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ABSTRACT

We propose and investigate two new methods to approximate f(A)b
for large, sparse, Hermitian matrices A. Computations of this form
play an important role in numerous signal processing and machine
learning tasks. The main idea behind both methods is to first esti-
mate the spectral density of A, and then find polynomials of a fixed
order that better approximate the function f on areas of the spec-
trum with a higher density of eigenvalues. Compared to state-of-the-
art methods such as the Lanczos method and truncated Chebyshev
expansion, the proposed methods tend to provide more accurate ap-
proximations of f(A)b at lower polynomial orders, and for matrices
A with a large number of distinct interior eigenvalues and a small
spectral width.

Index Terms— Matrix function, spectral density estimation,
polynomial approximation, orthogonal polynomials, graph spectral
filtering, weighted least squares polynomial regression.

1. INTRODUCTION

Efficiently computing f(A)b, a function of a large, sparse Hermi-
tian matrix times a vector, is an important component in numer-
ous signal processing, machine learning, applied mathematics, and
computer science tasks. Application examples include graph-based
semi-supervised learning methods [2]-[4]; graph spectral filtering in
graph signal processing [5]; convolutional neural networks / deep
learning [6, 7]; clustering [8, 9]; approximating the spectral density
of a large matrix [10]; estimating the numerical rank of a matrix
[11, 12]; approximating spectral sums such as the log-determinant
of a matrix [13] or the trace of a matrix inverse for applications
in physics, biology, information theory, and other disciplines [14];
solving semidefinite programs [15]; simulating random walks [16,
Chapter 8]; and solving ordinary and partial differential equations
[17]-[19].

References [20, Chapter 13], [21]-[23] survey different ap-
proaches to this well-studied problem of efficiently computing

f(A)b := Vf(Λ)V>b, (1)

where the columns of V are the eigenvectors of the Hermitian
matrix A ∈ RN×N ; Λ is a diagonal matrix whose diagonal ele-
ments are the corresponding eigenvalues of A, which we denote by
λ1, λ2, . . . , λN ; and f(Λ) is a diagonal matrix whose kth diagonal
entry is given by f(λk). For large matrices, it is not practical to
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MATLAB code for all numerical experiments in this paper is available
at http://www.macalester.edu/˜dshuman1/publications.
html. It leverages the open access GSPBox [1].

explicitly compute the eigenvalues of A in order to approximate
(1). Rather, the most common techniques, all of which avoid a full
eigendecomposition of A, include (i) truncated orthogonal poly-
nomial expansions, including Chebyshev [24]-[26] and Jacobi; (ii)
rational approximations [22, Section 3.4]; (iii) Krylov subspace
methods such as the Lanczos method [24], [27]-[30]; and (iv)
quadrature/contour integral methods [20, Section 13.3].

Our focus in this work is on polynomial approximation meth-
ods. Let pK(λ) = c0 +

∑K
k=1 ckλ

k be a degree K polynomial
approximation to the function f on a known interval [λ, λ] contain-
ing all of the eigenvalues of A. Then the approximation pK(A)b
can be computed recursively, either through a three-term recurrence
for specific types of polynomials (see Section 3 for more details), or
through a nested multiplication iteration [31, Section 9.2.4], letting
x(0) = cKb, and then iterating

x(l) = cK−lb + Ax(l−1), l = 1, 2, . . . ,K.

The computational cost of either of these approaches is dominated
by multiplying the sparse matrix A by K different vectors. The
approximation error is bounded by

||f(A)− pK(A)||2 = max
`=1,2,...,N

|f(λ`)− pK(λ`)| (2)

≤ sup
λ∈[λ,λ]

|f(λ)− pK(λ)|. (3)

If, for example, pK is a degree K truncated Chebyshev series ap-
proximation of an analytic function f , the upper bound in (3) con-
verges geometrically to 0 as K increases, at a rate of O

(
ρ−K

)
,

where ρ is the radius of an open Bernstein ellipse on which f is
analytic and bounded (see, e.g., [32, Theorem 5.16], [33, Theorem
8.2]). In addition to the computational efficiency and convergence
guarantees, a third advantage of polynomial approximation methods
is that they can be implemented in a distributed setting [34]. A fourth
advantage is that the ith element of pK(A)b only depends on the el-
ements of b withinK hops of i on the graph associated with A. This
localization property is important in many graph-based data analysis
applications (e.g., graph spectral filtering [35], deep learning [6]).

