
.

Now consider the flow just along the centerline. By symmetry, we could

argue that there is no component of velocity in the y or z direction;

v = 0 and w = 0. Along the centerline, there is nothing interesting

contained in the y and z momentum equations since all accelerations

in those directions are zero (you can write out all the components and
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1

2

Figure 10.1 Venturi device. The cross sectional area at point 2 is
less than at point 1, thus the flow accelerates. Since the velocity at
the throat is faster than the upstream, Bernoulli’s equation predicts
the pressure is lower at the throat.

convince yourself this is true). Along the centerline the x momentum

equation simplifies to,

ρu
∂u

∂x
= −∂P

∂x
.

Using the chain rule note that,

∂ u2

∂x
= u

∂u

∂x
+ u

∂u

∂x
= 2u

∂u

∂x
.

Using this result we can rewrite the momentum equation as

∂ 1
2ρu

2

∂x
= −∂P

∂x
,

or
∂

∂x

(
1

2
ρu2 + P

)
= 0.

Along the centerline,

1

2
ρu2 + P = Constant,

which we will soon see is a specific version of a more general relationship

called Bernoulli’s equation.

For the device shown, by conservation of mass we know that the flow

velocity will increase at the throat. Our expression for Euler’s equation

along the centerline says that if the velocity increases, the pressure

must decrease. When the flow accelerates, the pressure decreases. When

the flow decelerates, the pressure increases. This general trend should
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make sense from the perspective of the fluid particle. If you are flowing

through the device and are accelerating upon going into the throat, then

there has to be some net force acting on you pushing you from behind.

This net force is the high pressure behind you and lower pressure in

front of you.

10.2 General Bernoulli

Let’s consider a more general derivation of Bernoulli’s equation. Again,

we will consider steady incompressible, constant density, inviscid flow

where the conservation of momentum would be written as

ρv · ∇v = −∇(P + ρgz).

Here we assumed that gravity is pointing in the negative z direction,

without loss of generality. If we look up a table of vector calculus identi-

ties we are free to write the term of the left side in a number of different

forms. One identity would allow us to write,

ρ

(
1

2
∇v2 − v × (∇× v)

)
= −∇(P + ρgz).

which, when density is constant, is equivalent to

−ρv × (∇× v) = −∇
(

1

2
ρv2 + P + ρgz

)
.

We discussed this previously, the curl of the velocity vector ∇×v is also

known as the vorticity ω. Vorticity is a measure of the local solid body

rotation of a fluid particle. It can be useful in a number of settings, but

it is a little hard to wrap your head around what it means. Basically if

you measured a flow and plotted an image of the vorticity field, it would

be highest where the fluid was spinning (i.e. in tornadoes, toilets, and

whirlpools). It is a property of the curl operator, the vorticity always

points perpendicular to the velocity vector. If you have a 2D flow in the

plane of a sheet of paper, the vorticity will point out of the page. We

will discuss vorticity more in a coming section, for now you can consider

it a mathematical thing. Rewriting conservation of momentum with the

vorticity yields,

−ρv × ω = −∇
(

1

2
ρv2 + P + ρgz

)
.
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Note that at this point we really haven’t done anything, just rewrit-

ten the same equation in a different form using some vector calculus

identities.

Let’s take the whole equation and take the dot product with the

velocity vector itself,

−v ·
(
ρv × ω = −∇

(
1

2
ρv2 + P + ρgz

))
.

Notice the term on the left side. The curl of the velocity and the vor-

ticity vectors will always be perpendicular to those two vector. Thus

the dot product with the velocity vector itself will be zero. This fact

can also be easily proven by carrying out all the terms in component

form. Since the left side is always zero, we obtain

0 = v · ∇
(

1

2
ρv2 + P + ρgz

)
.

This fact means that the quantity in parenthesis does not change in the

direction of the velocity vector. In a fluid flow we define a streamline as

a line that follows the velocity vectors. In a steady flow a streamline

will correspond to the path a blob of injected dye would follow. Thus

in a steady flow,

1

2
ρv2 + P + ρgz = a constant along a streamline. (10.3)

This equation is known as Bernoulli’s equation. It is based on some

restricted assumptions, namely 1) incompressible, 2) steady, and 3)

inviscid flow. Despite these restrictions it is a powerful equation because

of its simplicity.

Bernoulli’s equation has a simple interpretation. The kinetic energy

per unit volume is 1
2ρv

2, and the potential energy is ρgz. These expres-

sions should look familiar from particle mechanics only here we use the

mass density rather than the total mass. Pressure exerts a force per

unit area, thus a change in pressure between two locations indicates

that the pressure is doing work on the fluid. This work is related to the

familiar expression that work is equivalent to the integral of force over

distance. Bernoulli’s equation is saying that the work done by pressure

is equal to the change in energy (kinetic plus potential).

While simple and powerful, Bernoulli’s equation can also be mislead-

ing. There is a tendency to want to use it under conditions that are
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not appropriate. We must always ask if the assumptions are met when

using Bernoulli, and ultimately determine whether this simple equation

provides predictions which match reality. The most common mistake is

using Bernoulli’s equation when viscosity is not negligible.

10.2.1 Example: Venturi

A venturi meter is a simple device for measuring flow rate shown in

Figure 10.1. The meter is inserted in a pipe and you measure the pres-

sure difference between an upstream location and at the center of the

contraction. Gravity acts normal to the flow, thus the potential energy

does not change for a fluid particle going through the meter. If the area

change is known, the velocity ratio at points 1 and 2 is known as

v2

v1
=
A1

A2

from conservation of mass. Here v1 and v2 are average velocities. Ap-

plying Bernoulli from point 1 to 2 yields(
1

2
ρv2 + P

)
1

=

(
1

2
ρv2 + P

)
2

.

Combining these expression yields,

P1 − P2 =
1

2
ρv2

2 − 1

2
ρv1

2 =
1

2
ρv2

1

((
A1

A2

)2

− 1

)
If the pressure difference P1 − P2 is measured and the area ratio is

known, then we can figure out the fluid velocity. The venturi is one of

the simplest flow meters.

An old use of a venturi is the carburetor. The carburetor is a device

for mixing fuel and air prior to combustion in an engine. They are not

used in cars anymore, replaced by fuel injectors, however they are still

in use in low-cost engines. The carburetor has a venturi and makes use

of the low pressure in this region to draw fuel into the airstream.

10.3 Euler equations across a streamline

We can also use Euler’s equation to provide a simple relationship for

what happens across streamlines. The following derivation can be made
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r

θ

Vθ

Figure 10.2 Flow around a circular streamline. Euler’s equations can
tell us how the pressure changes as we jump across a streamline.

more general, but for simplicity lets consider that the streamlines at

some point in the flow are curved as perfect circles, such that we can

describe the flow in cylindrical coordinates. The nice thing about our

vector calculus approach is that we simply look up the different opera-

tors in different coordinate systems, and we are good to go. Looking up

the operators for cylindrical coordinates where the flow is in the r − θ
plane and gravity only points in the z direction the Euler equations in

steady flow become,

ρ

(
ur
∂ur
∂r

+
vθ
r

∂ur
∂θ
− v2

θ

r

)
= −∂P

∂r

ρ

(
ur
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

)
= −1

r

∂P

∂θ

We use the subscripts θ and r just as reminders that u and v are

the components in these coordinate directions. Since at this point, the

streamlines follow the circle, ur = 0. There is no radial flow. Likewise,

since we are following a circle here ∂ur/∂θ = 0. Following the circu-

lar streamline at this point allows us to remove some terms from the

equation to obtain equations that are valid on the streamline,

ρ
v2
θ

r
=
∂P

∂r
,

ρ

(
vθ
r

∂vθ
∂θ

)
= −1

r

∂P

∂θ
.
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r

z

Ω

z=0

H(r)

Figure 10.3 Schematic for the example of computing the free surface
shape of a cylindrical tank of water in solid body rotation.

The second equation for the θ component of momentum is equivalent

to

∂

∂θ

(
1

2
ρv2
θ + P

)
= 0

which states that Bernoulli holds in the θ direction. Since this direction

is the streamline, we are satisfied.

The new equation is that the pressure changes across the streamlines

as

ρ
v2
θ

r
=
∂P

∂r
across a streamline (10.4)

Equation 10.4 should make some physical sense. If we have flow spinning

a circle, the pressure increases as we move outward in radius. The

pressure gradient is equivalent to the tension of a string that holds a

rock that you swing in a circle. If the streamlines are straight, then

there is no pressure jump across them.

10.3.1 Example: rotating tank

Consider a container of fluid on a turn table such that the whole system

is in solid body rotation. The velocity field of the fluid is vθ = Ωr where

Ω is the constant angular velocity and r is the coordinate. The axis of
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rotation and gravity are aligned such that gravity does not appear in

the radial momentum equation. Using our expression from the previous

section, the radial component of the momentum equation is

ρ
v2
θ

r
=
∂P

∂r
→ ρΩ2r =

∂P

∂r
.

Since everything on the left side is a constant we can integrate this

equation with respect to r (holding z = Z constant) from the origin to

obtain the pressure distribution as a function of r.

P (r, Z)− P (r = 0, Z) =
1

2
ρΩ2r2

The pressure is higher at the wall of the container than the center. The

vertical momentum equation is simple since there is no vertical flow,

namely, at a constant radial location (r = R),

P (z,R)− P (z = 0, R) = −ρgz.

If we set z = 0 to the surface of the liquid at the center (r = 0) of

the container, we can set the pressure reference at this point to be 0.

We can follow at radial line outward to the wall to an arbitrary point

r,

P (r, z = 0) =
1

2
ρΩ2r2.

Vertical balance provides the pressure at the same point to be

P (r, z = 0) = ρgH(r)− P (z = H, r)

Since the pressure at the surface of the liquid is zero, P (z = H(r), r) =

0, then we are left with a simple result that the height of the fluid

surface is,

H(r) =
1

2

Ω2r2

g
.

You can confirm the result that the surface of the fluid is a parabola

by spinning a cup of fluid. You will see the shape of the surface looks

parabolic. We could have obtained this result using dimensional analy-

sis quite readily. We would not have known the factor of 1/2 if we had

done dimensional analysis.
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Figure 10.4 Schematic of the pressure distribution in a venturi me-
ter comparing the center pressure to the wall pressure.

10.3.2 Example: Venturi revisted

Let’s now reconsider the pressure distribution in a venturi meter. The

pressure along the centerline will follow that predicted by the Bernoulli

equation along the streamline. The pressure at the wall will be dif-

ferent. In the first part of the contraction, the radius of curvature of

the streamline following the wall is such that the pressure at the wall

would be higher than the pressure along the center. Approaching the

nozzle throat, the wall streamline passes through an inflection point

and the radius of curvature changes sign. On the final approach to the

throat, the pressure along the wall will be lower than the pressure along

the centerline. The pressure profile as a function of distance is shown

schematically in the dotted line of Figure 10.4. While a more detailed

calculation would be required to quantitatively describe the difference,

the qualitative result that pressure must increase as we move outward

along a radius of curvature is sufficient to explain the basic effect we

would see in experiment.
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10.4 Vorticity

This section is going to rely on a fair amount of vector calculus and

identities. If you do not remember all these identities, then don’t get

too worried. Try to follow the derivation, but focus on understanding

the consequences. First let’s restate that vorticity is a vector defined as

the curl of the velocity,

ω = ∇× v. (10.5)

Vorticity is a measure of solid body rotation of a fluid particle. Note

that flow can go in a circle, and still have no vorticity. A Ferris Wheel

is an example of a circular flow where the fluid particle (i.e. you) does

not undergo solid body rotation. You face the same direction as the

wheel spins. On a Merry-Go-Round, you the fluid particle, certainly

are rotating which is why you get very dizzy. In a fluid, water waves

is an example where fluid traces a circular path as a wave passes over,

however the fluid particles do not undergo solid body rotation (i.e. the

vorticity is zero).

