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Abstract— We consider a single source transmitting media
streams to multiple users over a shared wireless channel. The
channel for each user is time-varying, and each user has a buffer
to store received packets before they are decoded and played. At
each time step, the source determines how much power to use
for transmission to each user. The objective is for the source
to allocate power in a manner that minimizes an expected cost
measure, while satisfying strict buffer underflow constraints and
a total power constraint in each slot. The expected cost measure
is composed of costs associated with power consumption from
transmission and packet holding costs. The buffer underflow
constraints prevent the user buffers from emptying, so as to
maintain playout quality. In the case of a single user, we show
that a modified base-stock policy is optimal under the finite and
infinite horizon discounted expected cost criteria. We present
the sequences of critical numbers that characterize the optimal
control laws in each of these two problems. We also discuss the
structure of the optimal policy in the multi-user case.

I. INTRODUCTION

Transporting multimedia over wireless networks is a promis-
ing application that has seen recent advances [1]. At the
same time, a number of resource allocation issues need to
be addressed in order to provide high quality and efficient
media over wireless. First, streaming is in general bandwidth-
demanding; therefore, simultaneously satisfying the different
bandwidth needs of multiple users/mobiles sharing the same
channel can be a challenging task. Second, streaming ap-
plications tend to have stringent quality of service (QoS)
requirements (e.g., they can be delay and jitter intolerant).
Third, it is desirable to operate the wireless system in an
energy-efficient manner. This is obvious when the source of
the media streaming (the sender) is a mobile. When the media
comes from a base station that is not power-constrained, it
is still desirable to conserve power in order to limit potential
interference to other base stations and their associated mobiles.

In this paper, we focus on the problem of reducing both
system-wide power consumption and playout interruptions
to end users. We consider a single source transmitting au-
dio/video sequences to multiple users over a shared wireless
channel. Each user has a buffer to store received packets
before they are decoded and played. The available data rate
of the channel varies with time and from user to user, due

to random fading. The transmitter’s goal is to minimize total
power consumption by exploiting the temporal and spatial
variation of the channel, while preventing any user’s buffer
from emptying, thus reducing playout interruptions.

This problem falls into the general class of multi-user
variable channel scheduling problems [2], also called oppor-
tunistic scheduling problems. The common theme amongst
these problems is that the transmission scheduler has two
competing interests. The first is to use power efficiently, by
allocating more power for transmission to those users with
the strongest channels at each time. The second is to meet the
data rate or packet delay constraints of all users, maintaining
a certain notion of fairness across the network.

The idea of increasing system throughput and reducing total
power consumption through such a joint resource allocation
policy is commonly referred to as multiuser diversity [3]. It
was introduced in the context of the analogous uplink problem
where multiple sources transmit to a single destination (e.g.,
the base station) [4]. Since, there has been a wide range of
literature on opportunistic scheduling problems in wireless
networks. Many of these studies have tried to maximize system
throughput subject to some fairness and/or power constraints.
For example, [5] and [6] consider temporal fairness; [3] and
[7] consider proportional fairness; [8] considers weighted
max-min fairness; [6] considers a more general utilitarian
fairness; [9] considers a statistical delay constraint; and [10]
considers individual user throughput and total power con-
straints simultaneously. [11] and [12] present algorithms to
keep all users’ queues stable while balancing throughput
and delay. For a recent overview of opportunistic scheduling
studies in wireless networks, see [13].

In the context of streaming media, the notion of fairness
is often linked to playout quality, as measured by delay or
probability of buffer underflow. Of the related work, [14]
has the closest setup to our model. The main differences are
that [14] features a loose constraint on underflow (i.e., it is
allowed, but at a cost), as opposed to our tight constraint, and
the two studies adopt different wireless channel models. In
the extension [15], the receiver may slow down its playout
rate (at some cost) to avoid underflow. In this setting, the



authors investigate the tradeoffs between power consumption
and playout quality, and examine joint power/playout rate
control policies. In our model, the receiver does not have
the option to adjust the playout speed. Our model also bears
resemblance to [16]. The first difference here is that [16] aims
to minimize transmission energy subject to a constant end-to-
end delay constraint on each video frame. A second difference
is that the controller in [16] must assign various source
coding parameters such as quantization step size and coding
mode, whereas our model assumes a fixed encoding/decoding
scheme.

The remainder of this paper is organized as follows. In
the next section, we describe the multi-user system model,
relate it to models in inventory theory, and formulate two
optimization problems (finite and infinite horizons). In Section
III, we examine the case of a single receiver, and characterize
the optimal scheduling policy for both problems. In Section
IV, we discuss the structure of the optimal policy in the multi-
user case.

