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Preface

These notes are meant to be a supplement the laboratory based course

at Olin College; Introduction to Sensors, Instrumentation, and Mea-

surement (ISIM). ISIM is a first-semester, first-year course at Olin Col-

lege. The course at Olin has a substantial hands-on component of build-

ing circuits and conducting experiments. That component of the course

will hopefully provide context, applications and allow the students to

see some of the basic concepts at work. These notes will lean towards

covering the fundamental concepts for circuit analysis and leave the fun

stuff for the lab. While the notes will emphasize circuits, in the course

we like to emphasize the broader themes which are making measure-

ments, doing real experiments, and analyzing data.

This course will emphasize making electronic measurements. While

not all experiments need to involve a circuit (optical measurements, for

example), many measurements we make in science and engineering are

through sensors, circuits, and computer-based data acquisition. In this

course, we will deal only with the basic concepts and skills related to

building and analyzing analog circuits. These notes are meant to be

the bridge from the applications to the fundamentals that will enable

you to not only understand the circuits you build but hopefully design

your own.

There is no attempt here to write a comprehensive circuits intro-

duction that is general enough for all students of engineering. Many

interesting circuits topics are left out and many good textbooks exist

that cover the topics I do, as well as those I ignore. As for topics I

ignore, one of the great inventions of the 20th century, the transistor,

is totally neglected. In our modern world, digital circuits play a critical
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role and that entire realm is completely ignored in our course. The top-

ics I cover herein are aimed towards the ones we cover in this specific

course at Olin. If you are excited by circuits after taking this course,

then there are many excellent follow on courses at Olin and throughout

the world that cover more material.

The motivation for writing these notes here was mainly an attempt

to provide an intuitive introduction to only the concepts we use in our

course in a unified manner. The content is directed by the course at Olin

and is written as such. If others outside of Olin find them useful, then

I will be very pleased. I am happy to provide our laboratory materials

to anyone who comes across these notes and wants to see the rest of

the course material.

I have taught some aspects of this course consistently to first-year

students since 2002, despite my background being in mechanical engi-

neering. My long-standing research interests in the mechanics of fluids

will show up here as I will make the hydraulic analogy continuously. I

don’t mean to bias things in this direction so heavily, but I think the

analogy is a good one and one that students at the introductory level

might have more intuition for.

The content of these notes and manner of explanations provided here

have been greatly influenced by two real electrical engineers who I co-

taught with many times over the years. They have taught me pretty

much everything I know about circuits. They have patiently explained

the ins and outs and all the subtleties that you can only learn through

years of experience. I owe a great debt of gratitude to my colleagues,

Gill Pratt and Brad Minch.
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Resistance

2.1 Hydraulic analogy

Let’s start with a simple system that you should have some physical

intuition about. Imagine a pipe where one end is connected to tank

of water and the other end is open to the atmosphere. A schematic is

shown in Figure 5.1.

Figure 2.1 Schematic of a simple hydraulic system. A tank of wa-
ter is drained by a pipe. We want to understand the relationship
between the volumetric flow rate and the height of the water.
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In this case, water will flow through the pipe, left to right, and out of

the tank. The tank has a constant cross sectional area, A, and the water

height is H. The pipe has diameter D and length L. The volumetric

flow rate (measured in liters per second, for example) through the pipe

is Q. We will consider a system sized such that the volumetric flow rate

is small compared to the volume of the tank; the height of the water

can be considered constant.

In this system it is the high pressure of the water at the bottom of the

tank that drives the flow. High pressure results in high flow. Pressure,

P , is force per unit area. At the bottom of the tank the pressure is

proportional to the height of the water and is given by P = ρgH where

ρ is the density of water (∼ 1000 kg/m3), g is 9.8 m/s2, and H is the

height of the water in meters. Note that the area of tank does not affect

the pressure.

Aside: You may have seen the formula for pressure at the bottom of a tank
previously. If you forget this formula it is easy to derive - see Figure 2.2.
Imagine the bottom of the tank is a piston that must be held in place by a
force F . Since the bottom of the tank is held still, the total force must balance
the weight of the water above it; F = mg. The mass of the water is given as
the density times the volume of water, m = ρAH. Therefore the total force
is F = ρAHg. This total force divided by the area, F/A = P = ρgH, is the
pressure P at the bottom of the tank.

2.1.1 Resistance

A natural question to ask is what is the volumetric flow rate out of

the tank? You would probably guess that the flow rate would depend

upon the height of water in the tank - higher pressure should give

higher flow. To answer the question experimentally, all you need is a

beaker to measure volume and a stop watch. For a table-top system,

we conducted an experiment in the kitchen with two different length

of pipes. This experiment is simple enough that the data in Figure 2.3

were collected for this course by my children when they were 8 and

5 years old. They measured the time required to fill a 10 ml beaker

with a stop watch for different heights of water in the tank. After every

measurement we wrote the number down on a sheet of paper and were

able to create the plot by hand.

We find that for the two experiments in Figure 2.3 the relationship
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Figure 2.2 Schematic for derivation of hydrostatic pressure equa-
tion. If the bottom of the container is a sliding piston, then the
force used to hold the piston in place is equivalent to the weight of
the water. The pressure is this force distributed over the bottom of
the container.

between water height and flow rate seems to be a line. With a little

more care than a 5 year old is willing to tolerate the fit would be even

better. The slope can be determined from the experimental data. In

this experiment we find that the slope depends upon the length of the

pipe; a longer pipe has a steeper slope. We can guess that the slope

would also depend upon the pipe’s diameter. A thinner pipe will have

a lower flow rate for the same pressure, thus we would expect that the

slope would be steeper for a thinner pipe.

If we repeated the same experiment for a variety of different pipes, we

would find the same trends reliably occur across a wide range of experi-

ments. Enough experiments would lead us to conclude that our system

has a linear relationship between pressure and flow. Mathematically,

this relationship could be described by,

P = QR.

The constant R is called the resistance and depends upon the pipe.
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Figure 2.3 Experimental data for pipe of 1/16 inches (1.6 mm) in
diameter and two different lengths. The data in red have a pipe with
twice the length (L = 1.4 m) of the data in blue (L = 0.7 m). The
points are experimental data and the solid line is an approximate
linear fit to the data.

R is called the resistance since it is the constant that tells us about

the resistance to flow through the pipe. When resistance is high, even

a large pressure can only drive a small flow rate. For any given pipe,

we could measure the resistance from the slope of the line in a similar

way as Figure 2.3. In Figure 2.3 I found R by estimating values and

changing them until the fit looked about right; it really can be that

simple.

So why is the relationship between pressure and flow linear? Well,

it turns out it need not be. The theory for water flow in a pipe would

show us that the linear relationship should hold when the flow rate is

relatively low. It is beyond the scope of our analogy to worry about this

right now, but realize that a linear relationship between pressure and

flow isn’t a given or some fundamental law of nature. It is empirical.

It is what we observe for our data. For our experimental system, we

measured a linear relationship and we will assume that is the only case

of interest for now.

Imagine the case when we have a pipe connecting two tanks of water

as shown in Figure 2.4. Thinking about this example should lead us to
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realize that the pressure we use in our formula should be the pressure

difference applied across the pipe, ∆P = Pinlet − Poutlet. If the water

height and thus the pressure of both tanks is equal, then there will be

no flow through the pipe. To be a more precise we should write our

relationship as,

∆P = QR,

where ∆P implies the change in pressure from the pipe’s inlet to outlet.

As far as the water flow is concerned, the overall pressure is unimpor-

tant - it is the difference from inlet to outlet.

Figure 2.4 Two tanks connected by a pipe. Water flows through the
pipe only when there is a pressure difference across the pipe - i.e.
when the water heights are not equal in the two tanks.

So note a few very important things;

• Pressure is applied across the pipe.

• Water flows through the pipe.

• High pressure difference across means high flow through.

• The ratio of pressure to flow is the resistance, R.

It will be important to remember these points when we move the elec-

trical domain as the analogy will directly carry over.
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2.1.2 Resistors in series

In Figure 2.3, one set of data was taken for a pipe twice the length

of the other. We can think about the longer pipe as taking two equal

lengths of pipe and adding them in series. If we carefully look at the

data, we find that the resistance of two pipes in series is exactly twice

that of the single pipe.

Figure 2.5 Schematic of a simple hydraulic system with two pipes
in series.

We can understand this result by looking at a more general case of

adding pipes of different resistance in series, shown schematically in

Figure 2.5. Note here we have distinguished between the pressure drop

across and the flow through each pipe individually. The pressure drop

across each section would simply add to equal the total pressure applied

across both sections of pipe,

∆P = ∆P1 + ∆P2.

Substituting the relationship for pressure and flow for each of the two

individual pipes we have,

∆P = Q1R1 +Q2R2.

When two pipes are added in series, they must have the same flow
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rate through them - the water cannot change its volume and there is

nowhere else for water to go. Therefore Q1 = Q2 = Q. There is only

one flow rate in this setup. We can rewrite the overall pressure-flow

relationship as

∆P = QR1 +QR2 = Q(R1 +R2) = QR.

Whenever we have two pipes in series, we simply add the resistances to

get the total effective resistance to flow out of the tank; R = R1 +R2.

The total pressure and total flow are related to the sum of the individual

resistances.

The schematic also gives us some intuition about the extreme limits.

Imagine one pipe was pretty fat and the other was really thin. It should

make sense that the flow rate out of the system would be about the

same as if it there were only the thin pipe. The effective resistance

is dominated by the largest of the two values. The formula gives this.

Imagine R2 = 100 and R1 = 1 (in whatever unit system we are working

in). The effective resistance of the two in series is R = 101, a 1%

change from just being R2. If you have two resistances in series and

the resistances are very different sizes, the effective resistance is close

to that of the largest of the two resistors.

While we only considered 2 resistors here, we could generalize this

expression and would find that if we added several pipes in series, the

total resistance would equal the sum of the individual resistances;

R = R1 +R2 +R3... Series resistance

2.1.3 Resistors in parallel

Now imagine we take the same tank and put two pipes out as shown

in Figure 2.6. In this case, the total flow out of the tank would be the

sum the flow out of each independent pipe,

Q = Q1 +Q2.

Substituting the relationship for pressure and flow for each if the two

pipes we have,

Q =
∆P1

R1
+

∆P2

R2
.
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Figure 2.6 Schematic of a simple hydraulic system with two pipes
in parallel.

In this case, the pressure applied across each of the two pipes is the

same, thus

Q = ∆P

(
1

R1
+

1

R2

)
.

Rearranging this expression to get pressure on the left side of the equa-

tion,

∆P = Q
1

1
R1

+ 1
R2

= QR,

where the total effective resistance of the two pipes is

R =
1

1
R1

+ 1
R2

=
R1R2

R1 +R2

We will define

R1||R2 =
1

1
R1

+ 1
R2

as shorthand notation for meaning R1 and R2 in parallel.
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There are a few useful cases to think about. First, when R1 = R2 the

effective resistance would become R = R1/2. This result should make

sense because if we take two equal pipes draining the tank at the same

time, the flow rate out would double (or the overall resistance would

be halved) from the case of a single pipe.

We can also rewrite the effective resistance expression as,

R =
R1

1 + R1

R2

.

This form lets us see that if R1 is tiny relative to R2 (i.e. R1 << R2)

then the effective resistance is just a bit lower than R1. For example

if R1 = 1 and R2 = 100; R = 0.99 a 1% error if we just forget about

the large resistor. This limit should make physical sense because the

thin high resistance pipe will drip while the fat low resistance pipe will

really gush - so who cares about the thin pipe’s overall contribution to

the total flow. With resistors in parallel, if the two resistors are very

different sizes then the effective resistance is close to the smallest of the

two resistors.

The above result for effective resistance would easily generalize to

more than two pipes draining the tank,

R =
1

1
R1

+ 1
R2

+ 1
R3
...

Parallel resistance

2.2 Circuits - electrical resistance

These concepts and equations carry over to the analysis of our first

electrical circuit element, the resistor. A picture of a resistor of the

style we will use in this course and the symbol used in circuit drawings

is shown in Figure 2.7. Like a pipe, a resistor works equally as well

which ever way it is oriented in a system. Resistors used in modern

electronics are much smaller than the ones we use in lab, but they

work the same way. The basic equation for the resistor is known as

Ohm’s law,

∆V = IR.

Here, ∆V is voltage difference measured in volts (V), I is current mea-

sured in amps (A), and R is the resistance in ohms (Ω).
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Figure 2.7 Picture of a resistor of the style we will use in this course.
The diagram shows the schematic symbol used in circuit drawings.

Making the analogy to the hydraulic example, voltage is like pressure,

current is like volumetric flow rate of water, and electrical resistance is

like the pipe’s resistance. Just like with pressure, it is the voltage differ-

ence across the resistor that we use in Ohms law. Just like volumetric

flow rate, the current flows through the resistor.

Electrical current is measured in amperes or amps for short. The

ampere is equivalent to a coulomb per second. A coulomb is the unit of

electric charge and is equivalent to the charge on 6.24× 1018 electrons.

The current, I, is the amount of charge per unit time passing through.

Just like the flow of water, current flows through a circuit in a conserved

way. For any part or node in a circuit, the amount of current flowing

in must equal the amount of current flowing out. The analogy with the

water flow in the pipe is a good one. It is fine to think of current as the

flow of electrons (even though the electrons are actually moving in the

opposite direction since they are negatively charged!).

Just like resistance of a pipe can change depending on the diameter

and length, the resistance of a electrical resistor depends on its size,

material, and how it is made. Just like with a pipe, resistance of a wire

increases linearly with the length and inversely with the cross section

area. A long skinny wire has higher resistance than a short fat one.

While resistors come in all shapes and sizes for different reasons, the

physical form factor of resistors we use in lab will typically look like

those in Figure 2.7. The different values of resistance depend upon

the details of how the resistor was manufactured even though they
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may look the same from the outside. Resistors are designed to target a

particular value. Resistance in practical circuits can span many orders

of magnitude. In this course we will use resistors ranging from 10 Ω

to 10,000,000 Ω, The range of resistors that one can purchase is much

wider than this. We use the kilo and mega prefixes to denote the size; a

1,000 Ω resistor would be 1 kilo-ohm or kΩ and a 1,000,000 Ω resistor

would be 1 mega-ohm or MΩ. In class when we are speaking, we will

usually refer to these values a “1 K” and “1 Meg”. In lab, we typically

use 1 % resistors, meaning the manufactured value is specified within 1

percent. One can buy higher precision if you need it. The style resistor

we use costs around 1 cent each and the small ones found in modern

electronics are typically much less than this. Resistors are inexpensive

components.

A resistor has a linear relationship between voltage and current and

is just like we saw in the hydraulic analogy. While we can explain that

the relationship is often linear by appealing to other physics that is

beyond this course, it really is just an empirically observed relationship.

Resistors that we purchase and will use in lab obey Ohm’s law to a

very high accuracy. They were designed to do so. Not all materials and

resistive devices necessarily obey Ohm’s law.

2.2.1 Resistors in series and parallel

The rules we derived for pipes in series and parallel work equally as

well here. A circuit with two resistors connected to a constant voltage

source such as a battery or power supply is shown in Figure 2.8. In the

left figure the two resistors are in series and on the right they are in

parallel. Just as with the hydraulic system, we want to come up with

a relationship between the applied voltage drop, V , and the resulting

total current, I, through the two resistors. There are two circuit symbols

used in the schematic. One is the resistor that we discussed already. The

symbol with the two lines, one longer than the other represents a voltage

source. Think of this as a battery where the long side is the positive

terminal of the battery and the short side is the negative terminal. The

voltage across the battery is, V . If it were a real battery, V would equal

the voltage written on the side of the battery such as 1.5 volts for a AA

battery. Since the two terminals of the battery are connected across the

resistors, this total voltage is applied across both resistors.
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Figure 2.8 Schematic of two resistors connected to a constant volt-
age source, V . On the left the resistors are in series and on the right
the resistors are in parallel.

When we have resistors in series, the total voltage drop across two

resistors is set by the battery and is equal to the sum the voltage drops

across each resistor individually,

V = ∆V1 + ∆V2.

The current flowing through the two resistors, just like the water flow,

must be same. Since charge flows through the circuit in a conserved

way, I1 = I2 = I. Using Ohm’s law in our above expression for V we

obtain,

V = I1R1 + I2R2 = I(R1 +R2),

which was identical to what we derived for the water flow. The battery

sees the two individual resistors as an equivalent resistance which is

simply the sum.

When we have resistors in parallel, the total current from the battery

must equal to the sum of the current flowing through the two resistors,

I = I1 + I2.

Using Ohm’s law,

I =
∆V1
R1

+
∆V2
R2

.
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However, the voltage drop across each resistor is the same and is set

by the battery, therefore,

I = V

(
1

R1
+

1

R2

)
,

or

V = I
1

1
R1

+ 1
R2

.