You can construct a simple vorticity meter. You only need a little

paddlewheel that is free to spin on an axle. If you stick a paddlewheel in

a flow and it spins, then there is a component of vorticity pointing along

the wheel’s axis of rotation. If you move the paddlewheel’s orientation

around until it spins the fastest, then that would be the axis along

which the vorticity vector points.

The total vorticity over an area can be related to the velocity field

using another vector calculus theorem, Stokes’s Theorem. This theorem

says,

Γ =

∮
v · tdl =

∫
(∇× v) · ndS. (10.6)

This theorem says that if I integrate the tangential velocity (t is the

tangent vector of the curve) around some arbitrary closed loop, where

the line element length is dl, this quantity must equal the net vorticity

flux coming through the area. The value of the integral is defined as

a property, the circulation Γ. The circulation tells you if the fluid is,

well, circulating. Stoke’s theorem is a general vector calculus theorem

for any vector, but here I have written it in the language of velocity

and vorticity.

You should look up a weather map for a Northern Hemisphere At-
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lantic hurricane which has wind vectors drawn on it. You will notice

the vectors show the winds going in a circle in the counterclockwise

direction. To estimate the circulation, draw an arbitrary circle which

roughly follows the winds. To estimate the magnitude of the circulation

simply estimate the average wind speed on your circle, and multiply

that speed by the circumference. To compute the circulation more ac-

curately you could break your circle into little pieces to account for the

fact that the wind speeds will vary around the circle. Adding up these

little pieces is the approximation of the integral in the formal definition.

Now let us derive an equation for the vorticity. Lets take the curl of

Euler’s momentum equation in constant density, incompressible flow,

ρ∇×
[(

∂v

∂t
+ v · ∇v

)
= −∇(P + ρgz)

]
. (10.7)

Now we need to recall our vector calculus identities. You might re-

member that the curl of the gradient of something is zero. If you don’t

believe this, you could carry out the operation for each component to

find out. There are also identities that allow us to expand the ”v dot

grad v term”.

∂ω

∂t
+ v · ∇ω − ω · ∇v = 0 (10.8)

which is the same as
Dω

Dt
= ω · ∇v. (10.9)

What is interesting is that the pressure and gravity have disappeared.

Vorticity is a measure of solid body rotation and pressure and grav-

ity act through the fluid particles center of mass in constant density

flows, thus they can not change the rotation. If there are density gradi-

ents in the fluid, then these can couple with gravity to create vorticity.

This mechanism of vorticity production is common in oceanic and at-

mospheric flows. Now lets turn to trying to interpret these equations

starting with a simple example of 2D flow, remembering the restriction

that we have assume inviscid flow.

10.4.1 2D flows

Lets restrict our analysis to 2D flows to make things a little easier.

First of all in a 2D flow, velocity only has components in u and v and
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Γ=0

Figure 10.5 Drag a spoon slowly through a bowl of water. You will
see two vortices form behind the behind of opposite sign but equal
strength. The two vortices will cancel each other such that the total
circulation around the outer dashed contour is zero.

gradients in x and y. Vorticity in a 2D flow only has a component in

the z direction; v = [u v 0]; ω = [0 0 ωz]. Thus the term in Equation

10.9 on the right hand side is zero since the vectors are not in the same

plane. In a 2D flow,

Dω

Dt
= 0 in 2D flows.

This equation states that vorticity is a material property. Whatever

vorticity the fluid particle has initially, it retains that amount and then

simply goes with the flow. Since the vorticity for a fluid particle is

conserved, if we draw a loop which is a material loop (a massless,

strechable string with no elasticity that can go with the flow), the

vorticity inside that loop is the same for all time. Thus the integral of

the vorticity or the circulation is constant,

DΓ

Dt
= 0 around a closed material loop.

This statement is known as Kelvin’s circulation theorem. It is an inter-

esting theorem and is more a general theorem than the simple argument

I made here. A formal proof of the theorem would show that the the-

orem is valid if Euler’s equations hold along the contour around which

the circulation is calculated. Thus, there can be viscosity inside the

closed loop. The theorem also holds in three dimensions.

So how does this theorem manifest itself? Try the following experi-

ment. Take a bowl of water and sprinkle some tracer particles in the

water; fine black pepper works well. Take a spoon and give the sur-
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face of the fluid a little flick. You should see two vortices generated.

They will be of opposite spin and propagate themselves for a bit before

decaying away. Now, imagine you draw your loop to calculate the cir-

culation around the spoon and far away from it. Since everything is at

rest intially, the circulation is zero. Now you flick the spoon and create

your vortices. So even though viscosity has done something inside the

loop (we could not create the vortices without it), the circulation the-

orem still applies far away from the loop. So the circulation is still zero

even though there is vorticity inside the loop. The circulation theorem

states that the circulation is zero and remains so. This means that the

positive and negative vorticity you generated must cancel each other

out via the definition of circulation as the vorticity integrated over the

area (via Stokes’s theorem). In this experiment you get two vortices of

equal strength and equal size, such that the total integrated vorticity

is zero. The theorem tells you nothing of the vortices decay, just that

the total circulation should always be zero.

You may have noticed that the equal sized but oppositely signed

vortices propagate themselves in a straight line. This behavior can be

understood by using an ideal vortex which is a solution to Euler’s equa-

tion. The ideal vortex has a velocity field given as

vθ(r) =
Γ

2πr

This velocity field is provided in cylindrical coordinates, thus the flow

is in the θ direction but only depends on r. This velocity field can be

plugged into Euler’s equation and would be found to be an acceptable

solution. It is easy to show that the circulation of this vortex is∫ 2π

0

vθ(r)rdθ =

∫ 2π

0

Γ

2πr
rdθ =

∫ 2π

0

Γ

2π
dθ = Γ.

The circulation is a constant regardless of the radius of the circle we

choose to perform our calculation along. The vorticity, which only has

a component in the z direction is,

ωz =
1

r

∂rvθ
∂r

=
1

r

∂

∂r

Γ

2π
= 0

zero everywhere, except at the origin where it is undefined.

Now consider two vortices of equal circulation but opposite sign, sep-

arated by some distance, Figure 10.6. One vortex will induce a velocity
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Image vortices
Solid 
wall

Figure 10.6 Motion of two ideal vortices of opposite sign approach-
ing a wall. The velocity field of each vortex propagates the other.
As the vortices approach the wall, the introduction of an imagined
image vortex can meet the boundary condition at the wall of no flow
penetrating the surface. As the four vortices approach the wall, the
induced velocity fields cause then to spread apart.

field that will push the other forward. Since the vortices just move with

the fluid, that is what Dω/Dt = 0 says, then you can think about the

velocity of one vortex simply acting to move the other. Since the vor-

tices are the same strength they push each other in a straight line. If

you created two vortices of equal strength but the same direction of the

spin, the two vortices would orbit each other in a circle.

Now repeat your experiment with the spoon near the wall of your

bowl. You should be able to see that the vortices propagate themselves

to the wall, and then spread apart as they approach the wall. This

can be understood by imagining a set of image vortices on the other

side of the wall. These image vortices don’t really exist, but you should

be able to convince yourself with symmetry arguments that the flow

generated by the image vortices will always cancel the real vortices such

that there is no velocity penetrating the wall. The flow on the left side

of Figure 10.6 where the real vortices exist is the same whether there

was the wall or the set of symmetric image vortices. Figuring out the

qualitative flow is easier by visualizing the image vortices. Now as the

four vortices approach the wall, you can see that the image vortices

push each other outward if you consider the action of each vortex on

the other.
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10.4.2 3D flows

In 3D, the above analysis just gets a little more complicated. First of all,

the circulation theorem remains, so without proof we will simply state

that in 3D the circulation is constant around a material loop. However,

simple applications of the circulation theorem (at least in this course)

are usually simple 2D approximations to give us some qualitative un-

derstanding of the flow.

The vorticity equation in 3D is,

Dω

Dt
= ω · ∇v.

and has a non-zero term on the right hand side. Vorticity for a material

point is not constant in 3D as there is an extra term in the equation.

This extra term accounts for things which cannot occur in a 2D flow.

One effect is vortex stretching. If a vortex is stretched out by a flow,

it intensifies, just like an ice skater speeding up as they pull their arms

in. If a vortex is squashed, the vorticity decreases. The stretching of

the vortex can be see in any bathtub drain. The vortex gets intensified

as it stretches down the drain. Another easy experiment to see vortex

stretching is to take a soda bottle and fill it with water. Turn it upside

down over the sink and as it is glugging, give it a strong swirl by hand.

You will set up a vortex that will be intensified as it is stretched and

pulled down out of the bottle. There are also effects that occur due

to vortex tilting. Tilting a vortex line can change a particles rotation.

This effect would be analogous to the physics demo where the instructor

takes a spinning bicycle wheel and tilts it while sitting on a stool which

is free to rotate.

In vortex dynamics we refer to vortex lines and tubes. A vortex line is

one which follows the vorticity vector, like a stream line. It would be the

axis of a tornado. A vortex tube would be a collection of vortex lines and

the vorticity vector is everywhere parallel to the surface of the vortex

tube. In 3D there are three laws of vortex motion that were derived by

Helmholtz in 1858. These laws are good for the approximations we have

been dealing with - inviscid and constant density. Helmholtz’s laws are

(Saffman (1992)).

• Fluid particles initially free of vorticity remain free of vorticity.

• Vortex lines and tubes move with the fluid.
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• The strength of a vortex tube does not vary with time.

Due to the definition of vorticity as the curl of the velocity, it true that

∇ · ω = 0 since the divergence of the curl of any vector is zero (you

should quickly see if you can prove this fact to yourself). Since vorticity

is divergence free, then a vortex tube must have constant strength along

its length. While this last statement might not sound obvious, the proof

is precisely the same as showing that the total volumetric flow rate

through a pipe of varying cross section area must be the same at every

cross section if the flow is incompressible. If a flow is incompressible,

∇ · v = 0. The walls of the pipe are like the walls of the vortex tube

- since by definition there is no vorticity normal to the surface of the

vortex tube. At every cross section of the tube the total flux of vorticity,∫
ω·n, is a constant just like in a pipe

∫
v·n is a constant. If the strength

of the vortex tube is constant everywhere along the length, then vortex

tubes must either close on themsleves (i.e. a smoke ring), go to infinity,

or end on solid boundaries. An example of vortex tubes are the long

white contrails seen behind airplanes on clear days when the weather

conditions are right. The two long white streaks are intense vortex

tubes which extend far across the sky. If you observe these streaks

closely you will notice that some distance away from the plane, the

individual tubes start developing a wavy character. These waves are

due to a fluid instability known as the Crow instability. Notice that

as the amplitude of the waviness increases the two tubes will interact,

cross, reconnect, and form a series of vortex loops. These circles are now

closed vortex tubes. How well you can make these observations depends

on the weather as the level of atmospheric turbulence can disrupt the

vortex visualization.

