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ABSTRACT

We investigate an M -channel critically sampled filter bank for graph
signals where each of the M filters is supported on a different sub-
band of the graph Laplacian spectrum. We partition the graph ver-
tices such that the mth set comprises a uniqueness set for signals
supported on the mth subband. For analysis, the graph signal is fil-
tered on each subband and downsampled on the corresponding set
of vertices. However, the classical synthesis filters are replaced with
interpolation operators, circumventing the issue of how to design a
downsampling pattern and graph spectral filters to ensure perfect re-
construction for signals that do not reside on bipartite graphs. The
resulting transform is critically sampled and graph signals are per-
fectly reconstructable from their analysis coefficients. We empiri-
cally explore the joint vertex-frequency localization of the dictionary
atoms and sparsity of the analysis coefficients, as well as the ability
of the proposed transform to compress piecewise-smooth graph sig-
nals.

Index Terms— Graph signal processing, filter bank, sampling,
interpolation, wavelet, compression

1. INTRODUCTION

In graph signal processing [2], transforms and filter banks can help
exploit structure in the data, in order, for example, to compress a
graph signal, remove noise, or fill in missing information. Broad
classes of recently proposed transforms include graph Fourier trans-
forms, vertex domain designs such as [3, 4], top-down approaches
such as [5, 6, 7], diffusion-based designs such as [8, 9], spectral do-
main designs such as [10, 11], windowed graph Fourier transforms
[12], and generalized filter banks, the last of which we focus on in
this paper. For further introduction to dictionary designs for graph
signals, see [2].

The extension of the classical two channel critically sampled fil-
ter bank to the graph setting was first proposed in [13]. Fig. 1 shows
the analysis and synthesis banks, where H

i

and G
i

are graph spectral
filters [2], and the lowpass and highpass bands are downsampled on
complementary sets of vertices. For a general weighted, undirected
graph, it is not straightforward how to design the downsampling and
the four graph spectral filters to ensure perfect reconstruction. One
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Fig. 1. Extension of the classical two channel critically sampled
filter bank to the graph setting. Here, H1 and H2 are lowpass and
highpass graph spectral filters, respectively.

approach is to separate the graph into a union of subgraphs, each
of which has some regular structure. For example, [14, 15] show
that the normalized graph Laplacian eigenvectors of bipartite graphs
have a spectral folding property that make it possible to design anal-
ysis and synthesis filters to guarantee perfect reconstruction. They
take advantage of this property by decomposing the graph into bi-
partite graphs and constructing a multichannel, separable filter bank,
while [16] adds vertices and edges to the original graph to form an
approximating bipartite graph. References [17, 18] generalize this
spectral folding property to M -block cyclic graphs, and leverage it
to construct M -channel graph filter banks. Another class of regular
structured graphs is shift invariant graphs [19, Chapter 5.1]. These
graphs have a circulant graph Laplacian and their eigenvectors are
the columns of the discrete Fourier transform matrix. Any graph
can be written as the sum of circulant graphs, and [20, 21, 22] use
this fact to design critically sampled graph filter banks with perfect
reconstruction. Other recently investigated architectures include lift-
ing transforms [23, 24] and pyramid transforms [25].

Our approach in this paper is to replace the synthesis filters
with interpolation operators on each subband of the graph spectrum.
While this idea was initially suggested independently in [26], we in-
vestigate it in more detail here. Our construction leverages the recent
flurry of work in sampling and reconstruction of graph signals [26]-
[35]. The key property we use is that any signal whose graph Fourier
transform has exactly k non-zero coefficients can be perfectly recov-
ered from samples of that signal on k appropriately selected vertices
(see, e.g., [26, Theorem 1] [35, Proposition 1]).