The battery sees the same current as though there were a resistor with

an equivalent resistance of R = 1/(1/R1 + 1/R2). The equivalent re-

sistance of two resistors in parallel is exactly as we found previously

in the hydraulic case. In both cases, the analysis of the hydraulic and

electrical circuits are the same.

2.2.2 Ground and circuit schematics

In lab, we will often draw our schematics a little differently than the

last section; more typical is Figure 2.9. The triangle symbol pointing

downward means ground. In our lab ground will refer to the common

point where we define the voltage to be zero. Note that in the right half

of Figure 2.9 that the two ground symbols are electrically connected.

Even though the grounds are not drawn connected by a wire, it is

implied. We are allowed to let current flow into and out of our ground

connection.

Since voltage differences matter, where we consider voltage to be zero

has some arbitrariness to it. Think about potential energy. When we

talk about the potential energy to what height do we ascribe “zero”?

The height of the object above the floor I stand on? If I am on the second

floor of the building do I use the ground level outside? Or maybe sea

level? Voltage is the same way, we need to have an agreement on what

we want zero to be, but we have some freedom in what the zero is. We

will consider ground to just be where we have decided to set zero for

voltage.

The reason that we call the zero voltage ground, is that a building’s

power system ground is set by a metal spike driven into the earth. The

third prong on the electrical power system in the building is tied to the

voltage of the actual earth’s ground. If we are powering our circuit using

a power supply that is plugged into building power, then typically the
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ground for the power supply would be connected to the actual ground

of the earth. If we are running a circuit off a battery, then we are not

connected to the earth. If you are an electrician, for safety reasons, you

better get your circuit ground right. For us, whether the zero voltage

is tied into the actual earth is generally not going to be relevant.

Figure 2.9 Schematic of circuit with battery and power supply. It
is the same circuit but one case is drawn with a common ground.

2.2.3 Voltage divider

Let’s look at a simple example of two resistors in series and ask what

the voltage is between the two resistors (left of Figure 2.9). This is a

really simple circuit, but one that we will find has a lot of application

and shows up repeatedly in lab. The applied voltage (from a battery

or power supply) is Vin. The voltage between the resistors is Vout. The

voltage at ground is taken to be to zero. The circuit schematic is shown

in Figure 2.9 left. The total current flowing through the two resistors

is found by Ohm’s law with the effective series resistance,

I =
Vin − 0

R1 +R2
.
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Using Ohm’s law for the second resistor,

Vout − 0 = IR2.

Putting the previous two equations together we have,

Vout = Vin
R2

R1 +R2
.

If R2 >> R1 then Vout ≈ Vin. If R2 << R1 then Vout → 0. If R1 = R2

then Vout = Vin/2 The above circuit is known as a voltage divider

because it, well, divides the input voltage Vin.

2.3 Kirchhoff’s circuit laws

In the previous sections we derived laws for resistors in series and in

parallel. Generalizing some of the ideas we have already used leads us

to Kirchhoff’s laws, which are attributed to Gustav Kirchhoff around

1845.

Kirchhoff’s current law (KCL) states that the sum of the cur-

rents flowing into any circuit node must equal the sum of the currents

flowing out. The law is based on conservation of charge. We already

used this law when we analyzed resistors in series and parallel.

Kirchhoff’s voltage law (KVL) states that the directed sum of

the voltage differences around any closed loop in a network is zero.

The only tricky part about KVL is keeping the signs straight (which

is what we mean by the directed sum). For example, as we sum the

voltages around a loop, we count a resistor voltage drop as positive if

we are summing in the direction of the current. The resistor voltage

drop is counted as negative if we are summing in a direction against

the current.

When doing circuit analysis, we will we always invoke KCL. We did

this when we first derived resistors in series and parallel. In simple

circuits you will often find that you can get at the result you want

without explicitly calling out KVL as we did in our early examples.

KVL is very useful as it provides a systematic way of solving complex

circuits. However, we will not need to call out its use explicitly when

doing circuit analysis. When we draw circuits with the ends going into

ground, we don’t even see any loops. We implicitly invoke KVL when
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we analyze two resistors in series and say that the voltage drop across

each resistor sums to the total applied voltage. We will not explicitly

use KVL, I only introduce it here as it is a term you will often hear.

We will save KVL for another class.

2.4 Measurement input impedance

In everything we have discussed thus far we have assumed that the

measurement of the voltage is something we can do without disturbing

the circuit itself. Generally, this is can be done (you will see how a

little later) but we need to be careful. When making a measurement of

voltage, the device you use will very often have a number somewhere on

the specifications called the “input impedance”. Impedance is a more

general term than resistance that we will discuss in detail later. For now,

consider impedance to be resistance. Note that units for impedance

will be given in Ohms. For the device we currently use in our labs,

the input impedance is 1MΩ; that would be a pretty typical value.

What input impedance means is that inside the measurement device,

there is essentially a resistor connecting the two measurement inputs.

The resistor is part of the device and is there nothing you can do but

account for it’s presence.

Let’s consider, as an example measuring the voltage in a real voltage

divider with a device that has an input impedance in Figure 2.10. In

the ideal scenario, when the measurement device does not draw any

current then the voltage between the two resistors is Vin/2. However,

when we make the measurement with a real device, current flows into

the measurement device itself due to the internal resistance. To analyze

the circuit, we can just take the resistor R and the input resistor RI
to be an equivalent resistance with the value of R and RI in parallel.

This equivalent resistor is now in series with the upper resistor. Using

the voltage divider rule, the measured voltage is

Vout = Vin
R||RI

R||RI +R
.

When reading things like this, work out the result yourself on a piece of

paper and make sure you agree with me. Using our formulas for resistors
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in parallel we have

Vout
Vin

=

1
1
R+ 1

RI

1
1
R+ 1

RI

+R
=

1
1+ R

RI

1
1+ R

RI

+ 1
=

1

1 + 1 + R
RI

=
1

2 + R
RI

Figure 2.10 When measuring voltage, very often the measurement
device will have a finite input impedance. This input impedance al-
lows current to flow into the measurement device and thus perturbs
the voltage measured in the circuit from what would be measured in
an ideal scenario where the measurement device draws no current;
i.e. infinite input impedance.

From this relation we see when the device input impedance is really

large compared to the resistors in the circuit, the measured voltage is

1/2 of the input voltage as we would expect. When R = RI then

Vm
Vin

=
1

2 + 1
=

1

3

not what we would might have expected.

Example: In the lab, we can vary the values of the resistor in the voltage
divider by keeping both resistors to have the same value as each other, but
varying the value of R in Figure 2.10. If we set Vin = 1 V, then for an ideal
measurement we would measure Vout = 0.5 V regardless the value of the
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resistors. For our device we obtain the results in Table 2.4. What is the value
of the devices input impedance?

R V measured

1 kΩ 0.4998 V
10 kΩ 0.4975 V
100 kΩ 0.4762 V
1 MΩ 0.3333 V
10 MΩ 0.0833 V

2.5 Application: scale using strain gauges

We will see the simple voltage divider pop up throughout various labs in

our course. Just to get a preview of where we can use a voltage divider,

let’s consider a useful circuit for making a physical measurement. A

strain gauge is a device used for measuring the mechanical strain, or

deformation, of a material. All solids deform when they are subject

to a force. If I take a bar of metal and pull on both ends the metal

will elongate even if it seems imperceptible to us. This elongation is

proportional to the force I use to pull on the bar, thus if I can measure

the deformation I can infer the force. This principle can be used to

make a scale. In fact if you open up a bathroom scale you will find

strain gauges. As shown in Figure 2.11, the bar of metal has an initial

length L when there is no weight applied and a length L + δL when

the weight is applied and the bar of material is loaded.

The strain gauge is nothing more than a thin, flat wire embedded into

a plastic film. The strain gauge is super-glued to the material we want

to measure the elongation of. When the bar is stretched, the wires in the

strain gauge are stretched and become longer and skinnier, thus their

electrical resistance increases. When the bar is squished, the wires in

the strain gauge become shorter and fatter and the electrical resistance

decreases. The nominal resistance of the unloaded strain gauge is R

where δR is the change when deformed, thus the resistance is Rs =

R + δR. It turns out that the change in length of the bar is directly

related to the change in resistance through

δR

R
= G

δL

L
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Figure 2.11 Concept of using a strain gauge to create a scale. A bar
of material will elongate when weight is applied. This mechanical
elongation will stretch the thin wires of the strain gauge, causing a
small increase in electrical resistance.

where G is a constant for the strain gauge which depends in the width

and thickness of the wires and is called the “gauge factor”. Typically,

this gauge factor is around 2 and is a measured empirical number that

depends on the strain gauge design.

A simple circuit for measuring the electrical resistance change is the

voltage divider shown in Figure 2.11. We set the lower resistor to be

a fixed value equal to that of the strain gauge when it is unloaded,

R. When the scale is not loaded we have two equal resistors in series

the voltage that we measure is half the applied voltage Vin. When the

weight is applied, the resistance of the strain gauge increases and thus
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the measured voltage decreases. The relationship between measured

voltage comes directly from the voltage divider equation,

Vout = Vin
R

Rs +R
= Vin

R

R+ δR+R
= Vin

1

2 + δR/R

Rearranging such that we can compute the relative change in resistance

from the measured voltage we have a simple formula,

δR

R
=

Vin
Vout

− 2.

Now in a real application, the resistance and thus the voltage change

between the loaded and unloaded configuration is tiny - maybe a few

mV at best. There are many sources of error that complicate measuring

small changes. The resistor in the circuit is not exactly the values they

state (we usually use % 1 resistors). The applied voltage may not be

exactly what you think it is - i.e. the power supply may say 5V but it

is not exactly 5.000 volts. Thus, in practice the real circuit we will use

in lab has a few features that need to go beyond what we describe here

to account for these difficulties. However, the principle of of building

a scale with strain gauges is simple and the same regardless of any

additional real world complexities.

Example: For the circuit shown in Figure 2.11 we set Vin to 2.5 volts. The
nominal resistance of the strain gauge and the resistor in the measurement
circuit are both 100 Ohms. When the bar is loaded it stretches a little and
the resistance of the strain gauge changes by 0.1 % to 100.1 Ohms. When
the bar is unloaded we measure Vout = 1.250 V. The measured voltage is
reduced by 0.625 mV (check this yourself).

In a real circuit the input voltage will not be precisely 2.5 V and the
resistors will not precisely 100 Ohms. Imagine that the actual value of the
input voltage was 2.513 volts, the fixed resistor was 101.5 Ohms and the
nominal resistance of the strain gauge was 99.5 Ohms. Upon loading the
strain gauge changes by 0.1 % to 99.6 Ohms. For this case compute the change
in the measured voltage from the loaded to the unloaded configuration. You
should find it to be very close to the same as with the ideal values. Therefore
the change in voltage is not that sensitive to uncertainty in the component
values.
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Capacitance

3.1 Hydraulic analogy

As with the resistor, let’s continue with the hydraulic analogy for our

next electrical circuit component the capacitor. We made the analogy

in the last chapter that the electrical resistor was like the pipe through

which water flows. The capacitor is analogous to the tank that can

store and discharge water. Just like the tank can store water, we will

see that the capacitor can store electrical charge.

The volume of water stored in the tank, V , at any instant is related to

the height, H, and the tank’s cross sectional area, A, through V = HA.

We previously saw that height is relate to pressure as P = ρgH. Putting

this together, the pressure at the bottom of the tank (which will be

available to drive flow) is related to the volume of water stored in the

tank through,

P = ρgH = ρg
V

A
.

Recall that ρ is the water’s density and g is the acceleration due to

gravity; constants that we cannot change in this example. We could

rearrange this expression to read

V =

(
A

ρg

)
P = CP

where we define C = A/(ρg) to be the capacitance. The word makes

sense because the area A represents the capacity, or size, of the tank. If

the tank has a large area it has a large capacity - the volume of water

stored is large even when the pressure at the bottom of the tank is low.



24 Capacitance

The capacitance linearly relates the amount of water stored in the tank

to the pressure the tank has available to drive flow.

Consider two tanks of different cross sectional area being filled with

a faucet at constant flow as in Figure 3.1. The flow rate, Q, through the

two faucets are set to be the same. It seems clear from the schematic

that the volume of water stored in the tanks will be the same (since

the flow rate in is the same), however the pressure at the bottom of the

tanks will be quite different.

Figure 3.1 Two tanks of different cross sectional area being filled
with faucets with the same flow rate. The volume of water in the
two tanks is equal, while the height of the water depends on the
cross sectional area of the tank.

The flow rate in or out of the tank need not be constant but can vary

in time. Let’s be explicit and use the notation V (t), to emphasize that

the volume is a function of time. If we integrate the volumetric flow

rate, Q(t), with respect to time we obtain the volume of water that has

gone into (or out of) the tank. Therefore the volume of water in the

tank at any instant is the initial value plus what has been added,

V (t) = V (0) +

∫
Q(t)dt.

We can express the same relationship between flow rate and volume by

taking the derivative with respect to time,

dV (t)

dt
= Q(t).
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In these expressions the volumetric flow rate is positive for flow into

the tank and negative for flow out.

3.2 Draining the tank

Imagine a tank of water after it is filled up connected to a pipe as shown

in Figure 5.1. As we saw previously, the high pressure at the bottom of

the tank drives water flow through the pipe from the left to the right.

When we studied resistance, we empirically found a linear relationship

between the height of the water in the tank (or the pressure at the

bottom) and the flow rate out of the tank. Our empirically validated

hydraulic version of Ohm’s law for the pipe was,

∆P = RQ,

where ∆P was the pressure applied across the pipe and R is the hy-

draulic resistance.

Figure 3.2 Schematic of a tank draining through a single tube.

In the chapter on resistors, we took the tank to be very large relative

to the flow rate out such that the water height remained constant. Now
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we consider a case where the tank is not so large and as the water flows

out, we can see the height in the tank drop. Imagine what will happen

if we watch the tank drain. Initially, when the water level is high, the

flow rate out is rapid and the level changes quickly. As the water level

drops, so does the flow rate. As the flow rate through the tube drops

the rate that the level drops slows down. As the level drops further, the

rate that the water level drops slows even more.

This simple idea is very important. As the water flows out of the

tank, the pressure applied across the pipe decreases. As the pressure

decreases, so does the flow rate through the pipe. Experimental data

were recorded by simply timing the water height, H, with a stopwatch

and the result is shown in Figure 3.3.

Figure 3.3 Behavior of tank draining problem. The points are ex-
perimental measurements using nothing more than a stopwatch and
the solid curve is from the theoretical prediction.

Now let’s explain our data quantitatively. For the draining problem

in order to find the volume of water in the tank at any instant, let’s

start with the relationship between flow rate and the rate of change of

volume stored,

dV (t)

dt
= −Q(t).

The negative sign denotes that the volume decreases when the flow is

out of the tank through the pipe.
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Substituting the capacitance relation for the tank into our rate equa-

tion yields,

dV (t)

dt
= −Q(t) or C

dP (t)

dt
= −Q(t).

Using Ohm’s law for the relation between pressure across and flow

through the pipe, ∆P (t) = Q(t)R, we arrive at,

C
dP (t)

dt
= −∆P (t)

R
.

If we take atmospheric pressure as our zero reference, then the pressure

drop across the tube is equivalent to the pressure in the tank.

We can rewrite this differential equation as,

dP (t)

dt
= −P (t)

RC
= −P (t)

τ
.

From the units of the time derivative we note that the parameter, RC,

must have units of time. We call this the time constant for the system,

τ = RC, which is related to the product of the tube resistance and the

tank’s capacity. Large resistance and capacitance result in a large time

constant (i.e. a long time to drain). A higher resistance should decrease

the rate that the tank height falls. If the tank has a large capacity, then

the water level also falls slowly.

Since pressure and water height are linearly related, P (t) = ρgH(t),

we can divide our equation by the constant ρg and get the same ex-

pression for the rate of change of the height of the water,

1

ρg

dP (t)

dt
= −P (t)

τρg
−→ dH(t)

dt
= −H(t)

τ

This expression is useful so that we can compare to our experimental

data in Figure 3.3 more easily.

You might be familiar with solving an expression like this; if not we

will walk through the solution here. Note that since the right side of the

equation is a currently unknown function of t, you just can’t integrate

directly. However, a simple trick allows for easy integration. In order

to solve this differential equation, we separate the variables,

dH(t)

H(t)
= −dt

τ
,
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and integrate both sides,

ln(H(t)) = − t
τ

+B,

where B is a constant of integration. We find the constant by using the

initial state of the system, namely we know the initial height, H(t = 0).

ln(H0) = −0

τ
+B.

Therefore using the now known value of B,

ln(H(t)) = − t
τ

+ ln(H(0)).