10.5 Irrotational flow

In a 2D flow we said that the vorticity equation says that Dω/Dt = 0,

the vorticity remains constant from a material point of view. Thus, if a

flow starts with no vorticity, none can be created. This statement was

Helmholtz’s first vortex law. You need viscosity to create and destroy

vorticity, thus you can’t make vorticity with Euler’s equations. You can

also see by the general 3D version of the vorticity equation, that if the
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flow has zero vorticity initially, none can be created. Therefore, it is

common when dealing with Euler’s equations to consider irrotational

flow, that is a flow where ω = 0 everywhere.

If the flow has no vorticity, then you might remember a trick used

in electrostatics. The curl of the gradient of a scalar function is always

zero, this statement is an identity from vector calculus. Therefore, if

the flow has no vorticity (curl), then we can define a velocity potential,

v = ∇φ,

which is 100% analogous to the electric potential used in electrostatics.

If we can define a velocity potential, then conservation of mass ∇·v = 0

yields

∇2φ = 0.

This equation is known as Laplace’s equation. At a solid surface we

would have the boundary condition that ∇φ · n = 0 which says that

the flow cannot penetrate the surface; v ·n = 0. This equation is really

easy to solve, especially numerically if you have a complicated geome-

try. Once you have the velocity you can easily calculate the pressure,

especially in a steady flow. If you go back to our derivation of Bernoulli,

you will find that we wrote the momentum equation in the following

form,

ρv × ω = −∇
(

1

2
ρv2 + P + ρgz

)
.

If the vorticity is zero, then it is clear that the left hand side is zero.

Therefore, in an irrotational flow Bernoulli’s equation holds everywhere,

not just along a streamline. Therefore,

1

2
ρv2 + P + ρgz = constant everywhere for irrotational flow.

So in irrotational flow, you solve Laplace’s and then plug the velocity

field into Bernoulli’s equation to solve for the pressure. This is a very

simple theory which is quite amenable to solution, which is in contrast

to the money you would earn for a general solution to the Navier-

Stokes equations. However, the utility of irrotational flow is quite lim-

ited. There are a number of good books that are filled with solutions to

potential flow and a number of good online calculators that will solve
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potential flow problems for you. Potential flow finds a few niche appli-

cations, can many times (especially in aerospace applications) provide

a good qualitative picture of the flow and the theory is extremely im-

portant in the history of the development of the field of fluid dynamics.

However, the practical utility of potential flow is limited.

10.6 Lift on an airfoil

Euler’s equations can be used to predict lift forces on an airfoil. Eu-

ler’s equation, since it has no viscosity, cannot predict drag. Imagine

an airfoil with flow at uniform velocity coming at it. We can use our

equations for irrotational flow to solve this problem. We can assume the

flow is irrotational because imagine the airfoil is at rest. There is no

motion and thus no vorticity. Let’s accelerate our airfoil, and since this

is an Euler flow, we create no vorticity. The flow is irrotational and we

can then solve ∇2φ = 0 around the airfoil shape to obtain the steady

flow patterns. The solution would show that streamlines approach and

leave the airfoil at two points near the leading and trailing edge. How-

ever the flow does not match what we observe experimentally. The flow

experimentally, shows that the streamlines leave the body at the trail-

ing edge. The only way we can make the calculated and observed flow

match is that if we add a net circulation to the flow. This circulation

effectively moves the point where the streamlines connect with the solid

airfoil. The behavior with and without circulation is shown in Figure

10.7 for a flat plate airfoil.

This seems arbitrary? Why would there be net circulation? The

source of the circulation is subtle. Imagine we start an airfoil from

rest. We draw loop around the airfoil and since everything is at rest,

the circulation is zero. If we impulsively start an airfoil, we would see

that a vortex gets shed from the airfoil at the instant that it starts.

This is just like moving the spoon in the water. However, the circula-

tion theorem would tell us that the circulation around the loop is still

zero. Therefore, this starting vortex would need to be compensated by

some other circulation of opposite sign. This is the circulation around

the airfoil. When we impulsively start the airfoil, viscosity acts to move

the point where the streamline separates from the airfoil. In doing so,
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a) b)

Figure 10.7 A flat plate airfoil in potential flow. In (a) there is no
circulation and streamlines wrap around the rear of the airfoil. In
(b) there is circulation and the rear streamline leaves the airfoil at
the trailing edge.

vorticity is created and the counteracting circulation around the airfoil

must keep the net circulation at zero.

While the starting vortex shows that circulation must exist around

the airfoil, the idea that the circulation must exactly the amount that

moves the streamline to the trailing edge is not something that we can

prove. It is just a useful rule of thumb that turns out to work as long as

the airfoil is not at too steep of an angle of attack. This rule of thumb

is known as the Kutta condition. Once you know the flow field from

the solution of Euler’s equation, you can find the pressure from the

fact that in the absence of gravity effects Bernoulli holds everywhere,

P+ 1
2ρ(∇φ)2 = 1

2ρU
2
0 . Once you know the pressure, you you can find the

lift on the airfoil by integrating the pressure around the surface of the

airfoil and it turns out to actually agree pretty well with experiments.

For the same dimensional analysis arguments as with drag, when we

study lift we define the coefficient of lift in a similar way,

CL =
Force/width

1
2ρU

2`
,

where ` is the length of the airfoil (which must be precisely defined

for any shape that is not a flat plate). If we dig into the mathematical

theory of potential (or irrotational) flow, it turns out we don’t need a

computer to solve for the flow field around a flat plate inclined to the

flow. The analysis (which you can find in a number of books if you are
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-Γ Γ

Figure 10.8 Schematic of the starting vortex for an airfoil. The cir-
culation calculated around the outer oval must be zero, so the circu-
lation around the two inner loops must cancel each other out. The
airfoil must have circulation of the opposite sign as the starting vor-
tex. If the airfoil is suddenly stopped a vortex of the opposite sign as
the starting vortex is shed in order to maintain no net circulation.

interested) yields a surprisingly simple formula,

CL = 2π sinα,

where α is the angle the airfoil makes with the flow field, called the angle

of attack. This simple theoretical results compared to experimental

data is shown in Figure 10.9a. In the figure we see good agreement. At

higher angles we observe flow separation and a complex wake behind

the airfoil - the simple inviscid theory fails. At a high angle of attack,

flow separation can be so severe as to lead to stall.

You may have noticed that most planes you fly don’t have flat plates

for wings. In 1933 NACA (a predecessor of NASA) concluded a large

study of measuring lift and drag coefficients for numerous airfoil shapes.

A sample of that orignal data for a single airfoil is shown in Figure

10.9b. The figure shows the coefficient of lift, coefficient of drag, the

ratio of lift to drag (L/D), and the center of pressure (c.p.) as a function

of angle of attack. It might take a little study to read the plot. However,

if you look carefully you can see that the lift coefficient is well described

at modest angles of attack by the formula CL = 2π sin(α). Note that at

low angles of attack the drag coefficient is very small. The measurement

behavior is pretty close to what Euler equations predict; i.e. no drag.

It turns out that there is a mathematical tricks that allows us to

compute the full velocity field for different airfoil shapes in potential

flow. The trick allows us to transform the solution for flow around a

cylinder to flow around different airfoil shapes. Called conformal map-
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a) b)

Figure 10.9 a) Coefficient of lift from experiments for an inclined
flat plate compared to the single equation from irrotational flow
theory. Data from “Low speed airfoil data” by Williamson et al. b)
Lift and drag data from the original 1933 NACA study for a single
airfoil.

ping, if we have a mathematical expression to squish a cylinder to a

new shape, we can use the same expression to squish the solution too (I

am oversimplifying things of course). While conformal mapping is well

beyond what we would cover in a first course, it is interesting to note

that airfoil theory is one area where our potential flow solutions work

quite well and a fully analytical approach provides useful predictions.
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Boundary layers

The analysis of fluid flow via Euler’s equations seems relatively nice.

While we presented only a few highlights in this book you should have

gotten the impression that a number of problems could be readily solved

mathematically or computationally using Euler’s equations for incom-

pressible flow. So while we know viscosity is always with us, it is a small

force compared to the others in the problem in a number of applica-

tions. At the scale of humans, everything is high Reynolds number.

However, it has been observed for a long time that Euler’s equations

do an unusually bad job at making useful predictions. Euler’s equation

predicts no drag force, for example. It was not until the early 1900s

when Prandtl introduced the idea of the boundary layer, that people

began to appreciate why Euler’s equations were so poor and how to

rectify our understanding (Anderson (2005)).

If we have a high Reynolds number flow around a streamlined ob-

ject such as an airfoil, what is observed is that the fluid velocity just

away from the surface of the airfoil very closely matches the solution to

Euler’s equations. This part of the flow is not influenced by viscosity.

As we approach the surface, the flow velocity goes to zero because the

no-slip condition is obeyed. However, the size of this boundary layer is

extraordinarily thin. Flow over an airplane wing could have boundary

layers measured in the units of millimeters. Why should this thin region

play such a major role in determining flow? The answer is the topic of

this chapter.

We need to keep in mind all the forces at play in our problem. When

we looked at solutions to the Navier-Stokes equations we found we

could readily solve problems where there was no fluid acceleration - the
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balance was between viscosity and some driving force such as applied

pressure. When we discussed Bernoulli’s and Euler’s equation, we con-

sider the balance between pressure and acceleration. In this chapter we

will find that in many cases there is a complex interplay of fluid ac-

celeration, viscosity and pressure. While our analytical tools get more

complex as the flows do, all is not hopeless and there is a lot we can

do with simple problems.

11.1 Impulsively started plate

Let’s start with an idealized problem that has an analytical answer to

begin to explain this boundary layer. Imagine a flat plate that is infinite

in extent in the x direction. The plate and the fluid above it are initially

at rest at t = 0. The fluid above the plate extends to infinity. At t = 0,

the plate is impulsively started to move with a constant velocity U .

You should turn back to the chapter on Navier-Stokes solutions and

look at the problem of transient Couette flow. The stated problem here

is the same, only in the Couette flow the domain was bounded in the

y direction whereas here the domain extends infinitely in y. Since the

two problems are so similar, the development of the reduced form of

the Navier-Stokes is identical as transient Couette flow.

The reduced form of the Navier-Stokes in terms of the kinematic

viscosity, ν, is the 1D heat equation,

∂u

∂t
= ν

∂2u

∂y2
.

Recall that the kinematic viscosity plays the same role in this equation

as thermal diffusivity in the heat equation. We expect that the behavior

would be the same as applying an instantaneous change in temperature

to a semi-infinite solid.

We now want to make this equation dimensionless as we did with

Couette flow. We can set the velocity scale to ũ = u/U . However, what

should the time scale or spatial scale be? There is no natural geometric

length to scale length by. Our only choice is δ, the thickness of the fluid

region which is in motion. However this is an unknown scale. Using an
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arbitrary length ỹ = y/δ and t̃ = t/t0 would yield,

∂ũ

∂t̃
=
νt0
δ2

∂2ũ

∂ỹ2
.

This scaling indicates that the thickness of the region where the flow

transitions from the plate velocity, to being at rest grows with the

square root of time and depends on the kinematic viscosity of the fluid,

δ =
√
νt.