2. M -CHANNEL CRITICALLY SAMPLED FILTER BANK

We consider graph signals f 2 RN residing on a weighted, undi-
rected graph G = {V, E ,W}, where V is the set of N vertices, E is
the set of edges, and W is the weighted adjacency matrix. Through-
out, we take L to be the combinatorial graph Laplacian D �W,
where D is the diagonal matrix of vertex degrees. However, our
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Fig. 2. Example ideal filter bank. The red, orange, yellow, green,
and blue filters span 31, 31, 63, 125, and 250 graph Laplacian eigen-
values, respectively, on a 500 node sensor network with a maximum
graph Laplacian eigenvalue of 14.3. The tick marks on the x-axis
represent the locations of the graph Laplacian eigenvalues.

theory and proposed transform also apply to the normalized graph
Laplacian I �D� 1

2WD� 1
2 , or any other Hermitian operator. We

can diagonalize the graph Laplacian as L = U⇤U⇤, where ⇤
is the diagonal matrix of eigenvalues �0,�1, . . . ,�N�1 of L, and
the columns u0, u1, . . . , uN�1 of U are the associated eigenvectors
of L. The graph Fourier transform of a signal is f̂ = U⇤f , and
ĝ(L)f = Uĝ(⇤)U⇤f filters a graph signal by ĝ(·). We use the
notation UR to denote the submatrix formed by taking the columns
of U associated with the Laplacian eigenvalues indexed by R ✓
{0, 1, . . . , N � 1}. Similarly, we use the notation US,R to denote
the submatrix formed by taking the rows of UR associated with the
vertices indexed by the set S ✓ {1, 2, . . . , N}.

We start by constructing an ideal filter bank of M graph spec-
tral filters, where each filter ĥ

m

(�) is equal to 1 on a subset of the
spectrum, and 0 elsewhere. We choose the filters so that for each
` 2 {0, 1, . . . , N � 1}, ĥ

m

(�
`

) = 1 for exactly one m. Fig. 2
shows an example of such an ideal filter bank. Equivalently, we are
forming a partition {R1,R2, . . . ,RM

} of {0, 1, . . . , N � 1} and
setting

ĥ
m

(�
`

) =

(
1, if ` 2 R

m

0, otherwise
, m = 1, 2, . . . ,M.

The next step, which we discuss in detail in the next section, is
to partition the vertex set V into subsets V1,V2, . . . ,VM

such that
V
m

forms a uniqueness set for col (URm).

Definition 1 (Uniqueness set [27]). Let P be a subspace of Rn.
Then a subset V

s

of the vertices V is a uniqueness set for P if and
only if for all f, g 2 P , fVs = gVs implies f = g. That is, if two
signals in P have the same values on the vertices in the uniqueness
set V

s

, then they must be the same signal.

The following equivalent characterization of a uniqueness set is
often useful.

Lemma 1 ([29], [31]). The set S of k vertices is a uniqueness
set for col(UT ) if and only if the matrix whose columns are
uT1 , uT2 , . . . , uTk , �Sc

1
, �Sc

2
, . . . , �Sc

n�k
is nonsingular, where each

�Sc
i

is a Kronecker delta centered on a vertex not included in S.

The mth channel of the analysis bank filters the graph signal
by an ideal filter on subband R

m

, and downsamples the result onto
the vertices in V

m

. For synthesis, we can interpolate from the sam-
ples on V

m

to col (URm). If there is no error in the coefficients,
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Fig. 3. The M -channel critically sampled filter bank architecture.
The sets V1,V2, . . . ,VM

form a partition of the set V of vertices,
where each set V

m

is a uniqueness set for graph signals supported
on a different subband in the spectral domain.

then the reconstruction is perfect, because V
m

is a uniqueness set
for col (URm). Fig. 3 shows the architecture of the proposed M -
channel critically sampled filter bank with interpolation on the syn-
thesis side.

3. PARTITIONING THE GRAPH INTO UNIQUENESS
SETS FOR DIFFERENT FREQUENCY BANDS

For the easier case of M = 2 channels, if a set of vertices is a unique-
ness set for the signals contained in a band of spectral frequencies,
then the complement set of vertices is a uniqueness set for the set of
signals with no energy in that band of spectral frequencies.

Proposition 1. On a graph G with N vertices, let T ✓ {0, 1, . . . , N�
1} denote a subset of the graph Laplacian eigenvalue indices, and
let T c = {0, 1, . . . , N � 1} \ T . Then Sc is a uniqueness set for
col(UT c) if and only if S is a uniqueness set for col(UT ).