Taking the exponential of both sides,

H(t) = e−t/τ+ln(H0) = eln(H0)e−t/τ = H0e−t/τ ,

the final result is thus,

H(t) = H0e−t/τ .

The height decays exponentially. The value of τ controls how quickly

the exponential falls. When τ is a large number the tank takes along

time to drain and when it is a small number, it takes less time to drain.

In the previous experiment on resistance we measured R. Using this

measured value of R and the cross sectional area of the tank our value

of τ for the experimental measurements was ∼ 1373 seconds. The pre-

dicted curve is shown as the solid curve in Figure 3.3 and we see quite

excellent agreement.

The data and the model are a near perfect fit and the only empirical

parameter is the tube resistance which was determined in a separate

experiment. It seems that our equations are able to make accurate

quantitative predictions.

3.3 Exponentials

The exponential function is a wonderful function. It shows up in a

a number of systems from hydraulic, electrical, mechanical, chemical,

thermal, biological, financial, and many more. Even though it is likely

you have encountered this function before, it is important to make sure

you understand a few properties.
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Let’s just plot the function,

y(t) = e−t/τ .

The time constant, τ , determines the characteristic time for decay. In

Figure 3.4 we show a time constant of τ = 1, τ = 2 and τ = 6. If

one draws a straight line from the initial value at t = 0 to the value

of τ on the time axis, this straight line will have the same slope as the

exponential at t = 0. This linear extrapolation is shown as the dashed

line in Figure 3.4. Using this type of extrapolation of the slope is an

excellent way to estimate the time constant from experimental data.

Note that when t = τ the function has the value of 1/e ≈ 0.37. The

value of y = 1/e is shown as the dotted line in Figure 3.4.

Another trick is that instead of plotting the x axis of our figures as

time in units of seconds, we could plot the time axis in units of τ . This

change might sound odd, but is no different than changing our units

from seconds to minutes to hours. When we plotted the exponential

function in these time units all the curves would look the same. There-

fore, any system with exponential behavior has the same basic function,

it can just be stretched out in time or in its vertical scale.

3.4 Capacitors in circuits

After the resistor, the capacitor is the next electrical component we

will introduce. Physically, a capacitor can be created from two parallel

plates separated by a thin nonconducting layer such as a gap of air

or a polymer film. The symbol on a circuit schematic is two parallel

lines, representative of the capacitor’s physical nature. A capacitor can

act as an energy storage device where the capacitor stores the energy

in the electrical field between the two plates. A detailed description of

the mechanism behind the capacitor’s behavior is probably best left

for another day, we will just describe the result here. When you buy

capacitors, they come in different shapes and sizes. A few common

ones that we will use in lab are shown in Figure 3.5. There are many

different styles, though they all have two wires for connection in the

circuit. We will typically use non-polarized capacitors which mean that

they work the same no matter what direction they are placed in the

circuit. Some capacitors are polarized, meaning that the direction in the
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Figure 3.4 Effect of an increasing time constant on the resulting
dynamics of exponential decay. Here we show results for y = e−t/τ

for τ = 1, 2, 6 as the solid lines. The dashed lines are for the initial
linear extrapolation. On the upper figure the y-axis is linear and on
the lower it is logarithmic.

circuit matters (i.e. the positive side marked on the capacitor needs to

be connected to the positive terminal of the battery).

The capacitor has a simple relationship between the charge stored in

the capacitor and the voltage across the capacitor as

Q(t) = C∆V (t).

Now I have to admit that the symbols here with the hydraulic analogy

are starting to get confusing. I am using standard notation for the

two different fields, but there is some overlap in the symbols. In the

electrical world Q is charge measured in coulombs, C is the capacitance



3.4 Capacitors in circuits 31

Figure 3.5 Picture of two styles of capacitor we will use along with
the circuit schematic symbol. Capacitors come in many other shapes
and sizes.

measured in farads, and ∆V is the voltage across the capacitor. I know

this is confusing, but we will soon drop the hydraulic analogy and

just stick with circuits. The more charge stored in the capacitor the

higher the voltage. Note the analogy with the hydraulic world where

the volume stored in the tank is proportional to the pressure. With the

electrical capacitor the charge stored in the capacitor is proportional

to the voltage. Note that I have not proven this capacitance expression

in any way, I am just stating it.

The charge in the capacitor goes up or down as current flows and at

any time the charge is given by

Q(t) = Q(0) +

∫
I(t)dt

Recall the current has units of amps, or coulombs per second. Thus

when I integrate current with respect to time I get the total charge.

This expression is just like with the tank where the volume of water
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stored in the tank goes up or down according to how much water flows.

Here the charge stored in the capacitor goes up or down according to

how much current flows.

The only breakdown of our analogy is that the current flows through

the capacitor. Whatever current goes into one lead comes out of the

other. This is not the way our hydraulic analogy worked; the tank has

just one outlet. It is important to remember that analogies are just

that. I find the hydraulic analogy useful at the beginning of circuits

because we can literally see with our eyes the concepts related to flow,

storage, and pressure.

Taking the time derivative of the charge expression we obtain,

dQ(t)

dt
= I(t).

Using the relationship between charge and voltage we have

C
dV (t)

dt
= I(t).

The rate of change of the voltage across the capacitor is proportional

to the current flowing through. In the hydraulic case we had the anal-

ogous expression where the rate of change of pressure in the tank was

proportional the flow rate out of the tank.

The numerical value of C has units of farads. One farad is equal to

one coulomb of charge accumulated when the capacitor is charged to

one volt. Capacitors come in all sorts of physical packages and sizes.

Like resistors, the values of the capacitance can vary by many orders

of magnitude. The smallest capacitors we will use in this course are

about 10 picofarads (pF). A picofarad is 10−12 farads. The largest we

will use are about 100 microfarads (µF) or 0.0001 farads. A one farad

capacitor is really large for our considerations.

For your reference, the capacitor values are stamped with a number

for their value. For example, you might pick one up and it is stamped

104 or some other 3 digit code. The 104 means 10 × 104 pF. This

is equivalent to 10 × 104 × 10−12 farads or 10−7 farads or 0.1 µF. A

capacitor stamped 473 means 47×103 pF. Below in table 3.4, are some

values we will often use,
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Label C value

102 1 nF

103 10 nF=0.01 µF

104 100 nF=0.1 µF

105 1 µF

106 10 µF

3.5 RC circuits

To complete our hydraulic analogy, we need to add the pipe to the tank

in order to drain it - a resistor in our circuit world. Consider a resistor

and capacitor arranged in series as shown in Figure 3.6. The voltage

between the resistor and capacitor will be considered the output of the

circuit, Vout. Initially, the voltage at the left side of the resistor will be

set by some external source to Vin. Once the capacitor is charged up in

this initial setup, the voltage at Vout is no longer changing and thus no

current is flowing. When there is no current flow through the resistor

Vout(0) = Vin. At t > 0 the switch is instantaneously closed (the valve

is opened) and current can begin to flow. At the instant we close the

switch Vin is set to zero.

At any instant, the current through the resistor is given by Ohm’s

law. Since Ohm’s law requires that we use the voltage drop across the

resistor, we have,

IR(t) =
Vin − Vout(t)

R
.

At t > 0, Vin = 0 and therefore the current is given as

IR(t) =
−Vout(t)

R
,

where we explicitly remind ourselves for now that the current and out-

put voltage are functions of time.

Using our law for the capacitor, the current through is given as,

C
dVout(t)

dt
= IC(t).

Since the components are in series, the current through the resistor, IR,
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Figure 3.6 Circuit that we will analyze. Initially all voltages are set
to 1 and then suddenly the input voltage, Vin, is pulled down to
zero. A measurement is made at the voltage between the resistor
and capacitor, Vout.

must equal that through the capacitor, IC . Recall that this statement

is invoking Kirchhoff’s current law. We therefore have,

C
dVout(t)

dt
= −Vout(t)

R
.

The equation can be rewritten as

dVout(t)

dt
= −Vout(t)

RC
.

We can notice from the units of the time derivative, that the product

RC has units of time. If we define the time constant as τ = RC, then

you should notice the analogy with the draining tank.

dVout(t)

dt
= −Vout(t)

τ
.

The equation is exactly the same, only the symbols and physical mean-

ing is completely changed. Just as with the hydraulic example, the time



3.5 RC circuits 35

constant τ = RC increases with an increase in the both resistance and

capacitance.

Even though we could use the hydraulic analogy to get the solution,

let’s work through the details again. Separating the variables of this

equation,

dVout
Vout

=
−dt
τ
,

and integrating yields,

ln(Vout) =
−t
τ

+B,

where B is a constant of integration. Applying the initial condition

Vout(0) = 1 yields,

ln(1) =
−0

τ
+B or B = 0.

Taking the exponential of both sides of the equation we have

Vout = e−t/τ .

The solution to the problem is the same as in the hydraulic analogy.

Experimental data are shown in Figure 3.7.

What is also interesting is that if we start the system where Vout =

Vin = 0 initially and then raise the input voltage to 1 volt, the mathe-

matical solution to this problem is the same, only the capacitor charges

up, exponentially approaching 1 volt. Let’s work this out in detail.

The equation in this case is the same as above, except that Vin = 1,

thus

dVout(t)

dt
=

1− Vout(t)
RC

.

Separating the variables of this equation (and using τ = RC),

dVout
1− Vout

=
dt

τ
,

and integrating yields,

−ln(1− Vout) =
t

τ
+B,

where B is a constant of integration. Applying the initial condition
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Figure 3.7 Measurement of voltage between resistor and capacitor
in circuit of Figure 3.6. The value of the time constant was selected
to be RC = 0.001 s. The dashed line shows the linear extrapolation
using the 1 ms time constant. The measured behavior is extremely
close to the predicted behavior.

Vout(t = 0) = 0 yields,

ln(1) =
−0

τ
+B or B = 0.

Taking the exponential of both sides of the equation we have

1− Vout = e−t/τ .

or

Vout = 1− e−t/τ .

The solution for filling the capacitor is identical to the draining, only

the solution is “flipped upside down”.

3.6 Square wave driving: filling and draining the
tank

Imagine the following experiment, shown schematically in Figure 3.8.

Initially the tank is empty. The pressure at the inlet is suddenly set to
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a high value and held constant; the tank starts to fill. As the tank fills,

the pressure drop across the pipe decreases and thus the rate of filling

slows. The height of the water exponentially approaches an equilibrium

state where the pressure across the pipe is zero.

Figure 3.8 Hydraulic experiment where the pressure at the inlet of
the pipe varies with time. The pressure starts at zero and then is
held constant and high for some time, and then reduced back to
zero.

Once the tank fills and reaches equilibrium, imagine we suddenly

reduce the inlet pressure to zero. The tank will then start to drain

following the exponential decay we saw previously. The behavior of the
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height of the water as a function of is shown schematically in Figure

3.8.

Now imagine that when we start filling the tank in the first step, we

hold the pressure high for only a short amount of time before reducing it

back to zero. The water height has insufficient time to reach equilibrium

and only fills up a little before we pull the plug. It should seem intuitive

that the shorter the amount of time we hold the pressure high, the less

water goes into the tank.

How we define a “short” amount of time depends on the system. If

the tank is very large and has a massive capacity, then we will need to

hold the pressure high for a long time to fill the tank. Likewise, if the

tube is very narrow and of high resistance, then the flow rate is so slow

that regardless the size of the tank it may take a very long time to fill.

The mathematical solution showed that RC (the product of resistance

and capacitance) set the time constant for how long it takes the system

to equilibrate. So to be precise, if the time we hold the pressure high is

much greater than RC we can expect the tank to fill all the way and

come to equilibrium before we drain the tank. If the pressure is held

high for a time much shorter than RC, then we would expect that there

is insufficient time for the water level to change much.

We can test this idea out quite simply in the lab. We can construct

the circuit in Figure 3.6. With the lab hardware, we can easily set the

voltage on the input Vin, to follow a periodic square wave. For the ex-

periment we set RC = 1 ms (millisecond). The behavior at different

periods of the driving is shown in Figure 3.9. Note that in this figure we

show one full cycle of the square wave input, so for each plot the time

axis gets shorter and shorter. The behavior we see is what we would ex-

pect from our physical argument of the hydraulic system above. When

the voltage is held high for 5 ms we see the capacitor “fills up” to the

top before the voltage is reversed and the capacitor drains. When the

voltage is held high for 2.5 ms, we see that the capacitor almost, but

doesn’t quite fill up. As we continue changing the time, in the final

experiment when we hold the voltage high for 0.05 ms before switching

again, you see that the output voltage on the capacitor has insufficient

time to change much.
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Figure 3.9 In this experiment RC = 1 ms. In each experiment, the
switching time is varied. Right to left and then down, the period of
the square wave is 10 ms, 5 ms, 1 ms and 0.1ms. The dashed blue
line is Vin and the solid red line is Vout. Note that the time axis
change in each figure.

3.6.1 Transient effects

It is important to note here that the results shown in Figure 3.9 are for

the periodic steady state of the system. Meaning I have been blinking

the voltage up and down for some time, such that the memory of the

initial charge on the capacitor has been erased. When you are looking

at the periodic steady state, then the output voltage in our circuit

becomes equal to the average value of Vin.

We can understand the transient effect due to the initial charge on the

capacitor (or level of water in the tank) by conducting the experiment.

The result shown in Figure 3.10 starts with the capacitor charged to

1 volt and then we start the square wave at a high frequency, 5 times

RC. In Figure 3.10 we see two time scales; one time scale is the natural

RC time for the circuit and the other time scale is set by the driving. If

we ignore the wiggles set by the driving, we observe that Vout decreases
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exponentially toward average value of Vin. It takes just a few RC times

to settle into the periodic steady state. This idea of a periodic steady

state will be an important one throughout the course.

Figure 3.10 Transient effect when we start the capacitor in a fully
charged state. Here in order to capture the transient, the RC time
was set to 1 second. The period of the square wave driving is set to
5 times RC.

3.7 Pulse width modulation

The averaging effect seen here with the RC circuit is related to pulse

width modulation, PWM. PWM is sometimes used in dimmer switches

on lighting. Your eyes are unable to respond instantaneously to changes

in light intensity. Like a capacitor or the tank of water, your eyes take

time to respond. So if a light blinks very rapidly on and off, your eyes

cannot perceive the blinking light. When the light is rapidly blinking,

you perceive the intensity to be constant but dimmer than when the

light is steadily on. The perceived intensity of light is controlled by

varying the amount of time the light is on relative to the amount it

is off in one cycle; known as the duty cycle. You see the average light

intensity, not the individual flicker.

The same averaging effect can be used in control the heating element
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on an electric stove. If the heater is rapidly switched on and off, the

temperature of the water in the pot has insufficient time to respond to

such changes. It takes time to heat and cool. As with the other exam-

ples, the water in the pot only “perceives” the duty cycle of the heating

element. The knob that controls high and low setting simply adjusts

the duty cycle. These two examples are showing the same averaging

effect we see in Figure 3.10.





4

RC circuits: Sinusoidal driving

In the last chapter with RC circuits, we found that the output of a

simple circuit with a resistor and capacitor depended on the frequency

of the square wave driving. We saw different behavior at high and low

frequency. We also found the notion of what counts as “high” frequency

in an application depends upon the period relative to the RC charging

time of the circuit.

In this chapter we will start to analyze the case of sinusoidal varia-

tions rather than the square wave. The response of circuits to sine waves

is extremely important to us and the ideas presented in this chapter

emerge in many other physical, engineering, and natural systems. We

will focus on the circuit applications here, but be aware that the ideas

here are much broader than electronic circuits. If you never touch an-

other circuit after this class, the concepts we start in this chapter will

reappear in many other contexts. At this point in our discussion, I will

drop the hydraulic analogy. It has served us well and can be a use-

ful thinking tool for understanding RC circuits qualitatively. However,

analogies can only be taken so far before they lose their effectiveness

and we have reached that point.

The reason that sine wave forcing is so important to us is that, as you

will learn later in your education, we like to represent arbitrary signals

as a sum of sine waves of different frequencies. You are likely familiar

with this idea at least intuitively. In an orchestra, each instrument gives

out tones at different frequencies and then your ear hears all of them

combined to make the music.

In measurements, there are often different frequencies which can be

embedded in our measurement. Many times, we want to isolate particu-
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lar frequencies in order to separate signal from noise. In lab, we will see

this idea many times and thus you will see the seemingly abstract ideas

and trigonometric relations presented in this chapter put to practice.

4.1 Individual resistor and capacitor: sine wave

Let’s start with looking at an individual resistor and capacitor. We

vary the voltage across the part sinusoidally and monitor the current

through the part. See Figure 4.1. For both cases, let’s set the amplitude

of the voltage to 1 V and the vary the frequency ω, which here will be

in units of radians per second. We can represent the input voltage as

Vin(t) = sin(ωt).