This scaling of the growth of the viscous layer what we expect for all

diffusion problems - in the boundary layer it is diffusion of momentum.

The scaling argument is confirmed by the analytical solution to this

problem, which we will not derive but has the form,

u(y, t)

U
=

(
1− erf

(
y

2
√
νt

))
.

where erf is known as the error function. If you are unfamiliar with

the error function, you can look up it’s definition and you will find

that most mathematical software will understand the definition and

generate a plot of the function for you. The dimensional solution is

shown in Figure 11.1. Since ν = 10−6 m2/s in water, you can see that

the length scale of the boundary layer is pretty small. If we pulled the

plate for an hour in water, the thickness of the boundary layer would

be 6 cm.

What is interesting about the analytical solution is that the solution

is a single function of a variable y/(2
√
νt) which mixes the spatial and

time dependence of the problem into a single variable. This feature is

called a similarity solution. Similarity solutions are common in diffusion

problems where there is no natural length scale. In this problem the

length scale for the problem is the boundary layer thickness,
√
νt, which

depends on time. What is interesting about the solution is that the

shape of the boundary layer remains the same, it just gets thicker and

thicker with time.

A somewhat obvious but crucial point here is that the boundary

layer will exist regardless of the smallness of viscosity, as long as it is

not zero. Unless you are working with liquid helium near zero kelvin

and approach an exotic state known as the superfluidity, all fluids have

some viscosity. So even if viscosity is small, the boundary layer still

exists. If I am close to the surface I cannot ignore viscosity.
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Figure 11.1 Solution to the problem of an impulsively started plate
at different instances in time. Here we set ν = 1. If the vertical axis
is plotted as y/(2

√
νt), then there is a single curve.

11.2 Boundary layer equations and laminar solution

Imagine flow over a stationary flat plate, a problem similar but different

from the previous section. The flow approaches the plate with uniform

flow velocity, U∞. The plate is flat and thus far from the plate we expect

the flow not to be disturbed. At the surface of the plate, the velocity

must go to zero due to the no-slip condition. What is observed is that

a boundary layer region grows from the leading edge of the plate. The

boundary layer is simply the transition region where the velocity goes

from zero at the plate surface to the free stream value. The schematic

of the observed boundary layer is shown in Figure 11.2.

If we go to dimensional analysis and the Pi Theorem to ask what

is the boundary layer thickness, δ, at the end of a plate of length L.

The boundary layer thickness δ could then depend upon variables L,

U∞, µ and ρ. The Pi Theorem would tell us that there are 5 variables

expressed in 3 dimensions so there should be only two dimensionless

parameters. The dimensional analysis would yield,

δ

L
= f (Re)

where the Reynolds number based on the plate length isReL = ρU∞L/µ.
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U∞ U∞

Boundary
Layer δ

Figure 11.2 Schematic of the laminar boundary layer which develops
as a uniform flow approaches a flat plate.

The boundary layer thickness can only depend upon the plate Reynolds

number.

We could estimate the dependence by a simple argument using the

solution to the impulsively started plate, δ ∼
√
νt. In the boundary

layer problem, there is no time. At a given downstream location, the

“time” is the time it takes fluid to reach that point, i.e. t ∼ L/U∞.

δ ∼
√
νt ∼

√
νL

U∞
.

In terms of the Reynolds number this equation can be rewritten as

δ

L
∼
√

ν

U∞L
∼
√

1

Re
.

Since the flow progresses downstream, we the argument above works

for any x location. Thus we might expect,

δ

x
∼
√

ν

U∞x
∼
√

1

Rex
,

where we use the Reynolds number based on the x location. This scaling

suggests that the boundary layer thickness grows as the square root

of the distance down the plate. To get a sense of scale, lets take air

ν = 10−6 flowing at U∞ = 1 m/s over a 1 m length plate. The boundary

layer would be 1 mm. If the velocity were increased to 100 m/s (an

airplane taking off), the boundary layer thickness would be 100 microns.

The shear stress on the plate due to viscosity can also be estimated.

For a Newtonian fluid, you can look back at the previous chapter and
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see that the shear stress (tangential to the surface) is τ = µ∂u/∂y. The

stress is given by the velocity gradient at the surface. The shear stress

would be approximately,

τ(x) = µ
∂u

∂y
∼ µU∞

δ
∼ µ U∞

xδ/x
∼ µU∞

x

√
Rex

Making an analogy with drag, we would follow dimensional analysis to

define the coefficient of friction as,

Cf =
τ(x)

ρU2
∞/2

.

Using the estimate we have already obtain for τ we have an estimate

for the scaling of the coefficient of friction,

Cf ∼
µU∞

xρU2
∞/2

√
Rex ∼

2µ

xρU∞

√
Rex ∼

√
1

Rex
.

This simple estimate predicts that the shear stress should be highest

near the leading edge of the plate and continually decrease with down-

stream distance. The total drag force, F , for a plate of length L, is then

calculated from F =
∫
τ(x)dx. The total drag coefficient is thus given

as,

CD =
F

LρU2
∞/2

∼ 1√
ReL

.

From such simple arguments we have no way to compute what the

pre-factors in these estimates might be. However, we find that we can

get the basic scaling and qualitative behavior for the laminar boundary

layer.

11.2.1 Full solution to the boundary layer

The full boundary layer problem over a flat plate has a mathematical

solution. This solution makes use of the fact that δ/x is usually a pretty

small number. The basic idea is that when there is a vast difference in

scales, one can make the equations dimensionless using the different

scales. So we will scale the x coordinate by the length of the plate, L,

and the y direction is scaled by δ =
√

νL
U∞

. We will also use different

scales for the u and v velocities; ũ = u/U∞ and ṽ = v/V0.
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U∞ U∞

δ

L

V

Figure 11.3 Schematic of control volume for the boundary layer
problem. The flow into the left side of the control exits from the
right side with a deficit on the order of U∞δ. The extra flow that
came through the left side must exit the upper surface of the control
volume. The magnitude of this flow is on the order of V0L.

Conservation of mass gives.

U∞
L

∂ũ

∂x̃
+
V0

δ

∂ṽ

∂ỹ
= 0

This equation implies that V0 = U∞δ/L would be a good choice. This

scaling implies that the vertical velocities are less than the horizontal

velocities by a factor of δ/L. If you think about this comment for a

minute, it should make some physical sense to you. The schematic in

Figure 11.3 shows a control volume picture of the scaling.

Applying this scaling for V0 and making the equation dimensionless

would yield,(
ũ
∂ũ

∂x̃
+ ṽ

∂ũ

∂ỹ

)
= −∂P̃

∂x̃
+

µ

ρU∞L

(
δ2

L2

∂2ũ

∂x̃2
+
∂2ũ

∂ỹ2

)
and

δ2

L2

(
ũ
∂ṽ

∂x̃
+ ṽ

∂ṽ

∂ỹ

)
= −∂P̃

∂ỹ
+
δ2

L2

µ

ρU∞L

(
δ2

L2

∂2ṽ

∂x̃2
+
∂2ṽ

∂ỹ2

)
.

Since δ/L is a small number and we have scaled all the partial derivative

terms in our equation to be on the order of magnitude of 1, we can take

the perhaps somewhat uncomfortable step of removing all terms with

small numbers out in front. This step seems odd the first time you see

it. However, it is pretty standard practice. It is a logical thing to do.
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We have supposedly scaled all the partial derivatives in the equation

to be on the order of 1. Thus the terms with (δ/L)2 simply go away

because they are small. Taking this leap of faith provides the boundary

layer equations,

ũ
∂ũ

∂x̃
+ ṽ

∂ũ

∂ỹ
= −∂P̃

∂x̃
+

1

Re

∂2ũ

∂ỹ2
(11.1)

and

0 =
∂P̃

∂ỹ
. (11.2)

The second equation simply states that the pressure across the bound-

ary layer is a constant. The fact that the pressure across the boundary

is constant is really useful. What you can do, in practice, is solve Eu-

ler’s equations for flow around your object. This solution gives you the

pressure at the surface of the object. You can assume that since the

boundary layer is so thin that the pressure at the surface of the ob-

ject and the pressure at the edge of the boundary layer would be the

same. Thus, you get the pressure and ∂P̃
∂x̃ from the solution to Euler’s

equation, and then use the now known pressure gradient to solve the

boundary layer equations, Equation 11.1.

In the flat plate problem, the pressure “far away” from the plate (in

units of δ) is just a constant and there is no pressure gradient. Thus,

our final boundary layer equations for the two components of velocity

are,

ũ
∂ũ

∂x̃
+ ṽ

∂ũ

∂ỹ
=

1

Re

∂2ũ

∂ỹ2

∂ũ

∂x̃
+
∂ṽ

∂ỹ
= 0

The boundary layer equations describe a balance between viscosity and

fluid acceleration.

There is a mathematical solution to this flat-plate problem, and we

will skip the details and only show the result. The analytical solution

is not really a closed form answer. The mathematical solution simply

transforms this partial differential equation into an equivalent ordinary

differential equation. This ODE still needs to be solved numerically.

The solution to the velocity profile is shown in Figure 11.4.

Once the boundary layer equations are solved numerically, you can
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Figure 11.4 Solution to the laminar boundary layer problem over a
flat plate. The figure shows the universal velocity profile near the

plate. The y axis variable is y
√

U∞
xν

.

calculate everything you want to know about the boundary layer. The

thickness, defined as the distance when the velocity field is 99 % of the

free stream is,

δ

x
=

5√
Rex

.

The factor of 5 comes from the solution, but the form was acquired

through dimensional arguments. The shear stress vector at a point in

a 2D flow is given by n ·T. We can evaluate the stress at the point to

be in dimensionless terms,

Cf =
τ(x)

ρU2
∞/2

=
0.664√

Rex
,

where Cf is known as the coefficient of friction. The total drag force

(per unit width) is thus given as,

CD =
F

LρU2
∞/2

=
1.328√

ReL
.

The numerical values come from the calculated numerical solution. The

really important point is that the basic scaling of the answer comes from

consideration of dimensional analysis and some physical arguments.
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11.3 Turbulent boundary layers

Any flow at high Reynolds number is subject to becoming unstable

and turbulent. If the boundary layer has become turbulent, there is

no mathematical solution to the problem and the laminar solution is

invalid. There is an extraordinary amount of theoretical, experimental,

and numerical work on the problem of the turbulent boundary layer.

The reason for all the interest is that the problem is important. Tur-

bulent boundary layers are seen in many applications and they play

a strong role in determining drag on boats, planes, and cars and thus

determines the energy use and efficiency of transportation. Boundary

layers also occur in the atmosphere and play a strong role in deter-

mining the weather and climate. It is difficult in a short introduction

like this to convey the importance of the turbulent boundary layer on

many problems of practical importance. There is no way I can ade-

quately convey both the amount that is known and unknown about

turbulent boundary layers.

The rule of thumb is that for a flat plate, the local Reynolds number,

Rex = ρUx/µ should be

Rex < 105 for laminar boundary layers.

In this definition, the local Reynolds number increases with distance

down the plate. Thus all boundary layers start laminar. For a sense of

scale, a 1 m/s flow in water would go turbulent around 10 cm from the

leading edge. The criterion for laminar flow is not an exact number.