This fact follows from either the CS decomposition [36, Equa-
tion (32)]) or the nullity theorem [37, Theorem 2.1]. We also provide
a standalone proof in [38] that only requires that the space spanned
by the first k columns of U is orthogonal to the space spanned by the
last N�k columns, not that U is an orthogonal matrix. The Steinitz
exchange lemma guarantees that we can find the uniqueness set S
(and thus Sc), and the graph signal processing literature contains
methods such as Algorithm 1 of [31] to do so.

The issue with using the methods of Proposition 1 for the case of
M > 2 is that while the submatrix USc

,T c is nonsingular, it is not
necessarily orthogonal, and so we cannot proceed with an inductive
argument. The following proposition and corollary, whose proofs
are included in [38], circumvent this issue by only using the nonsin-
gularity of the original matrix. The proof of Proposition 2 is due to
Federico Poloni [39], and we later discovered the same method in
[40], [41, Theorem 3.3].

Proposition 2. Let A be an N ⇥ N nonsingular matrix, and � =
{�1,�2, . . . ,�M

} be a partition of {1, 2, . . . , N}. Then there ex-
ists another partition ↵ = {↵1,↵2, . . . ,↵M

} of {1, 2, . . . , N} with
|↵

i

| = |�
i

| for all i such that the M square submatrices A
↵i,�i are

all nonsingular.



Corollary 1. For any partition {R1,R2, . . .RM

} of the graph
Laplacian eigenvalue indices {0, 1, . . . , N � 1} into M subsets,
there exists a partition {V1,V2, . . . ,VM

} of the graph vertices into
M subsets such that for every m 2 {1, 2, . . . ,M}, |V

m

| = |R
m

|
and V

m

is a uniqueness set for col (URm).

Corollary 1 ensures the existence of the desired partition, and
the proof of Proposition 2 suggests that we can find it inductively.
However, given a partition of the columns of A into two sets T
and T c, Proposition 2 does not provide a constructive method to
partition the rows of A into two sets S and Sc such that the sub-
matrices AS,T and ASc

,T c are nonsingular. This problem is stud-
ied in the more general framework of matroid theory in [41], which
gives an algorithm to find the desired row partition into two sets.
We summarize this method in Algorithm 1, which takes in a par-
tition {R1,R2, . . .RM

} of the spectral indices and constructs the
partition {V1,V2, . . . ,VM

} of the vertices. In Fig. 4, we show two
examples of the resulting partitions.

Algorithm 1 Partition the vertices into uniqueness sets for each fre-
quency band

Input U, a partition {R1,R2, . . . ,RM

}
S  ;
for m = 1, 2, . . . ,M do

Find sets �1, �2 ⇢ Sc s.t. U
�1,Rm and U

�2,Rm+1:M are
nonsingular

while �1 \ �2 6= ; do
Find a chain of pivots from an element y 2 Sc \ (�1 [ �2)

to an element z 2 �1 \ �2 (c.f. [41] for details)
Update �1 and �2 by carrying out a series of exchanges

resulting with y and z each appearing in exactly one of �1 or �2
end while
V
m

 �1
S  S [ �1

end for
Output the partition {V1,V2, . . . ,VM

}

Remark 1. While Algorithm 1 always finds a partition into unique-
ness sets, such a partition is usually not unique, and the initial
choices of �

i

in each loop play a significant role in the final parti-
tion. In the numerical experiments in the next section, we use the
greedy algorithm in [31, Algorithm 1] to find an initial choice for
�1, and use row reduction after permuting the complement of �1 to
the top to find an initial choice for �2.

4. ILLUSTRATIVE EXAMPLES

We can represent the proposed filter bank as an N ⇥ N dictionary
matrix � that maps graph signals to their filter bank analysis coeffi-
cients.