While the classical truncated orthogonal polynomial expansion
methods (e.g., Chebyshev, Legendre, Jacobi) aim to approximate
the function f throughout the full interval [λ, λ], it is only the
polynomial approximation error at the eigenvalues of A that af-
fects the overall error in (2). With knowledge of the complete
set of eigenvalues, we could do better, for example, by fitting
a degree K polynomial via the discrete least squares problem
minp∈PK

∑N
`=1 [f(λ`)− p(λ`)]2. In Fig. 1, we show an example

of such a discrete least squares fitting. The resulting approximation
error ||f(A) − pK(A)||2 for K = 5 is 0.020, as opposed to 0.347

http://www.macalester.edu/~dshuman1/publications.html
http://www.macalester.edu/~dshuman1/publications.html


0 10 20 30 40 50 60 70
-0.2

0

0.2

0.4

0.6

0.8

1
F

u
n

c
ti
o

n
 a

p
p

ro
x
im

a
ti
o

n
s

Chebyshev

Discrete LS

f

Eigenvalues

0 10 20 30 40 50 60 70
10

-8

10
-6

10
-4

10
-2

10
0

Chebyshev

Discrete LS

Fig. 1. Degree 5 polynomial approximations of the function f(λ) =
e−λ of the graph Laplacian of a random Erdös-Renyi graph with 500
vertices and edge probability 0.2. The discrete least squares approx-
imation incurs larger errors in the lower end of the spectrum. How-
ever, since the eigenvalues are concentrated at the upper end of the
spectrum, it yields a lower approximation error ||f(A)− p5(A)||2.

for the degree 5 truncated Chebyshev approximation. This is despite
the fact that supλ∈[λ,λ] |f(λ) − pK(λ)| is equal to 0.650 for the
discrete least squares approximation, as opposed to 0.347 for the
Chebyshev approximation.

While in our setting we do not have access to the complete set of
eigenvalues, our approach in this work is to leverage recent develop-
ments in efficiently estimating the spectral density of the matrix A,
to adapt the polynomial to the spectrum in order to achieve better ap-
proximation accuracy at the (unknown) eigenvalues. After review-
ing spectral density estimation in the next section, we present two
new classes of spectrum-adapted approximation techniques in Sec-
tion 3. We conclude with numerical experiments, and a discussion
of the situations in which the proposed methods work better than the
state-of-the-art methods.

2. SPECTRAL DENSITY ESTIMATION

The cumulative spectral density function or empirical spectral cu-
mulative distribution of the matrix A is defined as

Pλ(z) :=
1

N

N∑
`=1

11{λ`≤z}, (4)

and the spectral density function [36, Chapter 6]) (also called the
Density of States or empirical spectral distribution [37, Chap-
ter 2.4]) of A is the probability measure defined as pλ(z) :=
1
N

∑N
`=1 11{λ`=z}. Lin et al. [10] provide an overview of methods

to approximate these functions. In this work, we use a variant of the
Kernel Polynomial Method (KPM) [38]-[40] described in [10, 41]
to estimate the cumulative spectral density function Pλ(z) of A.
Namely, for each of T linearly spaced points ξi between λ and λ,
we estimate the number of eigenvalues less than or equal to ξi via
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Fig. 2. Estimated and actual cumulative spectral density functions
for six real, symmetric matrices A. We estimate the eigenvalue
counts for T = 10 linearly spaced points on [λ, λ] via (5), with
degree KΘ = 30 polynomials and J = 10 random vectors x(j).