It is a rule of thumb. The exact location of turbulence can be very

difficult to predict and is very sporadic, just like we have discussed in

other applications such as pipe flow. The exact location depends upon

whether an experiment is carefully done to remove all perturbations or

whether we are in a ”real world” application. For a carefully conducted

experiment where the upstream flow is very stable and you are careful

to make a perfectly smooth plate, the transition to turbulence occurs

at a higher Reynolds number.

Once the boundary layer is turbulent, we make use of the fact that

dimensional analysis tells us that

δ

x
= f (Rex) .

Thus a small number of experiments can provide an empirical solu-
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tion to the boundary layer thickness. Empirical fits to the data given

boundary layer thickness as,

δ

x
=

0.37

Re1/5
x

,

and the coefficient of friction as

Cf =
0.0592

Re1/5
x

.

These are not fundamental laws and there is no mathematical deriva-

tion, the expressions just fit the data well. Notice that the growth of

the layer with distance down the plate is

δ ∼ x4/5

which is much more rapidly than with the laminar boundary layer.

The turbulent velocity profile is thicker, but much blunter than the

laminar one. The random turbulent eddies pull high momentum fluid

from the free stream and bring it close to the solid surface. The viscous

drag is much higher in turbulent flow due to the steep velocity gradients

at the surface. The high momentum fluid sits closer to the plate as

shown in Figure 11.5a. So while the turbulent layer is thicker than the

laminar one, the velocity gradient at he surface is much steeper. The

boundary layer thickness as a function of distance down the plate are

shown in Figure 11.5b. There is a jump at Re = 105 in the two solutions.

In reality, there is not a jump but a transition regime from one solution

to the other. The thickness of the boundary layer rapidly expands when

the boundary layer becomes turbulent. Because the velocity gradient on

the blunt turbulent velocity profile is greater than the laminar one, the

shear stress at the solid surface is greater for the turbulent boundary

layer.

11.4 Boundary layer separation

Now consider 2D flow over a cylinder. Euler’s equations would predict

streamlines that approach and leave the centerline. The flow would

have fore-aft symmetry as shown in Figure 11.6a. This is not what is

observed. What is observed is an increasingly complicated asymme-

try. The asymmetry starts with the flow behind the cylinder to have
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a) b)

Figure 11.5 a) Experimental data for a turbulent boundary layer
in air. The data is openly provided by Princeton University Gas
Dynamics lab. Note the very steep velocity gradient at the plate
surface b) Boundary layer thickness as a function of distance down
the plate from the empirical correlations. The jump from the lower
laminar solution to the upper turbulent one would occur around the
location of the vertical line. For x < 0.05 we observe the laminar
boundary layer solution, for x > 0.05 m we observe the turbulent
one. In reality the transition happens over some distance and is not
a vertical jump.

some small vortices or recirculation. As the flow speed is increased,

an increasingly complicated structure of the wake emerges. What we

are seeing in the complex wake is a phenomena called boundary layer

separation.

The boundary layer equations derived in the previous section provide

a useful and practical way to calculate the flow using Euler’s equations

and the boundary layer equations. The basic idea is that you solve Eu-

ler’s equation for an arbitrary shaped object. This solution provides

the pressure everywhere along the surface. Since the pressure is con-

stant across the boundary layer, Euler’s equation provides ∂P/∂x in

the boundary layer equation.

Let’s apply this idea to flow over a cylinder. If we think about the

pressure, Bernoulli’s (Euler) equation would tell us that the pressure at

the stagnation point at the front side of the cylinder would be greater

than the ambient pressure by an amount 1
2ρU

2. Since the flow is sym-

metric by Euler’s equation, the pressure at the rear stagnation point

is also higher than the ambient. At the top and bottom of our cylin-

der, the pressure is low. The velocity will speed up to scoot around the

cylinder. Thus the pressure at the top and bottom are low. The pres-

sure along the surface of the cylinder as predicted by Euler’s equations
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a) b)

Figure 11.6 a) Streamlines for irrotational, inviscid flow over a cylin-
der. b) The pressure along the surface of the cylinder as a function
of angle. The data are plotted as the coefficient of pressure which is
defined as Cp = P−P∞

1
2
ρU2
∞

. The pressure at the forward and rear stag-

nation points is higher than the ambient pressure while the pressure
at the top of the sphere is the lowest. The forward and rear stagna-
tion points are at 0 and π.

are shown in Figure 11.6. The pressure distribution as predicted by the

equations follows our simple qualitative picture.

As flow reaches the front of the cylinder and moves toward the top,

the pressure gradient in the boundary layer, dP/dx, is such that the

flow is going from a region of high to low pressure. We saw the pressure

gradient is favorable in that it is pushing with the direction of flow. As

the flow proceeds from the top of the cylinder toward the rear stagna-

tion point, the pressure is increasing with the flow direction. We saw the

pressure gradient is adverse as it pushes against the flow. When solving

Euler’s equation this adverse pressure gradient is perfectly balanced by

the momentum of the fluid; the pressure gradient slows the fluid down.

However, the fluid near the surface of the cylinder, inside the boundary

layer, is deprived of its momentum due to the viscous boundary layer.

The adverse pressure gradient pushes back on the fluid in the boundary

layer and the fluid in this region has insufficient momentum to over-

come the adverse pressure gradient. This adverse pressure gradient can

cause reverse flow in the boundary layer on the back side of the cylin-

der. This reverse flow is unstable and creates what is called boundary

layer separation. This separation can be seen in the experimental image

in Figure 11.7.
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Figure 11.7 Boundary layer separation for flow over a cylinder
(From Album of Fluid Motion). The Reynolds number is 26. For
Reynolds numbers less than 1, the flow shows fore-aft symmetry.

11.5 Observations of drag on a sphere

Lets reconsider the problem of drag on a sphere moving at constant

speed. In theory we can solve the Navier-Stokes equations to obtain

the velocity field and pressure at every point. In practice we can create

the solution numerically using CFD software. Once the velocity and

pressure is known, we can compute the net force on the sphere by

integrating the stress vector around the surface of the sphere. The stress

vector is the dot product of the normal vector and the stress tensor,

n ·T. The force is found by the the surface integral of the stress,

F =

∫
n · (P + µ(∇v + (∇v)T ))dS

Note that the total force has a contribution from pressure and viscous

stresses - distinguishing between these two forces will be important to

our understanding soon. From dimensional analysis, we know that the

drag force is expressed as the drag coefficient which is only a function

of the Reynolds number

F
1
2ρU

2
0πR

2
= Cd(Re).

Knowing that there is some functional relationship for the drag coef-
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Figure 11.8 Drag coefficient as a function of Reynolds number for
flow around a sphere.

ficient as a function of Reynolds number allows us to collapse experi-

mental results for all sphere sizes at all velocities and in all fluids onto

a single master curve, Figure 11.8.

Now that we know a little bit about boundary layers, let’s look more

closely at the data in Figure 11.8. At low Reynolds number there is an

analytical solution which provides CD = 24/Re - a solution supported

by the experiments. As the Reynolds number is increased, the drag co-

efficient limits to a constant of approximately 0.4. The low Reynolds

number solution is lost once boundary layer separation begins to set

in. These two behaviors were previously explained as the transition

from viscosity dominated flow to inertia (or density) dominated flow.

As the Reynolds number is further increased about 105, the drag co-

efficient goes through a sudden decrease. This dip is very unexpected.

We might think that as the flow increases, the boundary layer would

eventually become turbulent and the drag should go up. Why did it

instead decrease?

The reason is that the total drag on the sphere is given by pressure

drag and friction (or viscous drag) along the surface. You already know

about different types of drag, even if you don’t know that you do.

Next time you are in the car, put your hand out the window. Turn

it horizontal with the ground and then turn it so it is vertical to the

ground. Feel the difference? The difference you feel is pressure and

friction. On a flat plate (your horizontal hand), there is only friction at
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the surface due to the velocity gradient. The shear stress at the surface

depends upon the viscosity of the fluid. On a sphere, the stress vector

at a point is given by the velocity gradient at the surface and the local

pressure. In Euler’s equation the pressure on the surface of the sphere

is symmetric, thus the net force due to pressure is zero. If we watch the

experimental streamlines at high Reynolds number where the boundary

layer around the sphere is still laminar but strong separation sets in, we

would see the streamlines move around the sphere, but do not recover

on the other side. If we measured the pressure on the surface we find

strong asymmetry when there is flow separation. Thus pressure at the

forward stagnation point is greater than the ambient by ρU2/2. On the

back side of the sphere, the wake is relatively quiet. If we look at the

streamlines at the top or bottom of the sphere, they would be straight

and thus the pressure would be the ambient. Thus the pressure in the

wake should be something close to the ambient pressure. Therefore, very

crudely, the force acting on the front half of the sphere due to pressure

is 1
2ρU

2πr2. The force in the back half is zero. Thus the net force due

to pressure drag is on the order of 1
2ρU

2πr2. Thus the drag coefficient

is about 1. Pressure drag dominates over friction at the surface in this

regime.

However, we said that separation occurs because momentum is de-

prived from the fluid in the boundary layer. When the boundary layer

becomes turbulent, the velocity profile gets blunter. The transition from

zero velocity at the wall to the free stream value occurs over an even

smaller distance than the laminar case. Thus, high momentum fluid is

even closer to the wall. The high momentum fluid near the wall allows

the turbulent boundary layer to push into the adverse pressure gradient

further than the laminar counterpart. Separation is delayed and occurs

further down the back of the sphere. This effect can be seen in the

experimental images in Figure 11.9. The low pressure wake acts over

a smaller area when the boundary layer is turbulent rather than lami-

nar. Pressure drag is decreased when the boundary layer is turbulent.

So even though the steeper velocity gradients in a turbulent flow in-

crease the friction at the surface, the net drag is dominated by pressure

drag and thus the overall drag force (coefficient) decreased when the

boundary layer becomes turbulent. The pressure drag is reduced due

to the delayed separation. Since the pressure drag dominates over the
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Figure 11.9 Boundary layer separation for a laminar (upper picture)
and turbulent (lower picture) boundary layer. The delay of separa-
tion is clearly seen in the case of the turbulent boundary layer.

viscous drag, the net effect is that the turbulent boundary layer has

lower overall drag.

The role of boundary turbulence in reducing drag is the reason for

dimples on golf balls. The irregular surface induces turbulence to occur

at lower Reynolds number than a smooth sphere. The turbulent bound-

ary layer delays separation and the golf ball goes further. Imperfections

on the surface of a sphere and its effect on tripping the boundary layer

into a turbulent state can help explain why curveballs curve in baseball.
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Turbulence

As we have repeatedly stated, the equations of fluid dynamics are non-

linear and challenging to solve. One of the key challenges is that many

of the engineering flows we are interested in are high Reynolds number,

and thus turbulent. Over the past century there have been countless

researchers who have devoted their careers to trying to “solve” the

turbulence problem. The first studies of turbulence are often credited

to Leonardo Da Vinci, who has a number of sketches of turbulent flows

in his work. Nobel physicist Richard Feynman called turbulence one of

the most important unsolved problems of classical physics. Even with

all this effort there are perhaps even more questions than answers. I do

not mean to say that because the problem is not ”solved” everything

is hopeless and unknown. There have been many modern experimental

and theoretical advances in physics, mathematics, and engineering that

have come as the result of all this effort. I simply want to stress that

this is a very complicated topic and my treatment in a short chapter is

going to be embarrassingly incomplete. There are a few concepts you

should know, that is the point of this chapter.