Figure 4.1 Sinusoidal driving of a resistor and capacitor individu-
ally. In the plot we show schematically the magnitude of the current
as a function of frequency. Note that the current magnitude through
the resistor and capacitor are equivalent when ωRC = 1.
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Aside: For analysis it is convenient to use the natural unit for frequency,
radians per second. In lab we will use the more common unit for frequency
- the Hertz (Hz). A frequency of 1 Hz is one complete cycle per second. The
two units differ by a factor of 2π. If you forget about the units, you will start
noticing that a lot of your results tend to be off by about a factor of 6.

For the case of the resistor, we have Ohm’s law, ∆V = IR, and thus

the current is

IR(t) =
1

R
sin(ωt).

The current is instantaneously related to the voltage and there is no

effect of the frequency. The magnitude of the current (i.e the number

in front of the sine term) is the inverse of the resistance, |IR| = 1/R.

For the capacitor where CdV/dt = I,

IC(t) = Cωcos(ωt).

This result is more interesting. The amplitude of the current depends

on the frequency. We therefore say that the magnitude of the current

is |IC | = Cω. At very low frequency, the current is small and thus the

capacitor effectively has very high “resistance”. At very high frequency

the current is high and the capacitor has very low “resistance”.

I say resistance in quotes, because it is not a true resistor. Later we

will generalize this idea, but let’s hold off on that discussion for now.

It is important that the phase of the current relative to the voltage is

different in the resistor and the capacitor. In the resistor, voltage and

current are perfectly in phase. Sine for voltage, sine for current. For

the capacitor, voltage and current are 90 degrees out of phase. Sine for

voltage, cosine for current. Phase refers to how much the two otherwise

identical signals are shifted in their cycles relative to each other.

4.2 RC driven by a sine wave

Now consider the resistor and capacitor in series as in the last chapter

and shown in Figure 4.2. Based on what we saw with the square wave

voltage we would expect the following behavior. When the frequency is

low then Vout ≈ Vin; there is sufficient time for the capacitor to charge.

We can understand this behavior using our voltage divider. In the last

section we argued that when the frequency was low the capacitor acted
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like a very large resistor. In a voltage divider of the arrangement in

Figure 4.2 the output voltage is close to the input voltage as shown

schematically.

At high frequency, we know from the last chapter that the output

voltage doesn’t fluctuate much. We have argued that at high frequency

the capacitor had very low “resistance”. Using the voltage divider con-

cept would imply that at high frequency the measured output voltage

would be closer to ground than Vin

Figure 4.2 Sinusoidal driving of a resistor and capacitor in series.
As seen in Figure 4.1, at low frequency the capacitor behaves as
very large “resistor” and at high frequency the capacitor behaves
like a very small resistor.

The aim so far is to provide a little intuition about how the basic

RC circuit behaves. Let’s explore the system experimentally. In Figure

4.3, we show the input and output voltages at different frequencies.

This figure is analogous to the one we looked at in the previous chapter

where the input was a square wave. We do in fact see the behavior

described above. At low frequency the input and output voltages are

the same. At high frequency the amplitude of the output voltage goes

to zero.

As described in the previous chapter, everything here is assuming the

sinusoidal steady state. We have waited until the system has come to

equilibrium and is only responding to the sinusoidal driving. Looking

at the experimental data we notice a few things. If I drive an RC circuit

with a sine wave, then the output voltage

• is a sinusoidal wave of the same frequency.
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Figure 4.3 In this experiment RC = 1 ms. In each experiment,
the frequency varied. Right to left and then down, the frequency
increases by a factor of 10 each figure. The dashed blue line is Vin

and the solid red line is Vout. Note that the time axis change in each
figure. Note that even though the curves look computer generated,
this is real experimental data.

• can have a different amplitude than the input voltage.

• can have a phase shift relative to the input.

• has an amplitude and phase shift that depend on the frequency.

Since the circuit is composed of linear components, then we could

actually show more rigorously that the output voltage must be the

same frequency as the input signal. By linear components we mean

that the voltage and current are linearly related - not that the current

is proportional to the square of the voltage or some other such law.

The four bullet points above are very important and common to all

linear systems in other physical domains. They provide a methodology

for analyzing the circuits and compactly displaying the results as we

will now discuss.



48 RC circuits: Sinusoidal driving

4.3 Analysis of the low-pass filter

Now let’s consider this same problem of the resistor and capacitor in

series mathematically. The resistor is driven with an external source as

Vin = sin(ωt) where the frequency ω would be in radians/second and

is something we control. For simplicity I am assuming the amplitude

of the input voltage is 1 volt, though this assumption does not cause a

loss of generality.

Now let’s use our circuit laws to analyze this case in detail. Since

the two parts are in series, Kirchoff’s current law would state that the

current through the resistor must equal that through the capacitor.

There is only one current, I. The current through the resistor is,

I =
Vin − Vout

R
.

and the current through the capacitor is,

I = C
dVout
dt

.

Equating the terms we obtain,

RC
dVout
dt

= Vin − Vout.

The resulting equation is exactly what we saw in the previous chapter.

Experimentally, when we checked the output of this circuit we found

a sine wave of a certain amplitude and a phase relative to the input sine

wave. This output sine wave repeats and repeats with no change. We

are interested in figuring out the amplitude and phase once the output

has reached (here is this term again so you don’t forget) the periodic

steady state.

We assume the generic sinusoidal forms of the input and output

voltage and substitute those into our equations, Vin = sin(ωt) and

Vout = Asin(ωt+ φ), we have

RCωAcos(ωt+ φ) = sin(ωt)−Asin(ωt+ φ).

We can now solve this expression for the amplitude and phase, A and

φ. It might not be immediately obvious how to solve this equation. For

now, let’s just present and discuss the result and then follow up with

a pretty simple (but somewhat detailed) derivation. The result of the
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Figure 4.4 Low pass filter. Relative amplitude as a function of fre-
quency and the phase angle in degrees as a function of frequency
when RC = 1.

analysis is

A =
1√

1 +R2C2ω2
,

φ = tan−1(−RCω).

We can get a better handle on what is happening by generating a plot

of A and φ as a function of frequency, shown in Figure 4.4.

This plot tells us everything we ever would hope to know about

this circuit. It tells us how the output amplitude and phase vary as a

function of frequency. Showing this type of plot is much more succinct

than showing hundreds of snapshots as in Figure 4.3 - since each output

sine wave is fully characterized by these two numbers, the amplitude

and phase. This type of plot is referred to as a Bode plot. This circuit is

called a low-pass filter as it allows low frequency signals to pass through

unchanged. At low frequency the output amplitude is the same as the

input (A → 1) and the phase between output and input goes to zero.

At high frequency the output amplitude decreases as the frequency

decreases. Notice that by convention, I have used log-log and linear-log

coordinates for the amplitude and phase. The use of log coordinates

on the x-axis allows us to more clearly see what is happening over
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many orders of magnitude in frequency (4 in this case). The use of log

coordinates on the y-axis in the amplitude plot allows us to see how

the signal decreases over many orders of magnitude. In this case we

can clearly see from the plot, that at high frequency, a factor of ten

increase in frequency gives a factor of 10 decrease in amplitude. Power

law functions show up as straight lines on log-log plots. While the exact

functional behavior might not have been predictable, it is exactly what

we have described up to now and consistent with our trusty hydraulic

analogy.

Notice that the product RC must have units of time (seconds if we

express R in ohms and C in farads). The term RCω must have no

units. We can also easily see the low and high frequency limits from

our expressions for A and φ. When

• ω → 0, then A→ 1 and φ→ 0

• ω →∞, then A→ 1/(RCω) and φ→ −90 degrees.

• when RCω = 1 then A = 1/
√

2 and φ = 45 degrees. This point will

be the “knee” in the Bode plot.

The important frequency of the filter is the value of ω = 1/(RC)

rad/s or ω = 1/(2πRC) Hz. This frequency is the knee of the ampli-

tude plot and will be often referred to as the characteristic or cutoff

frequency. It is called the cutoff frequency because above this value is

where attenuation of the signal really sets in.

4.3.1 Low-pass derivation

Let’s quickly derive the result for the low-pass filter. If you skip the

details here for the first time reading you will be fine. I just want you

to understand that the expressions for A and φ are something you can

calculate and not something I pulled from thin air. Let’s start with the

expression from above,

RCωAcos(ωt+ φ) = sin(ωt)−Asin(ωt+ φ).

Using trigonometric identities often called the “product and sum” for-

mulas (I always forget the exact from but I can easily look them up),

we can obtain

RCωA (cos(ωt)cos(φ)− sin(ωt)sin(φ)) =
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sin(ωt)−A (sin(ωt)cos(φ) + cos(ωt)sin(φ)) .

The only way this equation can be true at all times is that if all the

terms with cos(ωt) (blue terms) and sin(ωt) (red terms) balance sepa-

rately. Think about this and make sure you understand.

Grouping all the terms with cosine together we have

RCωAcos(ωt)cos(φ) = −Acos(ωt)sin(φ)

Canceling Acos(ωt) from both sides gives,

RCωcos(φ) = −sin(φ)

or

tan(φ) = −RCω.

We already have derived the expression for the phase.

Now we can group the sin(ωt) terms to obtain,

−RCωAsin(ωt)sin(φ) = −Asin(ωt)cos(φ) + sin(ωt).

Canceling the sin term and rearranging we obtain,

A =
1

cos(φ)−RCωsin(φ)
.

This expression gives the amplitude of the output divided by the am-

plitude of the input. It is a complicated looking function and hard to

interpret since the amplitude depends upon the phase.

A better form for our answer uses the trigonometric identities to

reduce the amplitude equation to a more explicit form. We are do-

ing nothing more than re-arranging the equations into a simpler form.

Namely we can use the trigonometric relations that state,

cos(−tan−1(RCω)) =
1√

1 +R2C2ω2
,

sin(−tan−1(RCω)) =
−RCω√

1 +R2C2ω2
.

Again, these are trigonometric identities that I would not expect you

remember but are easy to look up.
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Substituting these trig identities into the amplitude equation pro-

vides,

A =
1

1√
1+R2C2ω2

+ R2C2ω2√
1+R2C2ω2

=
1√

1 +R2C2ω2

4.4 High-pass filter

Figure 4.5 High-pass filter circuit arrangement for R and C. As seen
in Figure 4.1, at low frequency the capacitor behaves as very large
“resistor” and at high frequency the capacitor behaves like a very
small resistor.

Now let’s change the order of the parts as shown in Figure 4.5 and

find out what happens. Let’s see what using the idea that we can think

of a capacitor acting as a high resistance at low frequency and low re-

sistance and high frequency gives us. Using our voltage divider logic,

at low frequency, the high capacitor “resistance” means that the out-

put voltage should be close to ground. At high frequency then the low

capacitor “resistance” means the measured output voltage should be

close to the input. These two limits of the behavior are exactly the

opposite as in the low-pass filter.

If we conduct the analysis as before and assume that Vin = V sin(ωt)

and Vout = AV sin(ωt+ φ), when we do the analysis we obtain for the

amplitude and phase,

A =
RCω√

R2C2ω2 + 1
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Figure 4.6 High pass filter. Relative amplitude as a function of fre-
quency and the phase angle in degrees as a function of frequency
when RC = 1. Note the logarithmic axis.

φ = tan−1
(

1

RCω

)
.

These functions are plotted as the Bode plot in Figure 4.6.

The behavior is opposite from before. Namely, when

• ω → 0, then A→ RCω and φ→ 90 degrees.

• ω →∞, then A→ 1 and φ→ 0.

• RCω = 1 then A = 1/
√

2 and φ = 45 degrees. This point represents

the knee in the Bode plot.

The filter is called a high-pass filter since it allows high frequency

signals to pass through unmodified. Again, the frequency given by

ω = 1/(2πRC) Hz is the important one and is called the cutoff or

characteristic frequency. While of course the behavior is a continuous

transition, but generally below the cutoff frequency and the signal is

attenuated and above it, the signal is mostly unchanged.

4.4.1 High-pass derivation

The derivation for the high-pass proceeds exactly as the low-pass and

I include the details here for your reference. Again, if you skip through
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the derivation the first time through you will be OK. I am including

these details so you can go back and understand where all the results

we use come from.

The current through the resistor is

I =
Vout
R

.

and the current through the capacitor is,

I = C
d (Vin − Vout)

dt
.

Thus

RC
d (Vin − Vout)

dt
= Vout.

Substituting in the generic sinusoidal form as before gives us,

RCω (V cos(ωt)−AV cos(ωt)cos(φ) +AV sin(ωt)sin(φ)) =

AV (sin(ωt)cos(φ) + cos(ωt)sin(φ))

Grouping the sin(ωt) terms (red) together gives,

tan(φ) =
1

RCω
.

and grouping the cos(ωt) terms (blue) give,

A =
RCω

sin(φ) +RCωcos(φ)
.

At this point we could use these two expressions to create the plot of

amplitude and phase as a function of frequency.

We could also rearrange the equation and get a different form by

using our trig identities again,

cos

(
tan−1

(
1

RCω

))
=

1√
1 + 1

R2C2ω2

=
RCω√

R2C2ω2 + 1
,

sin

(
tan−1

(
1

RCω

))
=

1
RCω√

1 + 1
R2C2ω2

=
1√

R2C2ω2 + 1
,

Combining the expressions gives the amplitude as

A =
RCω√

R2C2ω2 + 1
.
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4.5 Experimental Bode plots

As we will see in the lab, it is quite easy to create a Bode plot of

a circuit experimentally. Using our hardware in the lab, it is easy to

create a sine wave of voltage of a known amplitude and frequency to

drive our circuits; i.e. we can set Vin to whatever we like. To make

the Bode plot we just adjust the frequency of the driving and record

the amplitude and phase of the output. We can imagine doing this if

we refer back to Figure 4.3. In each case the amplitude of the input

is one volt. We could work through data such as this and extract the

amplitude of the output sine wave and the time deference between the

peaks on the input and output. The time difference between the peaks

is related to the phase by taking the ratio of the delay between the

peaks to the total period. For the 4 sub-figures shown in Figure 4.3

where RC = 1 ms, we could extract the following 4 data points from

the experimental data.

ω (Hz) ωRC Period (ms) A ∆t (ms) φ (degrees)

15.9 0.1 62.8 0.99 1 6

159 1 6.28 0.72 0.73 42

1,590 10 0.628 0.11 0.15 85

15,900 100 0.0628 0.099 0.0155 89

Completing such a table for a wide range of frequencies would allow

us to capture the experimental Bode plot. It would take just a little

work to record enough data to plot the experimental Bode plot. We

would just plot the A and φ from the table as a function of frequency.

Fortunately, the hardware we use in lab will allow us to create an ex-

perimental Bode plot with the click of a button. The software interface

will conduct the experiment automatically. The software will set the

frequency of the input, measure the amplitude and phase of the out-

put, and then adjust the frequency to another value and repeat. The

software controls the hardware to do what we would do by hand but in

an automated way. While the automated generation of the experimen-

tal Bode plot makes our life easier, never lose sight of what is really

happening inside.

One difference we find from what I have shown you thus far is that

the hardware will default to plot the amplitude in decibels. The decibel,
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dB, in this case is defined as

dB = 20log10

(
Vout
Vin

)
For every factor of ten decrease of the output divided by the input we

would see -20 dB drop. For every factor of ten increase in the output

relative to the input, we would see 20 dB increase. Since the dB is

already is taking the logarithm, we plot the dB on a linear scale. Plot-

ting dB on a linear scale or plotting Vout/Vin on a logarithmic scale are

equivalent.

Truth be told, I am personally not a fan of dB. To me it has al-

ways seemed extraneous and we could accomplish the same thing more

clearly by just generating plots on a log scale, as I have done in the

previous figures. However, the dB has been around a long time and is

in common use, so I have come to accept it. You just can’t make the

rest of the world do what you would want (perhaps this is the most

useful advice in this entire book).

One very important feature of reading the Bode plot is how the

amplitude decreases with frequency. Look back at the Bode plot for

the low-pass filter. At high frequency, well above where the amplitude

curve transitions from flat to dropping off, notice that the amplitude of

the output decreases a factor of 10 for every factor of 10 in amplitude.

This is called a first order filter. In dB the amplitude decreases by 20

dB for every factor of ten change in frequency for a first order filter.

A second order low-pass filter would be where for every factor of 10 in

frequency, the amplitude would drop by a factor of 102 or 100. A third

order filter, the amplitude would drop by a factor of 103 or 1000 for

every factor of 10 in frequency. In this course, we will very often pay

the most attention to the amplitude part of the Bode plot.