Hutchinson’s stochastic trace estimator [42]:

ηi = tr
(
Θξi(A)

)
= E[x>Θξi(A)x] ≈ 1

J

J∑
j=1

x(j)>Θ̃ξi(A)x(j),

(5)

where each x(j) is random vector with each component hav-
ing an independent and identical standard normal distribution,
and Θ̃ξi is a Jackson-Chebyshev polynomial approximation to
Θξi(λ) := 11{λ≤ξi} [43, 44]. As in [45], we then form an ap-
proximation P̃λ(z) to Pλ(z) by performing monotonic piecewise
cubic interpolation [46] on the series of points

{(
ξi,

ηi
N

)}
i=1,2,...,T

.

Analytically differentiating P̃λ(z) yields an approximation p̃λ(z)

to the spectral density function pλ(z). Since P̃λ(z) is a monotonic
cubic spline, we can also analytically compute its inverse function
P̃−1
λ (y). Fig. 2 shows examples of the estimated cumulative spec-

tral density functions for six real, symmetric matrices A: the graph
Laplacians of the Erdös-Renyi graph (gnp) from Fig. 1 and the Min-
nesota traffic network [47] (N = 2642), and the net25 (N = 9520),
si2 (N = 769), cage9 (N = 3534), and saylr4 (N = 3564)
matrices from the SuiteSparse Matrix Collection [48].1 The compu-
tational complexity of forming the estimate P̃λ(z) is O(MJKΘ),
where M is the number of nonzero entries in A, J is the number of
random vectors in (5) (in our experiments, J = 10 suffices), andKΘ

is the degree of the Jackson-Chebyshev polynomial approximations
Θ̃ξi [41]. While this cost is non-negligible if computing f(A)b for
a single f and a single b, it only needs to be computed once for each
A if repeating this calculation for multiple functions f or multiple
vectors b, as is often the case in the applications mentioned above.

3. SPECTRUM-ADAPTED METHODS

In this section, we introduce two new classes of degree K polyno-
mial approximations pK(A)b to f(A)b, both of which leverage the
estimated cumulative spectral density function P̃λ(z).

1We use A+A>

2
for cage9, and for net25 and saylr4, we generate graph

Laplacians based on the off-diagonal elements of A.



3.1. Spectrum-adapted polynomial interpolation

In the first method, we take yk :=
cos( kπK )+1

2
, for k = 0, 1, . . . ,K,

which are the K + 1 extrema of the degree K Chebyshev polyno-
mial shifted to the interval [0, 1]. We then warp these points via
the inverse of the estimated cumulative spectral density function by
setting xk = P−1

λ (yk), before finding the unique degree K polyno-
mial interpolation through the points {(xk, f(xk))}k=0,1,...,K . As
shown in Fig. 3, a higher density of the warped points {xk} fall in
higher density regions of the spectrum of A.
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Fig. 3. Construction of six interpolation points for the same graph
Laplacian matrix described in Fig. 1. The interpolation points {xk}
on the horizontal axis are computed by applying the inverse of the
estimated cumulative spectral density function to the initial Cheby-
shev points {yk} on the vertical axis.

3.2. Spectrum-adapted polynomial regression / orthogonal
polynomial expansion

A second approach is to solve the weighted least squares polynomial
regression problem

min
p∈PK

M∑
m=1

wm [f(xm)− p(xm)]2 ,

where the abscissae {xm}m=1,2,...,M and weights {wm}m=1,2,...,M

are chosen to capture the estimated spectral density function. We
investigated several methods to set the points (e.g., linearly spaced
points, Chebyshev points on the interval [λ, λ], Chebyshev points on
each subinterval [ξi, ξi+1], and warped points via the inverse of the
estimated cumulative spectral density function as in Section 3.1) and
weights (e.g., the analytically computed estimate p̃λ of the spectral
density function, a discrete estimate of the spectral density function
based on the eigenvalue counts in (5), the original KPM density of
states method based on a truncated Chebyshev expansion [10, Eq.
3.11], or equal weights for warped points). In the numerical exper-
iments, we use M evenly spaced points on the interval [λ, λ] (i.e.,
xm = m−1

M−1
(λ− λ) + λ), and set the weights to be wm = p̃λ(xm).