12.1 Can we simulate turbulence?

There is nothing about turbulence that is not embodied in the Navier-

Stokes equations. In theory we could just get a computer to solve the

Navier Stokes equations numerically and solve for all the details. This

approach is called Direct Numerical Simulation (DNS) and it is feasible

if the Reynolds number is not too large. However, turbulence can chal-
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lenge the fastest supercomputers and we can quickly exceed the limits

of the worlds fastest computers. For many problems, the solutions span

too many orders of magnitude in time and space to be resolved. Fur-

ther, the outlook is such that for many important problems waiting for

computers to get faster doesn’t seem like a good prospect for the near

future, even if Moore’s law continues to hold.

The problem is that scaling arguments show that the total amount

of computational effort to solve a 3D turbulent flow scales very poorly

with Reynolds number. The total amount of computational effort scales

as

total computing power ∼ Re3.

To get one order of magnitude increase in Reynolds number we need

1000 times the computing power. If you look at curves of supercom-

puter performance over the years, we historically get about a factor of

1000 improvement over 10 years. A similar though perhaps a bit slower

time scale holds for desktop computers. This fact is actually quite re-

markable, making things that were cutting edge when I was a graduate

student trivial for today’s computers. However, for something like at-

mospheric flows we are perhaps 10 orders of magnitude in Reynolds

number or more off in what we can calculate and what we would like.

In Figure 12.1 is an image of a water jet at relatively low Reynolds

number, yet the complexity and diverse length scales are readily ap-

parent. Even by the most optimistic estimates it will be at least several

decades before a full DNS of the atmosphere scale is feasible.

You might be tempted to simply truncate the size a DNS and solve

for only the large features. If you are interested in the dominant features

of the climate do you really need to resolve everything? If we are trying

to model the weather, can’t we make the grid scale on the order of

several miles such that we don’t capture every detail but the dominant

motions? The reason you cannot simply truncate the simulation is due

to the energy cascade, which we now explain.

12.2 Kolmogorov theory and the energy cascade

If we consider homogeneous turbulence, turbulence that is the same

in all directions like a big box of shaken up fluid, we can make some
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Figure 12.1 Experimental image from a water jet at Reynolds num-
ber ∼ 2000. Even at this Reynolds number, the complexity in the
number of length scales seen in the flow is striking. From Album of
Fluid Motion.

progress by considering only dimensional analysis and a simple model.

This analysis put forth by Kolmogorov in 1941 remains a centerpiece

of turbulence theory.

The classic picture of turbulence is that of the energy cascade. The

flow is considered to consist of a number of turbulent eddies of different

sizes. The model is that the largest eddies split into smaller eddies,

which split into smaller eddies, which split into even smaller eddies.

Every time the eddies split the kinetic energy is equally divided into

new, smaller sized eddies. There is no loss in this process. The cascade

continues to smaller and smaller scales until finally the local Reynolds

number is sufficiently small that viscosity can take the energy away.

The energy at the smallest scales are turned into heat and the kinetic

energy vanishes. This cascade of energy can occur over several orders

of magnitude in length.

From Kolmogorov’s scaling arguments it turns out that we could esti-

mate the length scale where viscosity removes energy from the system,

η, as

L

η
∼ Re3/4
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where L is the length scale of the largest eddies and the start of the

cascade. For an atmospheric flow we can easily reach Reynolds numbers

of 1012 or higher; there are indeed many orders of magnitude of length

over which the turbulence cascade exists.

We can describe the flow via a spatial Fourier series u(x) =
∑
Ake

ikx,

where the wavenumber k is like a spatial frequency. Kolmogorov argued

from physical arguments and dimensional analysis that the energy per

wavenumber follows a scaling,

E(k) ∝ k
−5
3

where

Total kinetic energy =

∫
E(k)dk.

This predicted energy spectrum comes from simple arguments of units

and a little physical interpretation. Note that as k increases the length

scale decreases. The picture is there is an inertial range where viscos-

ity is not important and the energy in the fluid flow follows the Kol-

mogorov scaling. Energy progresses down the k
−5
3 cascade until such

large wavenumbers (small length scale) that viscosity becomes impor-

tant and the scaling no longer holds. This energy spectrum has been

measured and generally experiments agree quite well with this simple

scaling law, as seen in Figure 12.2.

Imagine a bucket of water that you are stirring constantly with a big

spoon. Energy is constantly being put into the system with a length

scale on the size of the stir (let’s say that is the size of the bucket). The

big swirls you create break apart and that energy goes into smaller and

smaller swirls. This cascade of energy from large scales to small scales

follows the Kolmogorov scaling. Once the eddy size gets small enough

that viscosity becomes important the eddy motion is halted and the

energy goes into heating the fluid. You reach a steady state where the

energy you constantly put into the system at the large scale is turned

into thermal energy at the small scale. Just to give some numbers to

this problem, let’s say our bucket is a foot in diameter (≈ 30 cm) and we

are stirring at 1 diameter per second (30 cm/s). This yields a Reynolds

number of Re = 90,000 and a dissipation length scale is about η = 50

microns. Thus our inertial cascade spans nearly 4 orders of magnitude.

The picture of turbulence presented here, hardly captures all the
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Figure 12.2 Experimental measurements of the energy spectra. The

scaling law E(k) ∝ k
−5
3 is clearly observed over many orders of

magnitude. Remember, large wavenumbers correspond to small fea-
tures. The rapid decline in energy for k > 10 cm−1 corresponds to
where viscous dissipation takes over. From Champagne, Journal of
Fluid Mechanics, 1978.

complexity that is observed in reality. However, the scaling law is ro-

bustly seen in experiments and thus contains some of the essential

physics of the problem.

12.3 Numerical simulation of turbulence (CFD)

While CFD is a great tool and works robustly for low and “moder-

ate” Reynolds number flows, at high Reynolds number flows become

turbulent much more care is needed. One issue with CFD in turbulent

flows comes from the picture of turbulence in the previous section and

our example of the stirred bucker. Let’s return to the 30 cm bucket

at Reynolds number of 90,000. In order to resolve all the length scales

with DNS we need computational grid that would require about Re3/4

or 6,000 discrete points in each spatial dimension. For a 3D flow this

would be 2.16 × 1011 total grid points. This resolution is outside the

range of current computing capability. So now let’s say that we de-
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cide that we only care about the big swirls so we decide to make our

grid spacing 1 mm. Certainly this will suffice? Now we have 300 grid

points in each direction; still a lot but not outside of what a modern

computer and software could handle in 3D. However, 1 mm is 20 times

greater than the length scale where viscosity can remove energy from

the system. What happens is that energy will be put in at the large

scale, that energy will cascade to smaller scales, and when the energy

in the simulation reaches 1 mm (the grid spacing) it will just sit there.

There is no mechanism to remove energy from the simulation. Energy

will build up and the simulation will die a sad numerical death.

There are fixes to this problem by adding models which act as numer-

ical sponges to soak up all the grid scale energy from the simulation.

Methods called Large Eddy Simulations (LES) have this feature of be-

ing able to resolve our stirred bucket by modeling, but not resolving,

the smallest scale motions. The LES models are often called turbulence

closure models. There are many different models that have advantages

and disadvantages in different situations. There is no single model that

always works the best and it requires training and experience to do LES

of turbulent flows well. You can easily see that this turbulence closure

problem will be with us for a while. For an atmospheric flow which

effect the climate, the Reynolds number can be 1015 the large scales

structures are the sizes of continents. We are going to be continue to

need closure models in weather and climate modeling in my lifetime.

Most modern CFD packages have a number of different turbulence

closure models built in. The variety and character of these models is

too extensive to cover here. In the software, it can be just as easy as

clicking from one model to the next. However the different models have

different limitations and cases where they work better or worse. Just

be warned that you should be skeptical of the results unless you have

had more training and experience than you are getting from this brief

chapter.

Many people think that CFD is the answer to everything fluids. The

impulse for many people when confronted with a fluids problem is to

run to CFD. CFD can be powerful, but it is a tool that can be easily

misused. If you are ever working somewhere and your boss wants to do

CFD of a turbulent flow, be cautious going down this road unless you

have learned more about fluid dynamics than this course. It is very easy

to get a commercial code to ”solve” but give you an incorrect answer.
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You just need to be aware that CFD of turbulent, unstable, or otherwise

non-linear flows is not yet plug and play and will probably remain this

way for some time to come. CFD can be powerful, but you really need

to know what you are doing. Like Stan Lee noted in Spiderman - CFD

is powerful, “but with great power comes great responsibility”.
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Control volume analysis

In the previous chapters, we went through great effort to develop a

differential law for fluid flow based on conservation of momentum for

a material fluid particle. This conservation law holds at every point

in space and along with appropriate boundary information allows (in

principle at least) for the calculation of the velocity field at every point

in space. We have calculated such velocity fields, at least for some

simplified geometries. In many cases solving the velocity field is too

complicated of a problem, or overkill. Maybe we only need to know the

net force on an object and not the full velocity field. In many cases it is

useful to turn to an integral form of the conservation laws for a control

volume fixed in space. This control volume analysis is a macroscopic

balance, the analysis will allow for us to solve for things such as the

total force acting on an object in a flow due to the imbalance in the total

fluid momentum going in and out of the volume. The control volume

analysis does not allow us to calculate the details of the velocity field.

In order to get results out of a control volume analysis you usually

need to be given some additional information (perhaps from a mea-

surement) or you need to do some physical reasoning and make a some

simplifying approximations. This fact is an important point to empha-

size. You will often find that in order to make progress with a control

volume problem you will have to assume something that may not seem

obvious or you have difficulty justifying. For example, it will be com-

mon to assume that inlet flow fields are uniform in space with a single

velocity. It will also be common to neglect viscous forces. In some cases

these approximations will be great and in others, not so. What assump-

tions are reasonable come with experience. Don’t be fooled by textbook
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problems (including the ones I’ll demonstrate) that tend to gloss over

the assumptions that are made as though you just believe they are

true. Like dimensional analysis, the procedure of control volume analy-

sis is straightforward, it is the proper use of it that takes some physical

insight that only comes with experience. The control volume is an excel-

lent tool, but keep in mind that there are also problems where doesn’t

really help us much.

Control volume analysis is an excellent tool for getting order of mag-

nitude estimates or simple scaling laws. Often in engineering situations

we care about the approximate magnitude of the total force or the pres-

sure, for example, and a simple control volume analysis can be more

useful that a complex simulation. Often we can get a useful and rea-

sonable answer with just a little effort. Control volume analysis is also

a quick way to check other more detailed calculations or simulations.

If you do a full analysis of the Navier-Stokes equations and solve for

the full velocity field, but that field does not satisfy the overall control

volume balance then you have done something wrong.

Many textbooks on fluid dynamics put the control volume analy-

sis very early in the development. A good reason for doing so is that

the analysis is much easier than analysis with the Navier-Stokes equa-

tions. However, when confronted with a real world problem that we

don’t find in a textbook executing a useful control volume analysis re-

quires some physical intuition. Similar to dimensional analysis, control

volume analysis is usually most powerful when coupled with good phys-

ical understanding and intuition about the important effects. Similar to

dimensional analysis, it can be straightforward to learn the technique

of control volume analysis, but using it wisely comes with experience.