4.6 Use of filters for noise reduction

Filters have a lot of uses and we will see them in many of our labs. I

will let you see the behavior and uses for yourself rather than spend-

ing too much time explaining them in words. We will use filters often

to separate signals from noise. All real measurements are subject to

electrical noise which can come from many sources. One of the most
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Figure 4.7 Example signal input (upper) and output (lower) to an
RC low-pass filter with a cutoff frequency of 1.6 Hz. In this example
the input is the sum of a 100 mV, 60 Hz sine wave and a 10 mV, 1
Hz sine wave.

common sources of noise we will encounter is noise at 60 Hz. The AC

power in our buildings operate at 60 Hz. All the wires on your circuit

act like antennae that pick up this strong 60 Hz signal. You will find

a lot of other sources of noise at different frequencies coming from the

lights (which in our room will provide a signal at 120 Hz), nearby radio

stations (which are quite close to us), and other electronic equipment

in the room. This noise will contaminate our final results.

Consider the controlled experiment shown in Figure 4.7. Here I took

a 1 Hz sine wave at 10 mV and added it to a 100 mV sine wave at

60 Hz. In this example the 1Hz is the “true” signal and the 60 Hz is

“noise”. Notice that the noise is larger than the signal. In this example

I have controlled the signal precisely for demonstration purposes, while

in reality the noise would be at a wide range of frequencies. I created

a single RC low-pass filter where the product of RC gives a frequency

of 1.6 Hz. The upper figure is the input signal to the filter. While we

can see a little evidence of the 1 Hz sine wave, we mostly see the 60

Hz noise. In the lower figure, we show the signal after the filter and

can now clearly see the 1 Hz sine wave and the 60 Hz noise has been

greatly attenuated. If these source of noise and the signal are more
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widely separated in frequency, then our single RC filter would really be

able to isolate the signal with little evidence of the noise.

While the example above provides a clean demonstration, it is not

what we will experience in practice. In practice the noise is not always

so regular. The frequencies and magnitude may depend on where you

are sitting and what else is going on in the room. Over the years I have

learned that if I build a demo at home it will not always work when I

bring into the lab to show the class. The overall electrical noise is much

greater in the lab than in my house.

4.7 Filters in series

We will often find that the frequency of the signal and noise are close

to each other and thus a single RC filter is not sufficient to remove

the noise. We can combine filters in series to get different effects and

provide stronger attenuation of particular frequencies. To be concrete,

let’s look at four filters shown schematically in Figure 4.8. If we put

four RC filters in series, the voltage output is just the product of the

output voltage of each filter, see Figure 4.8. You might be tempted

to think that we could just analyze the filters individually and then

multiply them to get the overall effect. This would be wonderful, but

note that V1 in the chain of four filters is not the same V1 as you would

get if you only had the first filter in isolation.

When building filters with passive analog components like resistors

and capacitors, current always flows from one filter to the next and

adding a second filter to the output of the first will change the be-

havior of the whole system. In principle, we need to analyze the whole

circuit together - all four resistors and four capacitors simultaneosly.

In practice, if we are careful we can try to minimize the current that

flows from one filter to the next and thus the overall behavior is close

to treating each filter independently. We can limit the interaction by

increasing the resistance as we move down the filter chain. If we are

careful we can approach the ideal case where filters in series are pre-

dicted by analyzing each filter independently and then multiplying the

results all together.

To demonstrate this idea let’s consider a specific case in detail. Figure

4.9 shows an example of two low pass filters in series. Each low pass
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Figure 4.8 Schematic of two low-pass and two high pass in series.
The final output is the product of each individual filter. The filters
can be treated as isolated components only when the current flow
from one to the other is very small.

filter with have the characteristic frequency (product of RC). When we

build the circuit, we can vary R and C simultaneously to keep their

product the same. When the second filter has a resistance 10 times the

first, then approximately 1/10 of the current flowing through the first

filter leaks to the next. The second filter only influences the first by

about 10 percent and the two filters are nearly independent. However,

if the resistor is smaller on the second filter than the first, then there

is significant interaction between the two filters.

To compare the measured behavior to the expected (with the as-

sumption of no coupling) we just take the product of individual low-

pass filters with the same RC value,

Vout
Vin

=

(
Vout
V1

)(
V1
Vin

)
=

(
1√

1 +R2C2ω2

)(
1√

1 +R2C2ω2

)
,

Vout
Vin

=
1

1 +R2C2ω2
.

This predicted result for amplitude versus frequency is shown compared

to the experimental data in Figure 4.9. When we compare this model

to the experiment, we see excellent agreement when the resistance of

the second filter in series is 10 times greater than the first (blue curve).

When the second filter in series has a lower resistance (red curve), then

the simple model does not work because we would have to analyze
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Figure 4.9 Example of 2 RC low-pass filters in series. The product of
RC in both filters is the same. On the left are the circuits built and
on the right are the experimental data. The dashed black curve is the
theoretical result assuming the two filters are independent of each
other. When the resistor in each filter in series increases as we move
from left to right, we can assume the filters are independent of each
other and the result is just the product of each filter individually.

all four components simultaneously. We can’t just chain our analysis

together.

We can abstract this idea to any number of filters in series that we

like, just keeping in mind that the true behavior will depart from the

simple product when there is significant current flow from one filter

block to the next. If we can build the chain such that the resistor

increases value significantly for each additional filter, then we can use

our simple model that the final result is just the product of the blocks.

In the next chapter, we will introduce the operational amplifier, which

is a component that will allow us to solve this filter coupling issue.

Once we have the op-amp, we can truly design independent functional

circuit blocks.

4.8 Application example: EKG

An electrocardiogram (EKG or ECG) is a diagnostic test that looks

for problems with the electrical activity of the heart. The test involves

attaching several electrodes to the patient and monitoring small voltage
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“blips” when the heart fires. The voltages that we measure through skin

contact are usually pretty small and other sources of electrical noise can

be quite prominent. The EKG is an example where we want to make

sure we are getting the true signal to the doctor.

When we build an EKG, we want to analyze the electrical activity

during a heart beat cycle which repeats at about 1 Hz. While the

heart beats around 1 Hz, there is some higher frequency (∼ 10 Hz)

characteristics in the signal that are important to the clinician. The

point of an EKG is not to measure your heat rate (that can be done

with your finger tips) but for the clinician to look closely at the electrical

activity of the heart and diagnose any problems in the timing of the

firing sequence. Retaining the true physiological signal and removing

the artificial ones is really important. Since the true signal from the

heart is relatively low voltage when measured by skin contact, we will

find that what we measure a lot of 60 Hz noise. Your body acts like a

big antennae and noise dominates the signal. A well designed filter is

needed to squish out the noise which is at a known frequency, and try

to leave the signal we want which is at a lower frequency.

In addition to high frequency noise, there are low frequency variations

in the signal too. You will measure a voltage difference across your body

which can be constant or slowing varying. This difference can depend

on your body position and the contact of the electrodes with you so

any motion will change the overall level of the voltage you measure,

regardless of the fluctuations with each heartbeat. The signal will drift

around as you move ever so slightly. This part of the signal also needs

to be removed for the doctor. To extract the true EKG signal, we will

need some combination both a low and high pass filter.

An example is shown in Figure 4.10. In the figure on the left, the blue

signal is the voltage measured by two electrodes across my two wrists.

The red signal is after passing through a set of filters. The amplitude

Bode plot for the filter I designed is shown on the right. Here I used

3 low-pass and 3 high-pass filters in series to try to isolate frequencies

in the range of 1 to 10 Hz. Now please realize that I am not qualified

to read an EKG so I am not certain if the filter that I have designed

is really that clinically useful. However, I am quite certain that the

filtered signal is much closer to what I would want than the original

blue one.
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Figure 4.10 On the left, an example of EKG data before and after
a filter to remove the noise and highlight the true signal. On the
right we show the amplitude part of the Bode plot used to generate
the EKG data. The filter was designed to try and keep frequencies
between 1 and 10 Hz.
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Operational amplifiers

Operational amplifiers (op-amps) are an important active circuit ele-

ment. We say the op-amp is an active element since it is externally

powered and ultimately it behaves the way it does because that is the

way it was designed and built. Resistors and capacitors are passive el-

ements. They both have two wires to connect to and physics sets the

relationship between voltage across and current through. True, a resis-

tor is engineered to have a specific value of resistance but ultimately

Ohm’s law (or a material’s departure from it) can be explained through

the theory of solid state physics. The same is true of the capacitor, while

we can engineer for specific values of capacitance, the general relations

for voltage and current are determined by the laws of electromagnetism.

It is important to keep in mind that the rules for op-amps are not

derivable from physics. The rules are what they are because people

manufactured and sold you a device to act this way. The device follows

the rules it does because many years ago (dating back to around 1927)

people were clever enough to begin to realize that a device that had the

op-amp’s behavior could be used to make a lot of interesting circuits.

Over the decades, the op-amp has become an important element and

is an essential building block in many of the electronic devices that

surround you today. As we will see, the op-amp can be used to construct

circuits which do various mathematical operations - hence where the

name arrived from.

It is also important to realize that not all op-amps are created equal.

They can have a range of specifications such as the voltage range that

must power them, the maximum amount of current they can supply,

and the maximum speed with which they can operate. The rules we
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will discuss in this chapter are generally followed any op-amp, but how

closely a given op-amp follows the ideal behavior depends on the specific

one used. We will largely ignore these practical issues in this reading

and discuss only the idealized behavior. You will experience some of

the practical realities and frustrations first hand in lab. It is important

to keep in mind that we are just scratching the surface of op-amps in

this course.

5.1 Schematic, inputs and outputs

The op-amp is a powered device that has two inputs and one output.

Three example circuit schematics are shown in Figure 5.1. The two

inputs on the left of the schematic are marked “+” and “-”. The reason

that the inputs are labeled with the plus and minus is that the device

essentially takes the difference of the two inputs (more on this in the

next section). There is a single output labeled on the right pointy part

of the triangle. Thus the op-amp has two input voltages, V+ and V−,

and one output voltage, Vout.

Figure 5.1 Op-amp schematics shown three ways, with a generalized
power supply, a specific 5 volt supply, and with no power supply
shown.

The device is powered, which is denoted by the vertical wires going

to Vdd (the positive power supply voltage) and Vss (the negative power

supply voltage). The output voltage of the device is limited to be be-

tween these two power supply values. You will see different conventions

with respect to drawing the power of the op-amp on schematics. Some-

times we will be explicit and draw the circuit with the generic power
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supply voltage marked (left). Usually when actually building a circuit

for testing, we will label the power explicitly as in the center figure

where we show a supply of 0 to 5 volts, as an example. Many times

we will draw without the power supply as on the right of Figure 5.1.

When analyzing op-amp circuits for general behavior the power supply

values are not so important and it is often a good first step to ignore

them. Paying attention to the values on the power supply rails becomes

critical when building real circuits in the lab.

One of the very important aspects to understand is that op-amps are

designed such that the inputs draw no current. The inputs can measure

the input voltages but do so with essentially no current draw. You can

think of the op-amp inputs as eyes that only observe the voltage and

they do not disturb the circuit. In reality, there is a very small current

flow into the inputs but it is really small. The exact amount depends on

the op-amp design, but for the devices we will use, the current flowing

into the op-amp inputs is less than the current leakage between adjacent

insulated rows on your circuit prototyping board. We will always make

use of this very good assumption, the inputs draw no current.

Since the op-amp is a powered device, the output can source or sink

current. We can hook the output up to other things such as a resistor,

a light bulb, a motor, or a speaker and the op-amp can push or pull

current through the output. The maximum amount of current is set

by the particular op-amp design and can be found on the specification

sheet for the device.

Actual op-amp chips are packaged in many ways. In lab, we will

use a particular package that can easily fit into your circuit prototyp-

ing board. There are pins that allow for easy connection of the input,

output and supply voltages. In modern electronics, op-amps would typ-

ically be in much smaller packages than the ones we use such that they

may be soldered directly to the surface of a printed circuit board. We

will typically use a “quad” package meaning that in the single 14 pin

chip, there are four independent op-amps. Each op-amp has 2 inputs

and 1 output - which used up 12 of the pins. The other 2 pins on the

chip are used for the power supply connection which is shared among

the four op-amps. The pin diagram and a photo of a quad op-amp

package is shown in Figure 5.2. You can see how the four individual

op-amps are accessed through the 14 pins.
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Figure 5.2 Op-amp pin diagram for a standard quad chip and a
picture of the chip itself in the package we will use with the bread-
board. Both images taken from the Texas Instruments datasheet.
This op-amp is the particular model we use in lab at the time of
this writing - different models would look the same and have the
same connection based on convention.

5.2 Basic op-amp behavior

The simplest thing we can do in the lab is to power up the op-amp

and adjust the input voltages while monitoring the output voltage to

see what happens. An example of the time dependent, experimental

behavior of the op-amp is shown in Figure 5.3. In this experiment, we

hold V− fixed and vary V+ as a function of time using a triangle wave,

as shown in the schematic. One particular time series is shown. From

this data we note that Vout has two states, either 5 or 0 volts. We find

that when V+ > V− then Vout = 5 V and when V+ < V− then Vout = 0.

At this point the op-amp looks like some kind of switch to find out if

V+ is greater than V−.

We can generalize the behavior of Figure 5.3 when we plot the output

voltage as a function of the difference of the input voltages, where time

is now parametric, Figure 5.4. When reading this graph note that since

every cycle is the same, in time we move back and forth along this curve.

In this figure, I am showing you 10 different experiments where I have

changed the fixed value of V− or some aspect of the time varying V+.

When plotted in this way, the behavior for each experiment collapses to

this single curve. You can’t even tell I conducted 10 experiments - the
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Figure 5.3 Voltage as a function of time. The negative op-amp input
is held fixed (red dashed), the positive input is varied as triangle
wave (blue dashed) and the output is monitored (black solid). This
data was taken for the LMC6484 op-amp powered between 0 and 5
volts.

behavior is always the same. If we conducted even more experiments,

we would see this behavior is very consistent.

Figure 5.4 Plot of output voltage versus the difference between the
positive and negative inputs. This plot shows ten experimental runs
where the V− is changed to different values. All experiments collapse
to a single behavior.

This behavior that we see experimentally is the behavior the op-amp

was designed to have. If we investigate the region right around where
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the ∆V ≈ 0 we see a very sharp transition for the output voltage. The

smallest difference between the input voltages and the output changes

state. It is important that the change of state of the output voltage

is continuous, but happens over a very very narrow range of ∆V =

V+ − V−.

We can draw some conclusions from Figure 5.4, which are

• If we observe Vout = 5 V, then V+ > V−.

• If we observe Vout = 0 V, then V+ < V−.

• If we observe 0 < Vout < 5 V, then V+ ≈ V−.

These conclusions here are written with our op-amp powered from 0

to 5 volts. For different power supply ranges, we would find the same

behavior. Note that since the op-amp output can’t exceed the power

supply, how closely the op-amp reaches the power supply limits is a

function of the op-amp’s design.

The third bullet item on our list is the most important one for an-

alyzing circuits in this course. If the op-amp circuit is doing anything

interesting, i.e. not just outputting a constant voltage which corre-

sponds to either of the power supply limits, then the input voltages

are equal.

Note that we are ignoring time in our description here. If we conduct

this experiment paying attention to time, we would find that the op-

amp does its thing very rapidly and that the behavior we described

here holds up until the rate of change of V+ becomes quite high. We

will discuss dynamics in more detail later.

5.3 Feedback

Op-amps are usually used with feedback. By feedback we mean that

the output is in some form or fashion connected back to the input.

Typically we will use negative feedback, meaning there will be some

path comprising wires, resistors, and capacitors which ties the output

of the op-amp back to the negative input of the op-amp. Feedback is

used to control the output voltage and hold it somewhere in between

the power supply rails.

Feedback is a concept that is ubiquitous in science and engineering.

Feedback is used in all control systems. A simple example of feedback
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in a control system is the thermostat in your house. In the winter in

Boston, when my house is too cold, the heat kicks in to warm it up.

When the room is too hot, the heat turns off. In this case the measured

temperature of the room feeds back through the thermostat to change

the state to the system (whether the heater is on) in order to regulate

the temperature. Feedback is used in man-made and natural systems

to control a system and hold it as steady as possible. Your body uses

feedback to regulate your body temperature.

My first home in Boston did not have automatic feedback in the

heating system. The building was old and we had a steam boiler in

the basement which pushed hot steam through the pipes and radiators

inside the home. There was no thermostat, just manual valves you could

adjust to make the radiators flow more or less steam through them. To

get the air temperature inside comfortable, you would need to get the

valves in the exact right position so the steam was flowing at just the

right rate. Everything was good as long as the weather didn’t change.

However, once the weather would suddenly become much colder outside

then the valves would be in the wrong position and the house would

be too cold. With no automated feedback it was very hard to keep the

temperature inside comfortable in light of disturbances in the weather.