An alternative way to view this weighted least squares method
[49] is as a truncated expansion in polynomials orthogonal with re-
spect to the discrete measure dλM with finite support at the points
{xm}, and an associated inner product [50, Section 1.1]

〈f, g〉dλM =

∫
R
f(t)g(t)dλM =

M∑
m=1

wmf(xm)g(xm).

The M discrete monic orthogonal polynomials {πk,M}k=0,1,M−1

satisfy the three-term recurrence relation [50, Section 1.3]

πk+1,M (x) = (x− αk,M )πk,M (x)− βk,Mπk−1,M (x),

k = 0, 1, . . . ,M − 1, (6)

with π−1,M (x) = 0, π0,M (x) = 1, β0,M =
∑M
m=1 wm,

αk,M =
〈tπk,M , πk,M 〉dλM
〈πk,M , πk,M 〉dλM

, k = 0, 1, . . . ,M − 1,

and βk,M =
〈πk,M , πk,M 〉dλM

〈πk−1,M , πk−1,M 〉dλM
, k = 1, 2, . . . ,M − 1.

Given the abscissae {xm} and weights {wm}, the three-term re-
cursion coefficients {αk,M}k=0,1,...,M−1 and {βk,M}k=1,2,...,M−1

can also be computed through a stable Lanczos type algorithm on
an (M + 1)× (M + 1) matrix [50, Section 2.2.3], [51]. In matrix-
vector notation, the vectors πk,M ∈ RM , which are the discrete
orthogonal polynomials evaluated at the M abscissae, can be com-
puted iteratively by the relation

πk+1,M = (diag({xm})− αk,MIM )πk,M − βk,Mπk−1,M ,

k = 0, 1, . . . ,M − 1,

with π−1,M = 0M and π0,M = 1M . Finally, the degree K poly-
nomial approximation to f(A)b is computed as

pK(A)b =

K∑
k=0

〈f, πk,M 〉dλM
〈πk,M , πk,M 〉dλM

πk,M (A)b,

with π−1,M (A)b = 0N , π0,M (A)b = b, and

πk+1,M (A)b = (A− αk,MIN )πk,M (A)b− βk,Mπk−1,M (A)b,

k = 0, 1, . . . ,K − 1 (where K ≤M − 1).

We briefly comment on the relationship between the spectrum-
adapted approximation proposed in this section and the Lanczos ap-
proximation to f(A)b, which is given by [24], [20, Section 13.2]

QKf(TK)Q>Kb = ||b||2QKf(TK)e1, (7)

where QK is an N × (K + 1) matrix whose columns form an
orthonormal basis for KK(A,b) = span

{
b,Ab, . . . ,AKb

}
, a

Krylov subspace. In (7), TK = Q>KAQK is a (K + 1)× (K + 1)
tridiagonal Jacobi matrix. The first column of QK is equal to b

||b|| .
The approximation (7) can also be written as qK(A)b, where qK
is the degree K polynomial that interpolates the function f at the
K + 1 eigenvalues of TK [20, Theorem 13.5], [52]. Thus, unlike
classical polynomial approximation methods, the Lanczos method
is indirectly adapted to the spectrum of A. The Lanczos method
differs from proposed method in that TK and the Lanczos approxi-
mating polynomial qK depend on the initial vector b. Specifically,
the polynomials {π̃k} generated from the three-term recurrence

γk+1π̃k+1(x) = (x− αk)π̃k(x)− γkπ̃k−1(x),

with the {αk}k=0,1,...,K and {γk}k=1,2,...,K coefficients taken from
the diagonal and superdiagonal entries of TK , respectively, are or-
thogonal with respect to the piecewise-constant measure