13.1 Control volume formulation

Our general form of the conservation of momentum, integrated over an

arbitrary fixed volume is,

∫ (
ρ
Dv

Dt
= ρg +∇ ·T

)
dV
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We can now move the integral on the left hand side to a different form

using the Reynolds Transport Theorem,∫
ρ
Dv

Dt
dV =

∫
∂(ρv)

∂t
dV +

∫
(ρv)v · ndS.

Using the divergence theorem we can also convert the stress tensor

term on the right side of the original equation back to integration over

a surface,∫
∂(ρv)

∂t
dV +

∫
(ρv)v · ndS =

∫
ρgdV +

∫
n ·TdS.

Substituting our constitutive law for a Newtonian fluid in incompress-

ible flow (T = −P I + 2µS), we have,∫
∂(ρv)

∂t
dV +

∫
(ρv)v · ndS =

∫
ρgdV −

∫
PndS + 2µ

∫
n · SdS.

Since we are now interested in a control volume fixed in space, the

derivative on the left hand side can be moved outside the integral, so

d

dt

∫
ρvdV +

∫
(ρv)v·ndS =

∫
ρgdV −

∫
PndS+2µ

∫
n·SdS. (13.1)

The above expression holds for the fluid only. A more useful form in-

cludes an external force acting on an object in the flow. In this case,

you can draw a control volume around whatever you like, as long as

you remember to include the force which is holding the object in place.

d

dt

∫
ρvdV +

∫
(ρv)v ·ndS =

∫
ρgdV −

∫
PndS+2µ

∫
n·SdS+Fext.

(13.2)

Following the same ideas, the integral form of conservation of mass for

a fixed control volume is

d

dt

∫
ρdV +

∫
ρv · ndS = 0. (13.3)

The integral form of the momentum and mass conservation equations

for a fixed region can be very useful in a number of cases. The primary

use is in making estimations/calculations of net forces acting on an

object in a flow.

You should first note that conservation of momentum is a vector

equation - 3 components for x, y and z. On the left side of Equation

13.1 we have the rate of change of momentum inside the control volume
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(first term) and the net flux of momentum coming into/out of the

control volume (2nd term). In the second term on the left side, note

that the momentum ρv is a vector quantity, while v · n is the rate

that the momentum crosses the surface. On the right side, the first

term is the net body force which acts on the whole volume. The second

term is the force due to pressure and the third term is the force due to

viscosity - both of these exert forces only on the surface of our volume.

What is nice about this expression is there are many cases where we

are only interested in the net force on an object, and in those cases we

can often use the integral form of the equation without worrying about

the details of the flow.

Getting the sign right of the term
∫

(ρv)v ·ndS can be a little tricky.

You have be be careful that the velocity vector has a sign, as well as

the term v ·n. Since we take normal vectors to point out of the volume,

then v · n is positive for outflow and negative for inflow.

13.2 Examples

The only way we can make sense of the complex looking equation is to

work through a few examples. The basic approach I usually take with

these problems is as follows. I start by drawing a sketch and picking

a control volume that seems convenient. A convenient control volume

often (but not always) has surfaces where the velocity inlets and outlets

are normal to the surface. I like to write out the entire control volume

equation and then systematically cross out terms that I have good

reason to ignore (say unsteady effects in a steady flow). I then would see

where that takes me. If I can get an interesting result without making

many assumptions, then great. If I don’t get much then I might start

making assumptions that I am less confident are true (say ignoring

viscosity in a case where it is not clear I can). I like to try and keep

track of my assumptions so when I get to the end of a problem, it is

easy for me to review what I had to do to get there. One of the most

common assumption you will tend to make in these problems is that

the velocity field is uniform over some region, an assumption we often

make because we have little choice.
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Figure 13.1 Control volume for finding the force a water jet exerts
on an inclined block. The control volume is shown as the dashed
line.

13.2.1 Example 1: Inclined block

Let’s start with an hose spraying a block with a steady flow rate and the

block is inclined with an angle θ and we are interested in calculating

the total force exerted on the block. The mean velocity leaving the

hose is known to be U and the area of the jet leaving the hose is A. We

start by picking a control volume and experience will show you what

volumes work best. In general, it works well to draw the volume such

that it cuts through all fluid inlets and exits perpendicularly as shown

in Figure 13.1. After drawing the volume it is useful to draw the normal

vectors (pointing outward) where the fluid crosses the control volume

boundary.

Now in order to make some progress we need to assume a few things.

Let’s start by assuming that since the flow is exiting the hose at a

constant rate that we can neglect time dependent terms. Also, just

for simplicity, lets neglect gravity which can be done by taking our

apparatus to space, or by simply turning the device such that gravity

points into the page in Figure 13.1. Let’s start with conservation of

mass for

�
��

��HH
HHH

d

dt

∫
ρdV +

∫
ρv · ndS = 0.

We have two locations where we need to evaluate the surface integral,

the inlet and outlet. We see that there is no way we can technically
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evaluate the surface integral without knowing the velocity field of the

inlet and outlet jet. Let’s assume for now that the jet enters and exits

with a uniform velocity field, U1 and U2 respectively. On the inlet the

normal vector and the velocity are not aligned so the dot product is

negative and on the exit, the velocity and the normal vector are aligned

so the dot product is positive. Since the velocity at the inlet and exit

is assumed constant, then the surface integral is easy to do,∫
ρv · ndS = −ρU1A1 + ρU2A2 = 0.

This statement simply says that the total mass flow rate in equals

the total mass flow out. Note that when we write the surface integral

above, it means that we have to evaluate ρv ·n at every point along the

control volume surface and integrate it up. In this example it is only

the two little patches where fluid comes in and goes out that has any

fluid velocity.

Now let’s consider the momentum equation. Let’s start by writing

out the full integral equation and cross out the unsteady terms and

gravity which we previously stated we would neglect,

��
�
��
�H

HHH
HH

d

dt

∫
ρvdV +

∫
(ρv)v ·ndS =

�
�
�
�Z

Z
Z
Z

∫
ρgdV −

∫
PndS+2µ

∫
n·SdS+Fext.

Notice that the surface integral terms for pressure and viscosity are

evaluated only on the surface of the control volume. So while viscous

forces and pressure may do something inside the control volume on the

surface we have drawn it would be reasonable to assume that they have

no contribution. Since the control volume is open to atmosphere every-

where, the pressure around the surface of the control volume would be

atmospheric. If we integrate a constant pressure around a closed loop,

then the integral of Pn around the loop results in zero net force. While

viscosity certainly acts along the surface of the block, along the sur-

face we have drawn the control volume boundary viscosity would not

seem to play a role since we are assuming uniform flow outward. Recall

that viscous stresses only occur when we have velocity gradients, so

a uniform free jet with uniform flow has no viscous stresses. You are

starting to see that in order for us to make progress we have to start

to use some physical insight. By making these physical arguments to

neglect the pressure and viscous terms on the control volume boundary,
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we are left with ∫
(ρv)v · ndS = Fext.

Since the momentum equation is a vector equation we have to con-

sider each component, being careful with the signs. Let’s start with the

x-component of momentum. On the inlet at surface 1 the x component,∫
1

(ρv)v · ndS =

∫
1

(ρU1)(−U1)dS = −ρU2
1A1.

Note that the dot product of v ·n = −U1 since the velocity vector and

normal vector are not aligned. Since the velocity at this surface is all

in the x-direction, then v = U1. On the outlet at surface 2,∫
2

(ρv)v · ndS =

∫
1

(ρU2cos(θ))(U2)dS = ρU2
2A2cos(θ).

Note that the dot product of v · n = U2 since the velocity vector and

normal vector are aligned. Since the velocity at this surface is inclined

at angle θ the x-component of the velocity is U2cos(θ). Putting this

together gives us the external force as,

ρ
(
U2

2A2cos(θ)− U2
1A1

)
= Fx.

Substituting in conservation of mass (U1A1 = U2A2) yields,

−ρU1A1 (U1 − U2cos(θ)) = Fx.

So our final result still doesn’t tell us everything we want since U2 is

not yet determined. We presumably know U1 and A1 as that is given

by the size and flow rate of the hose. Without knowing U2 or A2 we

have no way to get the force. If we measured these quantities we could

proceed. We could also make an assumption that A1 ≈ A2. While this

seems like a reasonable thing to assume, it need not be true. If the area

is the same then mass conservation says U1 = U2 and the x component

of the force would be,

−ρU2
1A1 (1− cos(θ)) = Fx.

In this case, the force is related to the deflection of x momentum out

of the control volume. The rate that momentum is carried into the

control volume is ρU2
1A1. The term (1− cos(θ)) represents the fraction

of x momentum that is deflected. If the angle were zero, a flat plate,

then the force would be zero.
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If we applied Bernoulli’s equation along a streamline between points

1 and 2, in the absence of gravity we would have,

P1 +
1

2
ρU2

1 = P2 +
1

2
ρU2

2 .

Since the pressure at points 1 and 2 would both be atmospheric, then

Bernoulli’s equation would tell us that U1 = U2. Bernoulli’s equation

is consistent with the assumption that the area of the jet is the same

at the inlet and exit. Recall that Bernoulli’s equation assumes inviscid

flow, so our analysis with the assumption of equal area is consistent

with the limit where viscosity is small compared to inertia - the high

Reynolds’s number limit. Our control volume result is consistent with

the force on the block just due to changing the direction of inertia of

the incoming flow.

Now let’s consider y momentum. On the inlet at surface 1 the y

component, ∫
1

(ρv)v · ndS =

∫
1

(0)(−U1)dS = 0.

As with the x component, the dot product of v · n = −U1 since the

velocity vector and normal vector are not aligned. However, the velocity

at this surface is all in the x-direction, then the y component of v is

zero. On the outlet at surface 2,∫
2

(ρv)v · ndS =

∫
1

(ρU2sin(θ))(U2)dS = ρU2
2A2sin(θ).

Note that the dot product of v · n = U2 since the velocity vector and

normal vector are aligned. The dot product term is the same in the x

and y momentum equations. Since the velocity at this surface is inclined

the y-component is v = U2sin(θ). The total y component of the force

is,

ρU2
2A2sin(θ) = Fy.

When we make our assumption that the area of the jet does not change,

ρU2
1A1sin(θ) = Fy.

Thus the final result for the case where the area of the jet does not

change is

Fext = ρU2
1A1

[
cos(θ)− 1

sin(θ)

]
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While this result assumes the constant velocity profile and the fact that

the jet area remains the same from inlet to exit, it seems reasonable

to think that scaling, order of magnitude and trends might be quite

reasonable.

13.2.2 Example 2: Flat plate

Let’s consider the same example but take the case where θ = 0, a flat

plate. We can use our results from the previous section for the force

which can only have an x-component,

Fx = −ρU1A1(U1 − U2)

If we assume that the area is something we can measure and put our

result in terms of area, U2 = U1A1/A2,

Fx = −ρU2
1A1

(
1− A1

A2

)
.

Given that it only make sense given the direction of the flow for the force

to be in the negative x direction, this formula tells us that A1 < A2;

the jet grows toward the exit. If the area is the same (as we assumed

in the previous section) then the force would be zero.

Now let’s rework the same problem with a different control volume

that only includes the fluid. The same procedure would ensue as in the

previous problem only we will need to retain the viscous term and since

the plate is not in our control volume, there is no external force.

��
��
��H

HHH
HH

d

dt

∫
ρvdV +

∫
(ρv)v ·ndS =

�
�
�
�Z

Z
Z
Z

∫
ρgdV −

�
��
�H

HHH

∫
PndS+2µ

∫
n ·SdS+��

�HHHFext.