II. PROBLEM DESCRIPTION

In this section, we present an abstraction of the transmission
scheduling problem outlined in the previous section and for-
mulate the optimization problems. While most of the results
we present are for the single user case, the formulation in this
section is for the more general multi-user (multi-receiver) case.
This allows us to precisely define the power constraint (in the
general case), and to discuss the multi-user case in Section
IV.

A. System Model and Assumptions

We consider a single source transmitting media sequences to
M users/receivers over a shared wireless channel. The sender
maintains a separate buffer for each receiver and is assumed to
always have data to transmit. Each user has a playout/receiver
buffer at the receiving end, assumed to be infinite. While in
reality this cannot be the case, it is nevertheless a reason-
able assumption considering the decreasing cost and size of
memory, and the fact that our system model penalizes holding
packets in the buffer. See Fig. 1 for a diagram of the system.

We consider time evolution in discrete steps indexed back-
wards by n = N, N−1, . . . , 1, with n representing the number
of slots remaining in the time horizon. N is the length of the
time horizon, and slot n refers to the time interval [n, n− 1).

At the beginning of each time slot, the scheduler allocates
some amount of power (possibly zero) for transmission to
each user. The total power consumed in any one slot must
not exceed the stationary power constraint, P . Following
transmission and reception in each slot, a certain number
of packets are removed/purged from the receiver buffer for
playing. We assume that packets transmitted in slot n arrive
in time to be used for playing in slot n. A per packet per slot
holding cost of hm is assessed on all packets remaining in
user m’s receiver buffer after playout consumption.

We assume that the transmitter (or scheduler) knows pre-
cisely the packet requirements of each user in each time slot.
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Fig. 1. System model.

This is justified by the assumption that the transmitter knows
the encoding and decoding schemes used. We further assume
that a user’s consumption of packets in each slot is constant,
denoted by dm, m = 1, 2, · · · ,M . This assumption is less
realistic, but may be justified if the receiving buffer is drained
at a constant rate at the MAC layer, before packets are decoded
by the media player at the application layer. It is also worth
noting that the same techniques we use in this paper to analyze
the stationary demand case can be used to examine the non-
stationary demand case.

In general, wireless channel conditions are time-varying,
and differ from user to user. Adopting a block fading model,
we assume that the slot duration is within the channel coher-
ence time such that the channel conditions within a single
slot are constant. A user m’s channel condition in slot n
is modelled as a random variable, Sm

n , that can be in a
finite number of states, indexed by the set Sm. We assume
that a given channel’s state is independent and identically
distributed from slot to slot, and is also independent of all
other channels and scheduling decisions. If user m’s channel
condition is in state s, then the transmission of r units of
data incurs a power consumption of cm

s (r). This power-
rate function cm

s (·) is commonly assumed to be convex (in
the high SNR regime) or linear (in the low SNR regime).
In this paper, we only consider the linear case; the more
general convex case will be dealt with in a future paper.
We will subsequently simplify our notation and use cm

s or
cm(Sm

n ) to denote the power consumption per unit of data
transmitted when user m’s channel is in state s or given by
random variable Sm

n at time n, respectively. Similarly, we
denote

(
c1(s1), c2(s2), . . . , cM (sM )

)T
by cs. The transmitter

is assumed to learn each channel’s state through a feedback
channel at the beginning of each time slot, prior to making
the scheduling decision.

We are primarily concerned with two objectives in deriving
a good transmission policy. One is to avoid underflow at the
receiver buffer, thus avoiding disruption to the user playout.
The other is to minimize system-wide power consumption.
The goal of this study is to characterize the control laws
that minimize the transmission power costs over a finite or
infinite time horizon, subject to tight underflow constraints
and a maximum power constraint in each time slot.

The model outlined above corresponds closely to models



used in inventory theory. Borrowing that field’s terminology,
our abstraction is a multi-period, multi-item, discrete time
inventory model with random ordering prices, a budget con-
straint, and deterministic demands. The items correspond to
the different users receiving data, the random ordering prices
to the random channel conditions, the budget constraint to
the power available in each time slot, and the deterministic
demands to each user’s packet requirements for playout.