µ(x) =


0, x < λ1∑i
j=1[b̂(j)]2, λi ≤ x < λi+1∑N
j=1[b̂(j)]2 = 1, λN ≤ x

,

where b̂ = V>q1 = V>
(

b
||b||

)
, and b̂(j) is its jth component

[53, Theorem 4.2]. If b̂ happens to be a constant vector, then µ(x) =



Pλ(x) from (4). If A is a graph Laplacian, b̂ is the graph Fourier
transform [5] of b, normalized to have unit energy.

4. NUMERICAL EXAMPLES AND DISCUSSION

We consider the matrix function f(λ) = e−λ, and approximate
f(A)b with b = V1 for different matrices A and polynomial ap-
proximation orders ranging from K = 3 to 25. First, we use KPM
to estimate the cumulative spectral density function P̃λ(z) with pa-
rameters T = 10, J = 10, and KΘ = 30, as shown in Fig. 2.
Based on the analytical derivative and inverse function of P̃λ(z), we
obtain the two proposed spectrum-adapted polynomial approxima-
tions for f(λ), before computing each pK(A)b via the correspond-
ing three-term recursion. We compare the proposed methods to the
truncated Chebyshev expansion and the Lanczos method with the
same polynomial order. The results are summarized in Fig. 4. The
first column of Fig. 4 displays the errors at all eigenvalues of A for
each order 10 polynomial approximation of f(λ). The second col-
umn examines the convergence of relative errors in approximating
f(A)b for matrices with various spectral distributions, for each of
the four methods. Note that when b is a constant vector in the spec-
tral domain of A, the relative error ||f(A)b−pK(A)b||22

||f(A)b||22
is equal to∑N

`=1(f(λ`)−pK(λ`))
2∑N

`=1
f(λ`)

2 , the numerator of which is the discrete least
squares objective mentioned in Section 1.

We make a few observations based on the numerical examples:

1. The spectrum-adapted interpolation method often works well
for low degree approximations (K ≤ 10), but is not very
stable at higher orders due to ill-conditioning.

2. The Lanczos method is more stable than other methods with
respect to the width of the spectrum. To demonstrate this, we
scaled the saylr4 matrix by multiplying it by the constant 1

2000
in the bottom row of Fig. 4. Doing so drastically improves
the relative performance of the other methods, even though
the spectral distribution is the same.

3. The proposed spectrum-adapted weighted least squares
method tends to outperform the Lanczos method for ma-
trices such as si2 and cage9 that have a large number of
distinct interior eigenvalues.

4. The proposed spectrum-adapted methods, like the Chebyshev
approximation, are amenable to efficient distributed compu-
tation via communication between neighboring nodes [34].
The inner products of the Lanczos method may lead to addi-
tional communication expense or severe loss of efficiency in
certain distributed computation environments (e.g., GPUs).

5. ONGOING WORK

Our ongoing work includes (i) testing the proposed methods on fur-
ther applications, such as the estimation of the log-determinant of a
large sparse Hermitian matrix; (ii) investigating the theoretical man-
ner and rate at which pK(A)b converges to f(A)b for our new
approximation methods; (iii) exploring methods to adapt the approx-
imation to the specific matrix function f , in addition to the estimated
spectral density of A; (iv) exploring whether these types of approxi-
mations can be used to efficiently compute interior eigenvalues in sit-
uations where the Lanczos method struggles; and (v) testing whether
it is worthwhile to incorporate our proposed methods into the esti-
mation of the eigenvalue counts in (5), in an iterative fashion, since
each Θ̃ξi(A)x(j) is itself of the form f(A)b.

|f(λ)− p10(λ)| ||f(A)b−pK(A)b||22
||f(A)b||22
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Fig. 4. Approximations of f(A)b with f(λ) = e−λ.
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