Nothing would change in the evaluation of the left side of the equation

with this new analysis, thus,

−ρU2
1A1

(
1− A1

A2

)
= 2µ

∫
n · SdS.

Note that the result from this other control volume says the total force

on the plate is equal to the total viscous stresses on the plate. Since we

do not deflect any momentum, the only x component of force is due

to viscous drag. Any change in area of the jet would be related to the

viscosity. Viscosity removes momentum from the fluid slowing it down

and thus the area must grow accordingly to conserve mass. If this were
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Figure 13.2 Control volume for finding the drag on an object from
an experimentally measured wake.

a very viscous fluid coming from our hose, we would expect there to

be a more dramatic change in the increased area of the jet. Using the

control volume approach we can only compute the force on the plate if

we had a measurement of the exit area.

If the fluid had very low viscosity (high Reynolds number), we could

apply Benoulli’s equation. If we applied Bernoulli’s equation from the

inlet to the exit, we would see that just like in the last example the

velocity should not change. Since Bernoulli’s equation is only valid for

inviscid flow, our conclusion is consistent with the fact that at high

Reynolds number, we expect the inlet and outlet areas of the jet to be

approximately equal.

13.2.3 Example 3: Drag on an object

Let’s see how we can compute the total drag on an object from a mea-

surement of the surrounding fluid velocity field. The geometry and con-

trol volume are shown in Figure 13.2. We will consider four boundaries

the left, right, top and bottom. For simplicity let’s assume a symmet-

ric object so the top and bottom should act the same. Let’s consider

steady flow. The flow coming in on the left is uniform with a known

velocity U0. The velocity on the right is measured as a function of y,

u(y).
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Conservation of mass for steady flow in our control volume is,

�
��

��HH
HHH

d

dt

∫
ρdV +

∫
ρv · ndS = 0.

Let’s expand the surface integral into the four terms,∫
ρv · ndS = −

∫ H

0

ρU0dy +

∫ H

0

ρu(y)dy + 2

∫ L

0

ρv(x)dx = 0.

The order of the terms are left, right, and top/bottom (hence the factor

of 2). Note that on the inlet (left boundary) the velocity and normal

vector point in opposite directions hence the negative sign on that term.

Conservation of mass simply states that since there is a velocity deficit

in the wake of the object, there must be some flow out the top and

bottom surface.

Conservation of momentum is,

��
��
��HH

HHHH

d

dt

∫
ρvdV +

∫
(ρv)v·ndS =

�
�
�
�Z

Z
Z
Z

∫
ρgdV −

��
��HHHH

∫
PndS+���

���XXXXXX2µ

∫
n · SdS+Fext.

We have crossed out terms since 1) the flow is steady, 2) we will ig-

nore the effect of gravity (or assume perpendicular to the page), 3) the

object is in an external flow field and thus the pressure is atmospheric

everywhere, 4) that along the boundary of control volume which is far

from the object there are no significant viscous stresses. Under our as-

sumptions, the net force on the object is given by the imbalance in the

momentum coming in and out of the control volume.∫
(ρv)v · ndS = Fext.

Now, lets evaluate our terms for each surface for the x component of

the momentum,

−
∫ H

0

ρU2
0 dy +

∫ H

0

ρu(y)2dy + 2

∫ L

0

ρU0v(x)dx = Fx.

The first term is the inlet. Since the flow and the normal vector are in

opposite directions, v · n = −U0 and the x component of the velocity

is U0. The exit integral is computed similarly, only the sign is positive

since the velocity and flow direction are aligned. The top and bottom

terms should be treated with care. For the top and bottom, the outflow

is v · n = v(x). The x component of velocity is U0 since the surface is

far from the object.



210 Control volume analysis

A1

A2

U2

U1

Figure 13.3 Control volume for finding the net force required to
hold the nozzle on a pipe.

Substituting our conservation mass statement,

2

∫ L

0

ρv(x)dx =

∫ H

0

ρU0dy −
∫ H

0

ρu(y)dy,

into the x momentum equation we get,

−
∫ H

0

ρU2
0 dy+

∫ H

0

ρu(y)2dy+U0

(∫ H

0

ρU0dy −
∫ H

0

ρu(y)dy

)
= Fext.

Canceling the offsetting terms we obtain,

−ρ
∫ H

0

u(y) (U0 − u(y)) dy = Fx.

If we have a measurement of the velocity field in the wake of an object

we can compute (or at least estimate) the total drag on the object.

13.2.4 Nozzle

Consider the tapered nozzle as shown in Figure 13.3. Lets consider a

steady flow rate and we want to estimate the force required to hold the

nozzle in place at the flange. We draw the control volume as shown.

We will assume steady flow, ignore gravity, assume the inlet and outlet

flow fields are uniform, and assume a high Reynolds number flow.

At this point, we can probably do the conservation of mass pretty

easily,

��
��
�H

HHHH

d

dt

∫
ρdV +

∫
ρv · ndS = −ρU1A1 + ρU2A2 = 0.
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Conservation of momentum is,

�
��

�
��H

HHH
HH

d

dt

∫
ρvdV +

∫
(ρv)v·ndS =

�
�
�
�Z

Z
Z
Z

∫
ρgdV −

∫
PndS+���

���XXXXXX2µ

∫
n · SdS+Fext.

Here we have neglected the viscous terms, not because we believe that

viscosity doesn’t matter inside the nozzle but that viscosity probably

doesn’t add much to on the surfaces of the control volume that we have

drawn. Since the flow is contained inside the nozzle, we must be careful

to use different pressure. Now, evaluating the x component of this force

and being careful with the signs,

−ρU2
1A1 + ρU2

2A2 = −(−P1A1 + P2A2 + P∞(A1 −A2)) + Fx.

In this example the momentum in and out of the control volume is sim-

ilar to previous examples. What is new is how we handle the pressure.

There are a few signs to keep track of. There is a negative in front of

the pressure term. We also must account for the direction of the normal

vector. Also, all of pressure at location 1 is acting on the area of the

inlet, while the pressure at point 2 is acting only smaller exit area. The

atmosphere is pushing on the right side of the control volume on the

area A1 −A2. Since the pressure just outside the nozzle is in the open

air, it is reasonable to set the pressure at the exit to be P2 ≈ P∞. In

this case our equation becomes,

−ρU2
1A1 + ρU2

2A2 = (P1 − P∞)A1 + Fx.

Now we see in this form that the force to hold the nozzle is the difference

in momentum coming in and out of the volume and the pressure at the

nozzles inlet. We can use conservation of mass (U1A1 = U2A2)to write

as

ρU2
1A1

(
A1

A2
− 1

)
− (P1 − P∞)A1 = Fx.

Note the sign of the terms. The net change in momentum alone would

lead to a force in the positive direction - meaning the nozzle is com-

pressed on the tube. Since the flow shoots fast out of the nozzle there

is a thrust like a rocket. The pressure term leads a negative force and

wants to pop the nozzle off. We can’t solve for the total force without

more information.

One assumption we could make is assume that the flow is high
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Reynolds number and apply Bernoulli’s equation from the inlet to the

outlet. Bernoulli would yield,

P1 +
1

2
ρU2

1 = P∞ +
1

2
ρU2

2

or

P1 − P∞ =
1

2
ρU2

2 −
1

2
ρU2

1 .

Using conservation of mass gives,

P1 − P∞ =
1

2
ρU2

1

(
A2

1

A2
2

− 1

)
Using the result from Bernoulli and going back to our momentum

balance would give the nozzle force as

Fx = −1

2
ρU2

1A1

(
A1

A2
− 1

)2

When A1 > A2 then the force acting on the nozzle is negative - meaning

without a bolt holding the nozzle on, there is a tendency of the nozzle

to pop off. The final result is only valid for high Reynolds number where

Bernoulli’s equation is reasonable.

13.3 Some difficulties

Sometimes, the control volume formulation does not lead us to a simple

conclusion. Let’s discuss a problem where the control volume approach

does not give a very clear result. The problem seems straightforward

and is known as the inverse sprinkler or Feynman’s sprinkler. This

problem is interesting because it seems that you should be able to get

the answer by applying a control volume.It is called Feynman’s sprinkler

after the great 20th century physicist Richard Feynman who wrote of

this problem in one of his books but never really provided what he

thought his answer was.

A “normal” simple sprinkler is shown in Figure 13.4. It is free to

pivot about the center point. If the entire sprinkler is submerged in

a pool such that the sprinkler emits water into a water environment,

most people would guess that the sprinkler spins clockwise. They would

be right. Now if we consider the sprinkler to work in inverse mode, i.e.
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Figure 13.4 Schematic for the Feynman sprinkler problem. We show
the normal sprinkler, which seems obvious to us should rotate clock-
wise. The direction of the inverse sprinkler is less clear. We also show
the control volume used for the analysis.

water intakes into the sprinkler, the question is which way does the

sprinkler spin? It seems the control volume analysis may be useful for

this problem because we just want to know which way it spins, not how

fast.

To analyze the problem, let’s look at one half of the sprinkler, imagine

that we hold the sprinkler fixed and calculate the force, F , needed to

hold the normal sprinkler in place. Let’s assume the water comes out

as a jet of uniform velocity u and area A, the flow is steady, the density

is constant, and viscosity is not important. Under these assumptions,

we have, ∫
(ρv)v · ndS =

∫
PndS + F

The only tricky part of control volume analysis is getting the sign cor-

rect and since we are trying to get the direction correct, we need to treat

our signs with care. There are two signs to keep straight on the left side

of the equation, v ·n and v. At the exit as drawn, both v ·n and v are

positive and thus we can estimate the term as
∫

(ρv)v · ndS ≈ ρAu2.

Normally, we would assume that the pressure at the exit is the same

as the pressure in the environment. The force is positive and estimated

to have a magnitude of F = ρAu2 and be positive as drawn in the

schematic of figure 13.4. If we remove the force, the sprinkler spins.

Now consider the inverse sprinkler. The same integral expression

must hold true. Momentum enters the control volume at the same rate

as the sprinkler in forward motion. Since v · n and v are both nega-

tive, their product is positive; the momentum across the surface is the

same in magnitude and sign as the sprinkler in normal operation. If this
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were all, the sprinkler should spin the same direction whether the fluid

comes in or out of the sprinkler. If one does the experiment (you can

try yourself with a bendable drinking straw) you find that the sprinkler

does not spin. If you did the experiment carefully you would actually

find the sprinkler spins very slowly in the reverse direction.

The reason the control volume approach does not work is that we

have not gotten the exit pressure right. In the sprinkler operating in

“normal” mode the pressure at the exit must be at least a little higher

at the exit than the environment since pressure gradients would be re-

sponsible for “pushing” the flow. When the sprinkler is operating in

reverse mode, the pressure at the exit must be lower than the environ-

ment for flow to go in that direction. It turns out that if viscosity is

not important then the low pressure at the sprinkler exit (which wants

to make the sprinkler spin counterclockwise) exactly cancels the mo-

mentum coming in (which wants to make the sprinkler spin clockwise).

I cannot derive the experimental result using control volumes. Control

volume analysis gives you no way to calculate the pressure in this prob-

lem. While a number of people have written about this problem I have

yet to find a solution that I find truly satisfying, nor have I been able

to work one out myself.
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