In op-amps, feedback from the output to the negative input can con-

trol the op-amp’s output voltage. Without negative feedback the op-

amp can’t do anything but output a high or low voltage. In principle I

could sit there and try to adjust the input voltages by hand (just like

my old radiator valves) and try to hold the input voltage exactly right

to give the output I want. But it would be a fruitless exercise. For the

op-amp to do anything other than slam to the maximum or minimum

voltage, we need feedback. In popular culture, the words “negative feed-

back” sound bad and we all like to receive positive feedback. In control

systems, it is reversed. Negative feedback is good. Things can be stable

with negative feedback - while positive feedback causes things to spin

out of control.

The simplest example of feedback with op-amps is the circuit shown

in Figure 5.5. Here we just use a wire to connect the output voltage to

the negative input. The experimental data for this circuit is shown on

the right in Figure 5.5. Here V+ is controlled as a sine wave and the

output voltage is monitored. The figure shows both V+ and Vout as a

function of time. You see only one curve because they are right on top
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of each other. Regardless what value or function we set for V+, we see

that Vout is a direct copy. You can confirm this behavior for yourself in

the lab.

Figure 5.5 Follower circuit schematic and example experimental
output. In the experimental data on the right the input at V+ is
set to a 1 volt sine wave at 1 kHz and centered at 1 volt. The out-
put is an exact copy and we cannot see that two curves are plotted
in this figure.

If we go back and look at the last section on open loop (i.e. no

feedback) behavior, we found that for the output to be anything be-

tween the power supply rails, then V+ = V−. Since we observe that

0 < Vout < 5, then we expect these two input voltages to be equal.

Since there is a wire connecting the negative input to the output, then

Vout = V−. There is just one voltage on that wire. With this simple

use of negative feedback, we now see that output following the input is

consistent with the conclusions we drew from the basic op-amp behav-

ior with no feedback. This circuit is often called the “follower”, because

the output follows the input.

5.4 Why the follower?

You might ask, who cares about a circuit that follows a voltage. How is

this different than a wire? What a stupid circuit! In order to understand

the importance of the follower, you must remember that the current

going into the op-amp input is zero. Note that we now have a device

that can measure the voltage with essentially no current draw, and then
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replicate that voltage out of a device which is allowed to source or sink

current. This is actually very important feature which I hope you will

come to appreciate.

As an example of why the following feature is important, recall in

Chapter 2 on resistors when we discussed that most practical mea-

surement devices have an input resistance (impedance). Recall what

happens in the simple example of measuring the voltage between two

resistors when the device’s internal resistance is the same as the two

resistors. The same amount of current flows into the measuring device

as through the lower resistor in the divider. We measured 1/3 the ap-

plied voltage instead of the expected 1/2 if the device could make the

measurement with no current draw. The act of measurement changes

the expected voltage.

Figure 5.6 Example to show the utility of the simple follower circuit.
The follower completely decouples the measurement from the circuit
such that the output passes through the follower with no disturbance
since no current goes into the op-amp input.

With an op-amp follower (on the right side of Figure 5.6) the voltage

measured between the two resistors is done by the op-amp. The inputs

to the op-amp draw no current. The copied voltage on the follower

circuit output is supplied to the measurement device. The op-amp can

supply whatever current the measuring device wants for its internal

resistance and therefore the measured voltage is exactly what we would

expect under ideal conditions - 1/2 the applied voltage.

This simple example illustrates the utility of the follower. A voltage

from one part of the circuit can be fed to another such that there is no
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backward coupling. The measurement device to the right cannot impact

what happens in the voltage divider on the left. The op-amp acts as a

buffer that allows information to pass from the input to the output - but

not the other way. This behavior allows us to build functional circuit

blocks and then connect them together where adding more blocks to

the end does not effect what happens upstream. With the behavior

of the op-amp buffer, we can build (and sell) functional circuit blocks

that can be easily chained together since each block can be analyzed,

characterized, and built independent of the other ones. This ability

to build and isolate functional blocks is very important in the rapid

developments seen in modern electronics.

If you recall in our last chapter on filters, we discussed connecting

filters in series. We saw that the ideal behavior of chaining RC filters

in series was not possible in reality. Now we have a mechanism to reach

the ideal scenario. We can use the op-amp follower as a buffer between

different functional filter blocks.

5.5 Why negative feedback works

So now let’s think about how and why negative feedback is good and

positive feedback is bad (in circuits). Let’s look carefully at an exper-

iment where we build the follower circuit and drive the input with a

square wave; the experimental result is shown in Figure 5.7. When we

drive the positive input with a 1 kHz square wave and monitor the

output, we see the “following” behavior if we look at the “long” time

scales. On the left in Figure 5.7, both the input and output are plotted

though we can’t really see any difference between the two at this time

scale. On the right we zoom in right around the transition. We see that

the output takes a few microseconds to catch up to the input. Two

important observations are

• It takes time for the op-amp’s output voltage to change

• The output voltage changes continuously.

The rate that an op-amp can change its output depends on the chip,

but rates on the order of volts per microsecond like we see here are

pretty common.

Think carefully about what happens right at the transition in the
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Figure 5.7 Response of the follower circuit to a 1 kHz square wave
input. On the left when we look at long time scales the output seems
to instantly follow the input. If we zoom into the microsecond time
scale (on the right) we see there is a very short lag before the output
settles to the input. On the right the input voltage is shown as the
dashed blue line and the output is shown as the solid black.

zoomed in part of the Figure on the right. At t < 0, all three voltages,

V+, V−, and Vout are equal and at 1 volt. The system is stable and

happy. At t=0, we suddenly pull V+ = 3 V. The instant that V+ > V−,

the op-amp wants to change its state toward 5V. However, the output

voltage has to change in a continuous way - the output cannot just

jump to 5 V. Vout starts increasing very rapidly from 1 V. Since the

output is connected to V−, for all times Vout = V−. The positive input

remains greater than the negative input and the op-amp keeps working

to increase its voltage.

Somewhere around 1.5 microseconds, the op-amp output exceeds 3

volts. Remember that for all times Vout = V−. At this time the nega-

tive input voltage is now greater than the positive input voltage. Thus

remembering our open loop behavior, the op-amp’s output wants to be

driven back towards zero volts. The output has to change continuously,

so the output voltage begins rapidly decreasing.

You should start to see the stabilizing effect of negative feedback.

When the output voltage (equivalently V−) is less than V+, the output

wants to increase toward V+. When the output voltage is more than

V+, the output wants to decrease toward V+. Feedback stabilizes things

such that the two input voltages become equal very quickly. That the

op-amp does this stabilization in a few microseconds is a function of
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the op-amp’s design. There is little bit more to real story of the op-amp

dynamics, and that is a topic we will pick up in the last chapter.

If you follow the same argument for the follower circuit with positive

feedback, i.e. the output tied to the positive input, you would see the

feedback is unstable. A small difference in V+ and V− would drive the

output in a manner that would reinforce the difference until the op-amp

get’s stuck at one of the source voltage limits; 0 or 5 volts in this case.

5.6 Op-amp circuits with negative feedback

If we build and test several circuits with feedback we start to notice

the behavior of the follower circuit is pretty general. When we build

circuits with negative feedback, the output adjusts itself on a very rapid

time scale to force the input voltages to be equal. This is completely

consistent with the “rules” we found for open-loop behavior. There we

found that for the op-amp to be outputting any voltage other than the

power supply limits, V+ = V−. This ”rule” of equal input voltages holds

whenever the voltages are changing at rates much less than a volt per

microsecond (or thereabouts, depending on the op-amp). Since many

of the circuits we will build in lab, such as the EKG, where the changes

are on the time scale of a second assuming that the inputs voltages are

equal and that the rate of the op-amp is unimportant is a pretty good

assumption. For frequencies less than about 10 kHz (and often much

higher), we can typically ignore any of the op-amp dynamics.

For analyzing circuits with negative feedback, we always begin by

making the following two assumptions which allows us to quickly and

easily understand an op-amp circuit behavior.

1. The inputs draw no current. I+ = I− = 0.

2. The input voltages are equal. V+ = V−.

It is important to always try and remember that assumption 1 holds

regardless of the frequency and that assumption 2 holds at “low” fre-

quency where low typically means something less than 10 or 100 kHz.
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5.7 Some example application circuits

Two classic application circuits are shown in Figure 5.8. Here I am

going to ignore the power supply for now, and then we will deal with

it in the next section. In general, I like this procedure of analyzing

the op-amp circuit by ignoring the power supply first. Then, I’ll add

the power supply back into my analysis before actually moving toward

constructing the circuit in the lab. As we will see, when we take the

power supply into account we may need to adjust things a bit, but

fundamentally the circuit is the same.

Figure 5.8 Simple (non-inverting) amplifier on the left and inverting
amplifier on the right.

The amplifier circuit is shown on the left in Figure 5.8. This circuit

is often called the non-inverting amplifier, but the double negative in

the name always seems insane to me, so I am going just going to call it

an amplifier. I have caved in accepting the decibel as a unit so at this

point I have to stand up for something.

The labels in blue are usually all you might see in a circuit schematic,

where the annotations in red show what we would learn from applying

our two rules. The consequence of our two rules are;

• The inputs draw no current, I+ = I− = 0. For the amplifier, the

current through R1 is equal to the current through R2.

• The input voltages are equal, V+ = V−. For the amplifier, the voltage

at the negative input is equal to that set at the positive input; V− =

Vin.
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Recognizing the voltage divider off the output of the op-amp (since

no current goes into V−), we can use our voltage divider analysis to get

the answer quickly. The voltage divider equation would say that

Vin
Vout

=
R2

R1 +R2
or Vout = Vin

R1 +R2

R2

The circuit multiplies Vin by a constant, (R1 +R2)/R1. In this case the

output is always larger than the input and the output is always the

same sign as the input. Hence the circuit is an amplifier.

The circuit on the right in Figure 5.8 is called the inverting amplifier.

The annotations in blue are usually what you would see in a circuit

schematic, where the annotations in red show what we would learn

from applying our two rules. The consequence of our two rules are;

• The inputs draw no current. I+ = I− = 0. For the inverting amplifier,

the current through R1 is equal to the current through R2.

• The input voltages are equal. V+ = V−. For the inverting amplifier,

the voltage at the negative input is equal to ground, V− = 0.

Once we apply our two rules, the rest of the analysis falls into place.

We just need to apply Ohm’s law to the two resistors, knowing that

the currents are equal,

IR1
= IR2

or
∆V1
R1

=
∆V2
R2

or
Vin − 0

R1
=

0− Vout
R2

which can be written as

Vout = −Vin
R2

R1

The circuit multiplies Vin by a constant, R2/R1, and changes the sign.

The change of sign and amplitude change is why this circuit is called

an inverting amplifier. Note that we will usually use the circuit where

R2 > R1, which would amplify the output. If R1 > R2 then the circuit

would attenuate the input.

5.8 Accounting for the power supply

Let’s examine the inverting amplifier in a little more detail and now

pay closer attention to the power supply limits. We will often use a
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power supply of 0 to 5 volts in the lab. Let’s take the input voltage to

be a 1 volt sine wave centered around ground; Vin = sin(ωt). In Figure

5.9, we show the ideal behavior if we could ignore the power supply

limits as well as the true behavior. The ideal behavior would be to

invert the input signal and multiply it by 3. The op-amp is unable to

output voltage outside 0 < Vout < 5, thus the signal gets clipped when

it tries to go negative.

Figure 5.9 Inverting amplifier with a 0 to 5 volt power supply. The
actual output voltage is shown in red and the dashed line shows the
expected output if you ignore the power supply limits.

So we spot two issues here. When working with time varying signals

and op-amps, the “zero” value for the signal needs to be somewhere in

the middle of the op-amp’s power supply. In our labs we will use 0 to 5

volts as the power supply, thus for time varying signals we will center

them at 2.5 V. An input signal that goes outside the op-amp’s power

supply range is no good. If we are going to work with a 0 to 5 volt

range we will want to shift the input voltage to Vin = 2.5 + sin(ωt).

In Figure 5.10 we have shifted the op-amp circuit to be centered

at 2.5 V. Both the reference value at V+ and assumed that the input

voltage has been shifted up by 2.5 Volts together. Everything is now

right in the middle of the 0 to 5 volt supply. If we apply the rule that
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V+ = V−, we find immediately that V− = 2.5. This means the voltage

drop across R1 is Vin − V− = sin(ωt) - exactly as it was previously.

Since no current flow through the op-amp inputs, the current through

R1 must equal the current through R2. Therefore

Figure 5.10 Inverting amplifier with a 0 to 5 volt power supply.
Here, the input and reference in the circuit are shifted by 2.5 V.

IR1 = IR2 or
∆VR1

R1
=

∆VR2

R2
or ∆VR2 = ∆VR1

R2

R1

Finally, we can substitute for the voltage drops and obtain

Vout − 2.5 = −(Vin − 2.5)
R2

R1
.

The resulting behavior is sketched on the left in Figure 5.10. Notice that

everything in the analysis is exactly as before, except we are now offset

to 2.5 V relative to ground. So for the analysis and basic understanding

of the circuit, the power supply doesn’t matter. In practice if you build

a circuit and don’t properly account for the power supply limits, you

might get what initially seems to be unexpected behavior.

5.8.1 Shift your frame of reference

Notice that the analysis with the circuit referenced to ground and with

the symmetric voltage supply to the op-amp (i.e. something like +5

and -5 volts) is usually easier. The constant 0 volts shows up a lot

and therefore can make the analysis a little simpler and more intuitive.
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However, if in the lab we use the 0 to 5 volt power supply then we

need to pay attention. In many of our circuits we can use 2.5 volts

relative to ground to really act like “zero” for the signal. This is a fine

way to think, because remember that voltage level is arbitrary and the

difference is the only thing that matters.

What I tend to do when I work with the 0 to 5 volt reference for op-

amps, is to shift my frame of reference such that I shift all the voltages

to center the signal and the op-amp’s power. An example is shown in

Figure 5.11 for the amplifier circuit. On the left is the circuit with a

symmetric power supply and the signal centered at 0. On the right, I

can just shift everything by 2.5 volts. The one on the left is convenient

for analysis and design. The one on the right is one I need to build. All

we really have to do to shift our frame of reference is to move all the

signal voltages that are referenced to ground and reference them to 2.5

V.

Figure 5.11 Amplifier with a 0 to 5 volt power supply. The two
circuits are equivalent, we have just shifted the reference. The circuit
on the left is generally a little easier to analyze, while the one on
the right is what you are stuck with when working on a single sided
power supply.

This change of reference can be confusing for students just learning to

build circuits. It still messes me up sometimes. Checking and thinking

about what is your “zero” point for the signal you want is always a

critical step when debugging a non-functional circuit.
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Complex impedance

We will now go over a more sophisticated but ultimately simpler method

for analyzing circuits with sinusoidally varying voltages and currents.

This method will involve us using complex and imaginary numbers to

represent voltages and currents. Likely, the idea that we can use imag-

inary numbers in this way seems pretty odd at first. In this chapter I

will attempt to be complete in my attempt to demonstrate that it re-

ally is fine (and powerful) to use the seemingly abstract idea of complex

numbers to represent physical things like voltage and current.

Some of the sections provided in this chapter contain short proofs.

These are not essential to the core idea, but they do try to address

the inevitable questions around whether it is in fact acceptable to use

complex numbers. I will try to convince you that it is perfectly fine and

that in fact it makes our lives easier. Many of the sections here provide

some detail that may not be important on your first reading, and I will

try to denote those as we go along.

6.1 Imaginary numbers

The imaginary unit is defined as

i2 = j2 = −1.

In many disciplines i is used as the imaginary unit. In our class (and

electrical engineering in general) j is preferred to avoid confusion with

our accepted symbol for current.

Some students balk at the imaginary unit (probably because of the
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name) and think that it is a totally made up thing. Just because we

call it imaginary makes it no less “real” than many concepts in math

you take for granted. The first math that you are exposed to as a child

is counting with the natural numbers, 1, 2, 3, 4, and so on. Very soon

you are led to addition. You have 4 apples and your friend has 3. How

many do you have together? As you get a little older you are led to other

shorthand operations such as multiplication and powers. For example,

if in a class of 25 students and each student has four apples, rather

than writing 4 + 4 + 4... + 4 = 100, you simply write that the class

has 25×4 apples. Likewise when you start multiplying numbers, rather

than writing for some problem, 4 × 4 × 4 × 4 × 4 you write it more

compactly as 45. So far there is no need for us to expand our concept

of numbers beyond the natural numbers.

When you started to learn these concepts above, you found that the

inverse of these operations did require you to extend your concept of

numbers beyond the natural (or counting) numbers. Subtraction is the

inverse of addition. When you subtract a large number from a small

number, you learned that you could get negative integers. When you

take the inverse of the power, you get operations such as the square

root. When you solve x2 = 2, you find that the square root of 2 is an

irrational number. While these two examples are simple, they are times

in your life when you had to extend your thinking about what a number

was. You probably encountered this long ago and have forgotten that

it may have seemed confusing at the time. Maybe you just took this

for granted.