To the best of our knowledge, this particular problem
has not been studied in the context of inventory theory, but
similar problems have been examined. [17] - [23] all consider
single item inventory models with random ordering prices.
The key result for the case of deterministic demand of a
single item with no resource constraint is that the optimal
policy is a modified base-stock policy. Specifically, for each
possible ordering price (translates into channel condition in our
context), there exists a critical number such that the optimal
policy is to fill the inventory (buffer) up to that critical number
if the the current level is lower than the critical number, and
not to order (transmit) anything if the current level is above the
critical number. Of the prior work, Kingsman [18], [19] is the
only author to consider a resource constraint, and he imposes
a maximum on the number of items that may be ordered in
each slot. The resource constraint we consider is of a different
nature in that we limit the total amount of power available in
each slot. This is equivalent to a limit on the total per slot
budget (regardless of the stochastic price realizations), rather
than a limit on the number of items that can be ordered. In
Section III, we discuss the above single item results further,
and leverage some of their techniques and solutions in deriving
our results. We are not aware of any prior work regarding
multiple item inventory models with stochastic ordering prices.

In addition to the assumptions described above, we also
make the following assumptions for technical reasons:

1) We assume all user buffers have an initial queue size of
0.

2) We assume that even when all users are experiencing
their worst possible channel conditions, the maximum
power constraint P is sufficient to transmit enough pack-
ets to satisfy one time slot’s playout demand for each
user, i.e.,

∑M
m=1{dm · cm(Sm)} ≤ P for every possible

realization of the random vector (S1, S2, · · · , SM )T.
3) For the special case of a single user with constant

demand d that is considered in Section III, we assume
that for every possible channel condition s, P/cs = ls ·d
for some ls ∈ IN ; i.e., the maximum number of packets
that can be transmitted in any slot covers exactly the
playout requirements of some integer number of slots.

In general, vectors are in boldface and are taken as column
vectors unless otherwise noted.

B. Problem Formulation

We consider two problems. The first, Problem (P1), is the
finite horizon discounted expected cost problem. The second,
Problem (P2), is the infinite horizon discounted expected cost
problem. The two problems feature the same information state,

action space, system dynamics, and cost structure, but different
optimization criteria.

The information state at slot n is the pair (Xn, Sn), where
the random vector Xn = (X1

n, X2
n, · · · , XM

n )T denotes the
current receiver buffer queue length of each user and Sn =
(S1

n, S2
n, · · · , SM

n )T denotes the channel conditions in slot n
(recall that n is the number of steps remaining until the
end of the horizon). The queue dynamics for user m are
governed by the simple equation Xm

n−1 = Y m
n − dm at all

times n = N, N − 1, . . . , 1. Y m
n is the queue length after

transmission in the nth slot takes place, but before playout in
the nth slot has occurred. Yn is a controlled random vector
chosen by the scheduler at each time n. It must satisfy the
power constraint:

∑M
m=1 cm(Sm

n ) · (Y m
n −Xm

n ) ≤ P , and the
underflow constraints: Y m

n ≥ dm, ∀m. Clearly, the scheduler
cannot transmit a negative number of packets, so it must also
be true that Y m

n ≥ Xm
n , ∀m.

We now present the optimization criterion for each problem.
In addition to the cost associated with power consumption
from transmission, we introduce for technical purposes a
holding cost on each packet stored in a user’s playout buffer
at the end of a time slot. In the finite horizon case, we can
exclude this cost from the optimization (set hm = 0, ∀m), but
we use the fact that all holding cost rates are strictly positive
(albeit arbitrarily small) in our infinite horizon solution. In
Problem (P1), we wish to find a transmission policy π that
minimizes Jπ

N , the expected cost under policy π, defined as:

Jπ
N :=

IEπ

{
M∑

m=1

N∑
t=1

αN−t

[
cm

(
Sm

t

) · (Y m
t −Xm

t

)

+hm · (Y m
t − dm

)
]
| F

}
,

where 0 ≤ α < 1 is the discount factor and F denotes all
information available at the beginning of the time horizon. For
Problem (P2), the cost function for minimization is defined as
Jπ
∞ := lim

N→∞
Jπ

N . In both cases, we allow the transmission

policy π to be chosen from the set of all randomized and
deterministic control laws, Π.

Combining the constraints and criteria, we present the
optimization formulations for Problem (P1) (or (P2)):

min
π∈Π

Jπ
N

(
or min

π∈Π
Jπ
∞

)

s.t.
M∑

m=1

cm(Sm
n ) · (Y m

n −Xm
n ) ≤ P, ∀n and

Y m
n ≥ max(Xm

n , dm), ∀m,∀n.