4.1. Joint vertex-frequency localization of atoms and example
analysis coefficients

We start by empirically showing that the dictionary atoms (the
columns of �) are jointly localized in the vertex and graph spectral
domains. On the Stanford bunny graph [43] with 2503 vertices, we
partition the spectrum into five bands, and show the resulting parti-
tion into uniqueness sets in Fig. 6(c). The first row of Fig. 5 shows
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Fig. 4. Partitions of a 500 node random sensor network and the
Minnesota road network [42] into uniqueness sets for five different
spectral bands, with the indices increasing from lowpass bands (1)
to highpass bands (5).

five different example atoms whose energy is concentrated on differ-
ent spectral bands. We see that these atoms are generally localized
in the vertex domain as well. Some atoms such as the one shown at
wavelet scale 3 are more spread in the vertex domain, possibly as
a result of using ideal filters in the filter bank. The second row of
Fig. 5 shows the spectral content of all atoms in each band, with the
average for each represented by a thick black line. As expected, the
energies of the atoms are localized in the spectral domain as well.
While the transform is not orthogonal, each atom is orthogonal to all
atoms concentrated on other spectral bands. One possible extension
is to find a fast algorithm to orthogonalize the atoms within each
band. Note also that the wavelet atoms at all scales have mean zero,
as they have no energy at eigenvalue zero.

Next we apply the proposed transform to a piecewise-smooth
graph signal f that is shown in the vertex domain in Fig. 6(a), and
in the graph spectral domain in Fig. 6(b). The full set of analysis
coefficients is shown in Fig. 6(d), and these are separated by band in
the third row of Fig. 5. We see that with the exception of the lowpass
channel, the coefficients are clustered around the two main discon-
tinuities (around the midsection and tail of the bunny). The bottom
row of Fig. 5 shows the interpolation of these coefficients onto the
corresponding spectral bands, and if we sum these reconstructions
together, we recover exactly the original signal in Fig. 6(a).

4.2. Sparse approximation

Next, we compress a piecewise-smooth graph signal f via the sparse
coding optimization

argmin
x

||f ��x||22 subject to ||x||0  T, (1)

where T is a predefined sparsity level. After first normalizing the
atoms of various critically-sampled dictionaries, we use the greedy
orthogonal matching pursuit (OMP) algorithm [44, 45] to approxi-
mately solve (1). For the M -channel filter bank, the partition into
uniqueness sets is shown in Fig. 4, and the filter bank is shown in
Fig. 2. We show the reconstruction errors in Fig. 7(d).

5. ONGOING WORK

Our ongoing work, which is discussed in more detail in [38], in-
cludes investigating (i) computational approximations for identify-
ing uniqueness sets and performing interpolation, in order to im-
prove the scalability of the proposed transform; (ii) the role of the
initial choice of the �

i

’s in Algorithm 1 in improving the robustness
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Fig. 5. M -channel filter bank example. The first row shows example atoms in the vertex domain. The second row shows all atoms in the
spectral domain, with an average of the atoms in each band shown by the thick black lines. The third row shows the analysis coefficients of
Fig. 6(d) by band, and the last row is the interpolation by band from those coefficients.
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Fig. 6. (a)-(b) Piecewise smooth signal on the Stanford bunny graph
[43] in the vertex and graph spectral domains, respectively. (c) Par-
tition of the graph into uniqueness sets for five different spectral
bands. (d) M -channel filter bank analysis coefficients of the signal
shown in (a) and (b).

of the reconstruction to noisy or thresholded filter bank coefficients;
(iii) how iterating the filter bank with fewer channels at each step
compares to a single filter bank with more channels and each fil-
ter supported on a smaller region of the spectrum; and (iv) a formal
characterization of the relationships between the decay of the analy-
sis coefficients under the proposed transform and different properties
of graph signals, as well as the underlying graph structure.
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Fig. 7. Compression example. (a)-(b) Piecewise-smooth signal from
[25, Fig. 11] in the vertex and graph spectral domains. (c) The nor-
malized sorted magnitudes of the transform coefficients for the pro-
posed M -channel critically sampled filter bank, the graph Fourier
transform, the basis of Kronecker deltas, the quadrature mirror fil-
terbank [14], and the diffusion wavelet transform [8]. (d) The recon-

struction errors
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