The imaginary numbers comes up quite naturally in the same way

when we want to solve x2 = −1. To account for the square root of

negative numbers, we have to extend our thinking just a little bit.

Despite the name, the imaginary number is just as real as any of the

extensions to our numbers you are used to.

6.2 Complex numbers

A complex number, z, is one that has a real and imaginary part,

z = x+ jy.
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The number x is called the real part and y is called the imaginary

part. Both x and y could be positive or negative, integers or irrational

numbers. We often like to plot our complex number on a plot where

the x-axis is real and the y-axis is imaginary. When we plot the point,

as in Figure 6.1, we see that we could also fix the point in the complex

plane by using a radius and angle where,

r =
√
x2 + y2

θ = tan−1
(y
x

)
Using these definitions, we can rewrite our complex number as

z = x+ jy = r (cosθ + jsinθ)

Figure 6.1 Schematic of the complex plane and some different forms
for writing out complex numbers.

Adding complex numbers is pretty easy, we just add the real and



84 Complex impedance

imaginary parts separately. If we have z1 = x1 + jy1 and z2 = x2 + jy2

z1 + z2 = (x1 + jy1) + (x2 + jy2) = (x1 + x2) + j(y1 + y2).

Graphically, the vectors pointing to the complex numbers follow vector

addition as shown in Figure 6.2.

Figure 6.2 Schematic of the complex addition.

6.3 Euler identity

The most useful definition when working with complex numbers is the

Euler identity,

ejθ = cosθ + jsinθ.

You may have encountered this identity before - if not it might seem

strange that complex exponentials are equivalent to your usual trigono-

metric functions. To make sure you understand there is no mystery

here, let me offer a little demonstration of how you can derive this rela-

tionship. The remainder of this section is to prove this relation to you.
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This section can skipped on the first reading if you want to accept that

Euler was correct and you first want to see the consequences of this

relationship.

To derive the identity you need to remember the Taylor series, which

says that if we want to approximate a one-dimensional function of x

around zero as a polynomial, you just need to match the value of the

function and all the derivatives. The Taylor series gives us the polyno-

mial expansion,

f(x) ≈ f(0)+
df

dx

∣∣∣∣
x=0

x+
d2f

dx2

∣∣∣∣
x=0

x2

2
+
d3f

dx3

∣∣∣∣
x=0

x3

3!
+ ...

dnf

dxn

∣∣∣∣
x=0

xn

n!
.

The notation df
dx

∣∣∣
x=0

is written to denote explicitly that you take the

derivative of the function and then evaluate the derivative at x = 0.

The exclamation point is the factorial - i.e. 4! = 4× 3× 2× 1 = 24.

Now let’s apply the Taylor series to f(x) = ex (with no imaginary

number). This function is nice because all derivatives of ex are also ex.

Thus around x = 0,

ex ≈ e0 + e0x+ e0
x2

2
+ e0

x3

3!
+ ... e0

xn

n!

since e0 = 1 we have

ex ≈ 1 + x+
x2

2
+
x3

3!
+
x4

4!
+
x5

5!
+ ...

xn

n!

Now, let’s do the same thing for f(x) = cosx. Recall that

df

dx
= −sinx,

d2f

dx2
= −cosx,

d3f

dx3
= sinx, and

d4f

dx4
= cosx.

Substituting these relations into the Taylor series gives the approxima-

tion around x = 0,

cosx ≈ cos0− sin0 x− cos0
x2

2
+ sin0

x3

3!
+ cos0

x4

4!
− sin0

x5

5!
+ ...

Using the fact that sine and cosine at x = 0 are 0 and 1 respectively,

cosx ≈ 1− x2

2
+
x4

4!
− x6

6
+
x8

8!
+ ....

Cosine is approximated by an even polynomial.
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Now, let’s do the same thing for f(x) = sinx. Recall that

df

dx
= cosx,

d2f

dx2
= −sinx,

d3f

dx3
= −cosx, and

d4f

dx4
= sinx.

Substituting these relations into the Taylor series gives,

sinx ≈ sin0 + cos0 x− sin0
x2

2
− cos0

x3

3!
+ sin0

x4

4!
+ cos0

x5

5!
+ ...

Using the fact that sine and cosine at x = 0 are 0 and 1 respectively,

sinx ≈ x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
+ ...

Sine is an odd function.

Finally, let’s do the Taylor series for f(x) = ejx, the complex expo-

nential. Here the derivatives are

df

dx
= jejx,

d2f

dx2
= −ejx, d3f

dx3
= −jejx, and

d4f

dx4
= ejx.

Evaluating these derivatives at x = 0 gives,

df

dx

∣∣∣∣
x=0

= j,
d2f

dx2

∣∣∣∣
x=0

= −1,
d3f

dx3

∣∣∣∣
x=0

= −j, and
d4f

dx4

∣∣∣∣
x=0

= 1.

Now, using the above relations into our general expression for the Taylor

series gives,

ejx = 1 + jx− x2

2
− j x

3

3!
+
x4

4!
+ j

x5

5!
− x6

6!
− j x

7

7!
+ +

x8

8!
+ j

x9

9!
+ ...

or upon grouping the real (blue) and imaginary (red) parts,

ejx = 1− x2

2
+
x4

4!
− x6

6
+
x8

8!
+ ... j

(
x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
+ ....

)
Now you should see why I was coloring the equations with blue and

red all along. Substituting in the blue and red equations for sine and

cosine, we are left with our proof of the Euler identity,

ejx = cosx+ jsinx.
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6.4 Polar form

Previously, we showed that a complex number could be written in two

equivalent forms,

z = x+ jy = r (cos θ + j sin θ)

Using the Euler identity, we see that we can also represent the complex

number in polar form

z = r (cos θ + j sin θ) = rejθ.

While we aren’t quite there yet, in the coming sections we will find

that this form is extremely convenient. In polar form we will call r

the magnitude of the complex number and θ the phase. Refer back to

Figure 6.1 to visualize the magnitude and phase. The magnitude is the

distance from the origin and the phase is the angle we make with the

real axis.

It is worth noting that the polar form makes multiplication and divi-

sion quite easy. For example, take two complex numbers z1 = x1 + jy1
and z2 = x2 + jy2. Multiplying the two numbers in rectangular form

gives,

z1z2 = (x1 + jy1)(x2 + jy2) = x1x2 − y1y2 + j(x1y2 + y1x2).

While this is fine to work with, you can see that as you increase the

number of multiplies, the algebra gets messier. In polar form we have

z1 = r1e
jθ1 and z1 = r1e

jθ1 . So the complex multiplication becomes,

z1z2 = r1e
jθ1r2e

jθ2 = r1r2e
j(θ1+θ2)

In polar form, the magnitudes multiply and the phases add. You can

see this form is no more difficult if you are multiplying several complex

numbers together.

Division is similarly easy in polar form, namely,

z1z2 =
r1e

jθ1

r2ejθ2
=
r1
r2
ej(θ1−θ2).

For division, the magnitudes divide and the phases subtract.
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6.5 Sinusoidal signals

In Chapter 4, we wanted solve for a circuit’s sinusoidal steady state;

we assumed voltage of a form such as

V (t) = 2 sin(ωt)

where 2 is the amplitude of the sine wave in volts and ω would be the

frequency in radians per second. By now, in the laboratory, you should

be familiar with the idea that we can control the amplitude and the

frequency of the sine wave of voltage.

We are now going to say that since complex exponentials are just

sines and cosines in disguise, that we can represent voltages as

V (t) = Vejωt

where the bold V means that this number itself is a complex number

of the form V = x + jy. This may seem odd that you can represent a

physical thing like a voltage with a complex number. It really is OK

to do. Let’s proceed so you can see how easy circuit analysis gets and

then in the next section, somewhat tediously, I will try to demonstrate

that using the complex representation is totally fine.

Let’s go back to our trusty low-pass filter shown in Figure 6.3. If you

look back you will see that our analysis using the fact that we know

the relation between voltage and current for the two parts and that

the current through the resistor and capacitor are the same that our

equation is,

I(t) = C
dVout
dt

=
Vin − Vout

R
.

We will now represent both Vin and Vout as complex exponentials,

Vin(t) = Vine
jωt and Vout(t) = Voute

jωt

where both Vin and Vout are themselves complex numbers. Taking our

equation,

RC
dVout
dt

= Vin − Vout,

and substituting in the complex exponentials we get,

RCjωVoute
jωt = Vine

jωt −Voute
jωt.
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Figure 6.3 Schematic of the low pass filter.

We can immediately cancel ejwt

jωRCVout = Vin −Vout.

and rearrange to get

Vout

Vin
=

1

1 + jωRC
.

Note that in polar form that

1 + jωRC =
√

1 + (ωRC)2ej tan
−1(RCω)

Therefore, our result for the output voltage over the input voltage

can be written as

Vout

Vin
=

1√
1 + (ωRC)2

e−j tan
−1(RCω).

Therefore, the magnitude of the ratio of the output to the input is

magnitude =
1√

1 + (ωRC)2

and the phase between the input and output is

phase = − tan−1(RCω)
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If you look back at the analysis of the low-pass filter with sines and

cosines and all the trigonometric identities, you will see that we have

obtained the same result. This is really cool. The magnitude of the

complex number,

Vout

Vin
=

1

1 + jωRC
=

1√
1 + (ωRC)2

e−j tan
−1(RCω).

is the magnitude that we measure in the Bode plot. The phase of the

complex number is the phase the we measured. The Bode plot is the

complex function of frequenct we find here. The complex number nat-

urally allows us to capture the magnitude and the phase of the signal.

It is important to note that we haven’t actually derived anything

new or obtained a new result. We obtained the same result, just much

more easily. By the end of the chapter, I will show you an even easier

way. Just hold on, it will all be worth it.

6.6 Is it really ok to use complex numbers?

The first time I came across using complex exponentials it seemed really

weird and abstract. How can you represent a real physical thing with

“imaginary” numbers? In this section I will work through the low-pass

filter in extreme detail, trying to demonstrate the the result you get for

the complex exponentials is equivalent to using sines and cosines. You

can skip this section on first reading if you like and get to the applica-

tions. However, if representing physical things with complex numbers

bugs you, I will try to address your concerns in this section. Ultimately,

it is up to you to work through such things and convince yourself that

they are true.

For our circuit analysis, let’s start by assuming that we can represent

a sinusoidal voltage as a complex number multiplied by the complex

exponential,

V (t) = (x+ jy)ejωt.

Recall the

r =
√
x2 + y2 and φ = tan−1

(y
x

)
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and using polar form the expression becomes,

V (t) = (x+ jy)ejωt = rejφejωt = rej(ωt+φ).

Going back to sine and cosine form using the Euler identity, we have,

V (t) = r cos(ωt+ φ) + jr sin(ωt+ φ).

We start to get the indication from here, that using a complex number

in front of the ejωt term gives us the ability to build in the amplitude

and phase of our signal.

To be concrete, let’s work through the low-pass filter in Figure 6.3

yet again. Let’s assume without loss of generality that the input voltage

magnitude is set to one and thus,

Vin(t) = ejωt and Vout(t) = Voute
jωt

In terms of sines and cosines this means that

Vin(t) = cos(ωt) + jsin(ωt)

and

Vout(t) = |Vout| cos(ωt+ φ) + j|Vout| sin(ωt+ φ)

I have denoted the real terms to be blue and the imaginary terms as red.

The notation |Vout| means the magnitude (or radius) of the complex

number Vout.

Let’s put these long expressions into our equation

RC
dVout
dt

= Vin − Vout.

and we obtain

ωRC|Vout| sin(ωt+ φ) + jωRC|Vout| cos(ωt+ φ) =

cos(ωt) + jsin(ωt)− |Vout| cos(ωt+ φ)− j|Vout| sin(ωt+ φ).

In order for the equation to be true, both the real and imaginary parts

must be satisfied. Independently. So we must solve the real “blue” prob-

lem,

ωRC|Vout| sin(ωt+ φ) = cos(ωt)− |Vout| cos(ωt+ φ)

and the imaginary “red” problem.

ωRC|Vout| cos(ωt+ φ) = sin(ωt)− |Vout| sin(ωt+ φ).
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Expanding the blue problem using the product-to-sum trigonomet-

ric identities just like we did when we first encountered the sinusoidal

forcing, we have

ωRC|Vout| (sin(ωt) cos(φ) + cos(ωt) sin(φ)) =

cos(ωt)− |Vout| (cos(ωt) cos(φ)− sin(ωt) sin(φ))

For this to be true at all times we must cancel the sin(ωt) and cos(ωt)

terms independently. Grouping the sin(ωt) terms we have

ωRC|Vout| cos(φ) = −|Vout| sin(ωt) sin(φ)

or

tan−1 φ = −ωRC.

Grouping all the cos(ωt) terms we have,

ωRC|Vout| cos(ωt) sin(φ) = cos(ωt)− |Vout| cos(ωt) cos(φ)

or

|Vout| =
1

cosφ− ωRC sinφ

Now notice that we solved the “red” problem already back in Chapter

4. Going back you will find that the solution proceeded just like the

“blue” problem and the answer was

tan−1 φ = −ωRC.

|Vout| =
1

cosφ− ωRC sinφ

We obtain the same result for the real and imaginary problems. While

I have gone through the pain to show this, it should not surprise you.

At sinusoidal steady state I assumed the voltage was a sine wave input.

Should I really expect a different result if I assume a cosine wave?

Through this somewhat tedious exercise I hope I have started to con-

vince you that using the complex exponentials is equivalent to simulta-

neously getting your circuits response to a sine and cosine forcing. The

real part is the cosine wave, the imaginary part is the sine wave. Since

no new information comes from considering sine and cosine forcing, we

have the same result from the real and imaginary parts. However, as

you saw in the last section, once we are ready to accept the complex
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exponential’s role in our lives, we can make progress much quicker as

we can eliminate the need for a lot of trigonometric identities.

6.7 Complex impedance

Now that we went through all the analysis in detail with sines and

cosines, let’s introduce an even faster way to analyze circuits. Let’s

look at one component, the capacitor. Let’s assume I can control the

voltage across the capacitor and I want to vary the voltage sinusoidally,

shown schematically in Figure 6.4. Hopefully I have convinced you that

for analysis it is convenient to represent the voltage as

V (t) = Vejωt,

where again V is a complex number. Let’s now monitor the current

Figure 6.4 Schematic of the complex impedance for a capacitor.
Impedance, like resistance, is voltage divided by current

through the part. It will also be sinusoidal and be at the same frequency

as the voltage so we can represent as

I(t) = Iejωt.
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A capacitor has a relationship between voltage and current as

C
dV

dt
= I

or for our sinusoidal forcing,

jωCVejωt = Iejωt.

Canceling the exponential terms we have,

jωCV = I.

Using the concept of resistance, or voltage divided by current, as our

inspiration let’s define the ratio of the voltage of the current to be called

the impedance Z,

V

I
=

1

jωC
= Z.

This formula tells us that the impedance increases at low frequency and

that the current is always 90 degrees out of phase with the voltage (If

the voltage were real, the current would be imaginary, thus a 90 degree

difference in the complex plane). We discussed this general behavior of

capacitors previously - high “resistance” at low frequency. Now we have

the proper language to say that the capacitor has high impedance at low

frequency. It is interesting that the impedance is a complex number.

It captures the amplitude and phase relationship between voltage and

current.

Since a resistor has an instantaneous relation between voltage and

current, the impedance of a resistors is just the resistance, Z = R. The

nice thing about working with impedances is that all the familiar rules

of resistors in series and parallel port over to the impedance world.

Impedances in series add, and impedances in parallel add the recipro-

cals, see Figure 6.5 The analysis is now really simple. Resistors have

Z = R. Capacitors have Z = 1/jωC. Once we use impedances, we can

use our generalized version of Ohm’s law, V = IZ, and our usual rules

of resistors in series and parallel. Our analysis with time dependent

voltages is now really easy.
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Figure 6.5 Schematic of impedances in series and parallel.

6.8 Examples: low-pass, high pass

Using the impedance idea, we can now analyze the low-pass and high-

pass filter quite readily and see both cases as a general extension of the

voltage divider. See Figure 6.6. For the general case of impedances, the

output voltage between the two parts is given simply by the voltage

divider equation using impedances instead of resistances,

Vout

Vin
=

Z2

Z1 + Z2

For the case of the low-pass filter, let’s insert the impedance values

for the resistor and capacitor,

Vout

Vin
=

1
jωC

R+ 1
jωC

=
1

1 + jωRC
.
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This result is identical to the one derived early in the chapter. Plotting

this complex number as a function of frequency is the Bode plot. Let

that sink in again. The magnitude of the complex number will be the

amplitude part of the Bode plot and the phase of the complex number

is the phase between the input and output signals.

For the case of the high-pass filter, we just insert the proper impedance

values for the switched locations,

Vout

Vin
=

R

R+ 1
jωC

=
jωRC

1 + jωRC
.

Again, this complex function of frequency that represents the output

relative to the input is the Bode plot.

Figure 6.6 Schematic of impedances in high and low pass filter.

This is really something amazing. We have removed all the complex-

ity of Chapter 4 where we assumed sinusoidal driving, wrote down the
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differential equations, and used all our trigonometric prowess to arrive

at the result. We are now down to the capacitor acting as a simple

extension of the resistor. We have to accept that we can represent the

capacitor’s impedance as complex number and we have to be willing to

accept that the Bode plot is nothing more than the plot of this complex

function of frequency. Once you can believe it, we have a powerful and

simple tool at our disposal. In the end, we have done nothing new, but

we have a simple and compact analysis tool.

This concept of complex impedance is a really powerful and general

idea. Even if you never touch a circuit again in your life after this

course, you will come across the ideas in this chapter again and again

in many different areas of science and engineering.

6.9 Summary

The specific complex number forms for the low and high pass filter will

show up in complex notation so often that it is worth putting them

here again for you to remember and refer back to.

• Low-pass filter

Vout

Vin
=

1

1 + jωRC
.

• High-pass filter

Vout

Vin
=

jωRC

1 + jωRC
.
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Active filters and op-amp dynamics

In this final chapter, we will review a few more applications involving

op-amp circuits and use our complex analysis to make sense of the

observed behavior. While we are just dipping our toe in the water,

we will start to see how op-amps can be used to design different low-

pass, high-pass and band-pass filters. Op-amps are useful in filter design

because we can buffer between different functional blocks such that

complicated functionality can be chained together. With just passive

components like resistors and capacitors, we have to analyze an entire

system at once as all the components interact. You will start to see

that once you have the basic analysis tool of complex exponentials, you

will have the ability to design and understand interesting new circuits.

A new world of analog circuits will be opened for you.

We also find that the frequency response of op-amp circuits starts

to deviate from our ideal behavior at high frequency. This effect was

alluded to in previous chapters, but was more or less swept aside. We

will conclude our study by looking at the internal dynamics of the op-

amp to hopefully provide a little more insight into the magic that is

contained inside that little black box.

7.1 Active filters

In Figure 7.1 are 4 different op-amp filter circuits. If we group the parts

together as impedances, we see that all the circuits can be abstracted

to having the same basic topology as the final circuit in Figure 7.1 with

two generalized equivalent impedances, shown as circuit E.
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Figure 7.1 Some difference active filter designs.

Here, I will assume a symmetric op-amp power supply and will take

all the signals referenced to ground, for simplicity. If you review the

op-amp chapter you will recall that you can always shift everything up

if you are working with a single sided power supply. The basic results

here will remain unchanged, but recall that it is important to get the

details right when working in the lab. Let’s begin with the analysis

of the final circuit in Figure 7.1 E. We see negative feedback so let’s

instantly apply our two op-amp rules. The rules and their consequence

are;

• The inputs draw no current. Therefore, the current through Z1

equals the current through Z2.

• The input voltages are equal. Therefore, the voltage between the

two impedances at V− is set to ground.
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Our op-amp rules plus the generalized version of Ohm’s law give,

I =
Vin − 0

Z1
=

0− Vout
Z2

or
Vout
Vin

= −Z2

Z1

For case A, Z1 = R1 and Z2 = R2, so the circuit is just the usual

inverting amplifier; a result you have already seen. The other cases are

a little more interesting.

7.1.1 Case B - high-pass filter

For case B we can use the two impedances in series on the input to

obtain

Z1 = R1 +
1

jωC1
and Z2 = R2.

Using these relations, the output voltage is

Vout
Vin

= −Z2

Z1
= − R2

R1 + 1
jωC1

= −
(

jωR1C1

1 + jωR1C1

)(
R2

R1

)
Now that you are becoming a little familiar with the form of different

filters in complex notation, you might recognize that Vout is the product

of a high-pass filter with the cutoff frequency set by 1/(R1C1) rad/s

and an amplifier gain whose value is R2/R1. So with this topology you

can do two operations at one time - filter and amplify.

7.1.2 Case C - low-pass filter

For case C we can combine the two impedances on the feedback loop

using our rule for impedances in parallel to obtain,

Z1 = R1 and Z2 =
1

1
R2

+ jωC2

=
R2

1 + jωR2C2
.

Using these relations, the output voltage is

Vout
Vin

= −Z2

Z1
= −

(
1

1 + jωR2C2

)(
R2

R1

)
.

You might recognize that Vout is the product of a low-pass filter with

the cutoff frequency set by 1/(R2C2) rad/s and an amplifier gain whose

value is R2/R1. So with this topology you can do two operations at one

time - filter and amplify.
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7.1.3 Case D - band-pass filter

For case D we can just combine everything we have done so far to

obtain,

Z1 = R1 +
1

jωC1
and Z2 =

R2

1 + jωR2C2
.

Vout
Vin

= −Z2

Z1
= − R2

1 + jωR2C2

1

R1 + 1
jωC1

,

or with a little re-arrangement we can obtain

Vout
Vin

= −
(

1

1 + jωR2C2

)(
jωR1C1

1 + jωR1C1

)(
R2

R1

)
,

By now, hopefully the pattern is clear. With this circuit, we have three

operations,

• Low-pass filter with cutoff frequency of 1/(R2C2) rad/s.

• High-pass filter with cutoff frequency of 1/(R1C1) rad/s.

• Amplifier with gain of R2/R1.

This circuit is called a band-pass filter as we can set the filter to allow a

band (or range) of frequencies in and attenuate anything lower or higher

than the band. Typically we would set the frequency of the high-pass

filter to be less than or equal to that of the low pass filter.

When designing a circuit for an application, you are free to select

the component values to give the frequency cutoffs and amplitude gains

that you desire. When designing this circuit to have particular perfor-

mance, you have two frequencies and one gain you want to set, but you

have four degrees of freedom to pick (2 resistors and 2 capacitors). You

might need to arbitrarily set one of the component values and then se-

lect the other 3 based on your design criteria. In lab we typically have

a wider selection of resistor values, so usually it works best to pick a

reasonable capacitor value to start with and then see what the other

three component values are. You may find you need to iterate this de-

sign process until all four components have reasonable values that you

can obtain.

An example experimental amplitude Bode plot for cases B, C, and D

is shown on the left in Figure 7.2. We can clearly see from this picture

that the band-pass filter is just the product of the low and high pass

filters. In this example we set the cutoff frequency of the high and
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low pass filters to all be the same and set at 159 Hz; shown as the

vertical line. Notice that we see the classic low and high-pass behavior

below 10 kHz. On the right in Figure 7.2 we show the experimental

data compared to our model prediction above for the band-pass filter.

Remember, the prediction is just the magnitude of the complex number

of our expression Vout/Vin. We find near perfect agreement below 10

kHz and serious departures at higher frequency. The behavior at high

frequency is the topic of the remainder of this chapter.

Figure 7.2 Active filter example and resulting experimental Bode
plot. On the left we show Case B:high pass (blue), Case C: low
pass (magenta), and Case D (black): band-pass. For this circuit
R1 = 1 kΩ, R2 = 10 kΩ, C1 = 1 µF , and C2 = 0.1 µF . The cutoff
frequency for both RC filters is 159 Hz, shown as the vertical line.
On the left we compare the experimental band-pass circuit (solid
blue) to the theoretical result (dashed black). There is excellent
agreement below 10 kHz and serious departures as the frequency
goes toward 1 MHz. Since the cutoff for the low and high pass are
the same frequency, the resulting Bode plot for the band pass shows
a peak at the characteristic frequency.

7.2 Op-amp dynamics

Notice in the last section that the measured and expected behavior of

the op-amp circuit was not accurate at high frequency. In our op-amp

explanations before you may recall that we discussed that we had to be

careful to apply our usual rules only when changes were “slow”. Let’s

know look under the hood of the op-amp and get a peak at what is
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inside (functionally) and hopefully enlighten your understanding just

a bit. A functional schematic of the inner workings of the op-amp are

shown in Figure 7.3. Note these functions are created through further

internal circuitry for the chip using resistors, capacitors and transistors

(a component we have not discussed). The circuit components that

comprise a modern op-amp are quite complex and a topic in a later

course for those interested in electrical engineering. In this functional

op-amp model we see three basic operations. The op-amp

• takes the difference between the two input voltages.

• multiplies this voltage difference by a large number G.

• integrates this result with respect to time.

It is very important to note that it remains true that op-amp inputs

draw no current. This rule still holds.

Figure 7.3 Simple model of the functional blocks inside a basic op-
amp. The op-amp takes the difference of the input voltages, multi-
plies by G (which is large) and integrates with respect to time.

It is important to realize that the integrator inside the op-amp cannot

integrate forever. It has saturation limits, just like a bathtub. A bathtub

is an integrator for the net volumetric flow rate into/out of the tub. The

bathtub integrates the volumetric flow rate to get the total volume of

water stored in the tub. The net flow rate into/out of the tub is given by

the difference between the flow of the faucet and the flow of the drain.

If the faucet flow is on full blast, the bathtub will integrate (fill) up

and overflow the top. The integrator (the bathtub) cannot accumulate

any more. If the drain is open and the faucet off, the bathtub fully
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drains but cannot integrate to be less than than empty. Similar to the

bathtub, the integrator inside the op-amp cannot exceed the limits of

the power supply. Once the integrator reaches the power supply limits,

the integrator (and voltage increase) saturates.

We can confirm our op-amp model, by conducting experiments in

open-loop (with no feedback) as we did previously. We can provide a

controlled step input and monitor the output as shown in Figure 7.4. We

see that the output of the op-amp changes linearly in time when given

a step input (and no feedback). Previously we described the output

behavior as slamming between 0 and 5 volts when operating in open

loop. Here we zoom our time scale, we see there is a rapid rate of change

of the output that depends on the difference of the input voltages. This

result fits the integrator model since the integral of a constant (the step

change) is a line and the slope of the line depends upon the difference.

Figure 7.4 Data for an step input to the op-amp in open-loop mode
for 10, 20, 40, and 80 mV difference at the input. On the right we
show the rate of change of the output as a function of the voltage
difference at the input.

If we conduct a number of experiments where we control the input

difference and observe the rate, we see that the rate of increase of the

output is proportional to the input difference. The model presented

above, would say that

Vout =

∫
G(V+ − V−)dt

or equivalently,

dVout
dt

= G(V+ − V−).
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Therefore, the rate of increase of the output should depend linearly

on the input voltage difference, as the data in Figure 7.4 confirms.

We can figure out the constant, G, by plotting our measured dVout/dt

against the input voltage difference as shown in Figure 7.4. Below an

input voltage difference of about 0.15 V, a value of G = 8 µs−1 fits the

data pretty well. Note the units - since I am expressing G in inverse

microseconds, G is a large number in terms of inverse seconds. The

model works really well until a maximum rate is reached.

It turns out the op-amp has a speed limit. This maximum speed is

called the slew-rate limit and is the fastest that the output voltage can

change. For our data we measure a slew rate limit of about 1.8 V/µs. In

the analysis that follows we will ignore this slew rate limit as it makes

simple linear analysis impossible but it is important to keep in mind.

7.3 Feedback revisited

Armed with our new model of the op-amp, let’s revisit the idea of

feedback by looking at the example of the (non-inverting) amplifier.

The non-inverting amplifier in light of the functional op-amp model is

shown in Figure 7.5.

Figure 7.5 The functional diagram for the op-amp used in a basic
amplifier circuit.
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Our new model of the internal dynamics does not affect our assump-

tion that the inputs draw no current, but it will shed some light on

circuits with feedback and the idea that the input voltages are equal

with negative feedback. Following our op-amp model we start with,

dVout
dt

= G(V+ − V−).

However for the circuit of interest V+ = Vin and the voltage divider

equation gives V− = Vout
R2

R1+R2
. Substituting in these expressions we

have

dVout
dt

= G

(
Vin − Vout

R2

R1 +R2

)
.

We can rewrite the equation as(
R1 +R2

R2G

)
dVout
dt

=

(
Vin

R1 +R2

R2
− Vout

)
.

or

τ
dVout
dt

=

(
Vin

R1 +R2

R2
− Vout

)
.

where τ = R1+R2

R2G
. This expression might seem familiar. It is exactly

the same equation we derived for the RC, low-pass circuit. If you don’t

believe me, go back and look. We have two results from the RC circuit

that we can carry over; the step response and the sinusoidal steady

state. We learned previously that the RC circuit will show exponential

convergence to steady state when given a step input and will act as a

low-pass filter when given a sinusoidal input. However, let’s solve the

problem again and see that the behavior is as before.

7.3.1 Step response

For the step response, let’s take the example value of (R1 +R2)/R2 =

10. For our op-amp, we measuredG = 8×106 V/s - thus τ = 1.25×10−6.

Of course these numbers are specific to this exact problem and our op-

amp but are indicative of typical numbers. The time constant of the

exponential will be about a microsecond - very fast for our normal

human time scales.

In the experiment, let’s set Vin = 0 V and hold it there for some
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time. When the system reaches equilibrium, there is no change and

dVout/dt = 0. Therefore, our model states that at equilibrium,(
Vin

R1 +R2

R2
− Vout

)
= 0.

At equilibrium, if Vin = 0 V then Vout = 0. Now lets switch Vin = 0.1 V

instantaneously. When the system reaches the new equilibrium state,

then the output should become Vout = 1.0 V; since (R1 +R2)/R1 = 10.

You might remember the solution when we first studied the RC cir-

cuit is that we should find exponential approach to the new equilibrium

state and the time scale for that exponential should be τ , which is a

very small number. The data for an experiment are shown in Figure

7.6. Note that for this case, τ = 1.25 µs, and looks like we are onto a

very reasonable model. We see from the data that Vout approaches 1V

with an exponential decay.

Figure 7.6 Data for an step input to the op-amp in an amplifier
circuit shown in Figure 7.5.

To solve the model analytically for these specific values, we solve

τ
dVout
dt

=

(
Vin

R1 +R2

R2
− Vout

)
= 0.1(10)− Vout = 1− Vout,

with the initial condition Vout(0) = 0. Let’s derive the solution to the
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problem as before by separating the variables,

dVout
1− Vout

=
dt

τ
,

and integrating

ln(1− Vout) =
−t
τ

+B,

where B is a constant of integration. Applying the initial condition

Vout(0) = 0 gives us the value of B = ln(1). Rearranging the expression

yields,

Vout = 1− e−t/τ .

We have now really quantified the ability of the op-amp to maintain

the two input voltages to be equal. The dynamics of the step response

is such that the system reaches equilibrium on the time scale of τ . This

time scale is very fast due to the large value of the gain inside the op-

amp chip. An integrator comes to equilibrium - i.e. stops integrating

- when the net input to the integrator is zero. Think of the bathtub

example - if the flow rate into the tub via the faucet equals the flow

out via the drain then the integrator (the tub) stops changing its state

(the amount of water in the tub). It is the same here, when the input

to the integrator V+ − V− is equal to zero, the system has come to

equilibrium and the output voltage stops changing.

You can also start to see why positive feedback is unstable. If we

rebuilt the circuit and conducted the analysis for positive feedback,

everything would be the same as above. The only change is that the

sign would change and we would be solving,

τ
dVout
dt

= Vout − 1.

The solution procedure would be the same only we would have a pos-

itive exponential, i.e. Vout = et/τ . The output of the integrator blows

up exponentially until it saturates at the power supply limits.

7.3.2 Sinusoidal steady state

Let’s consider the same amplifier circuit but consider the sinusoidal

steady state response. Let’s use our complex analysis and take Vin =
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Vine
jωt and Vout = Voute

jωt where Vin and Vin are complex numbers

that are constant in time. Taking our dynamic equation of the op-amp

τ
dVout
dt

dt =

(
Vin

R1 +R2

R2
− Vout

)
.

and substituting in the complex exponentials yields,

τjωVoute
jωt =

(
R1 +R2

R2
Vine

jωt −Voute
jωt

)
.

Canceling ejωt leaves,

τjωVout =

(
R1 +R2

R2
Vin −Vout

)
,

or after some rearrangement,

Vout

Vout
=

(
R1 +R2

R2

)(
1

1 + jωτ

)
,

This expression is the product of the amplifier gain R1+R2

R2
and a

low pass filter with a cutoff at ω = 1/τ . The experimental data are

shown in Figure 7.7. Now we see that we can quantify the frequency

dependent behavior that we only alluded to previously. Below the cutoff

frequency of 1/τ rad/sec, we can safely use the simple model that the

op-amps input voltages are equal. Above this frequency, we would need

to account for the internal dynamics of the op-amp. In this example

τ = 1.25 µs which corresponds to 127 kHz, which appears to be about

where the “knee” in the amplitude Bode plot lies.
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Figure 7.7 Experimental amplitude Bode plot for the op-amp in an
amplifier circuit .