The above problem may be solved using standard dynamic
programming (see, e.g., [24]). The recursive DP equations in
the finite horizon case are given by:

Vn(x, s) = min
y∈Ad(x,s)

{
cTs (y− x) + hT(y− d)
+α · IE[

Vn−1(y− d, S)
]

}

V0(x, s) = 0, ∀x,∀s
(1)

where V (·, ·) is the value function or expected cost-to-go. The



relevant infinite horizon functional equation is:

V∞(x, s) = min
y∈Ad(x,s)

{
cTs (y− x) + hT(y− d)
+α · IE[

V∞(y− d, S)
]

}
. (2)

In both functional equations (1) and (2), the action space is
defined as:

Ad(x, s) :=
{

y ∈ IRM
+ : max(d, x) ¹ y and

cTs (y− x) ≤ P

}
, (3)

where the maximum in (3) is taken element-by-element(
i.e., max(dm, xm) ≤ ym ∀m)

. In the single user case, this
action space reduces to:

Ad(x, s) :=
{

y ∈ IR+ : max(d, x) ≤ y ≤ P

cs
+ x

}
.

III. ANALYSIS OF THE SINGLE USER CASE

In this section, we analyze the finite and infinite horizon
discounted expected problems when there is only a single user
(M = 1). Kingsman [18], [19] considers a similar problem
with a restriction on the maximum quantity that can be ordered
(transmitted) at the offered price (rate) in any time slot. In his
problem, however, the restriction is the same in every slot,
regardless of the realization of the stochastic ordering price
(channel condition). Using a similar approach, we analyze the
model described in Section II-A with a fixed power constraint
rather than a fixed limit on the maximum number of packets
that can be transmitted in a slot. Throughout this section, we
drop the superscript referring to the item index, as there is
only one item under consideration.

A. Finite Horizon Discounted Expected Cost Problem

We now present the optimal transmission policy by first
defining a set of thresholds recursively, and then using them
to determine the optimal transmission level in each state. The
threshold γn,j may be interpreted as the per packet power
cost at which, with n slots remaining in the horizon, the
expected cost-to-go of transmitting packets to cover the user’s
playout requirements for the next j−1 slots is the same as the
expected cost-to-go of transmitting packets to cover the user’s
requirements for the next j slots.

Theorem 1: Define the thresholds γn,j for
n ∈ {1, 2, . . . , N} and j ∈ IN recursively, as follows:

(i) If j = 1, γn,j = ∞;
(ii) If j > n, γn,j = 0;

(iii) If 2 ≤ j ≤ n,

γn,j = −h+α ·




∑
{s: cs>γn−1,j−1}

ps · γn−1,j−1 +
∑

{s: γn−1,j+L(s)−1≤cs≤γn−1,j−1}
ps · cs +

∑
{s: cs<γn−1,j+L(s)−1}

ps · γn−1,j+L(s)−1




,

where ps is the probability of the channel being in state s in a
time slot, and L(s) := P

d·cs
. For each n ∈ {1, 2, . . . , N} and

s ∈ S , if γn,j+1 < cs ≤ γn,j , define bn(s) := j · d. We refer
to bn(s) as a critical number. The optimal control strategy is
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Fig. 2. Optimal policy in slot n when the state is (x, s). (a) depicts the
optimal transmission quantity, and (b) depicts the resulting number of packets
available for playout in slot n.

then given by π∗ =
{
y∗N , y∗N−1, . . . , y

∗
1

}
, where

y∗n(x, s) :=





x, if x ≥ bn(s)
bn(s), if bn(s)− P

cs
≤ x < bn(s)

x + P
cs

, if x < bn(s)− P
cs

.

Note that with n slots remaining, 0 ≤ γn,n+1 ≤ γn,n ≤
γn,n−1 ≤ . . . ≤ γn,2 ≤ γn,1 = ∞, so bn(s) is well-defined.
The proof of Theorem 1 follows a similar technique to the
proof of Golabi’s Theorem 1 [23]. Specifically, we show by
backwards induction that it is worse to transmit either fewer
or more packets than the number suggested by the policy π∗.
The detailed proof is included in a forthcoming paper.

The optimal transmission policy in Theorem 1 is a modi-
fied base-stock policy. At time n, for each possible channel
condition realization s, the critical number bn(s) describes
the ideal number of packets to have in the user’s buffer after
transmission in the nth slot. If that number of packets is
already in the buffer, then it is optimal to not transmit any
packets; if there are fewer than ideal and the available power
is enough to transmit the difference, then it is optimal to do
so; and if there are fewer than ideal and the available power is
not enough to transmit the difference, then the sender should
use the maximum power to transmit. See Fig. 2 for diagrams
of the optimal policy.

Compared to using the dynamic program to compute the
optimal policy, the above result not only sheds more insight
on the structural properties of the problem and its optimal
solution, but also offers a computationally simpler method. In
particular, the optimal policy is completely characterized by
the thresholds γn,j . Calculating these thresholds recursively,
as described in Theorem 1, is considerably simpler from
a computational standpoint than solving the full dynamic
program.

Comparing (iii) to the corresponding thresholds in the
unrestricted (no power constraint) single user problem [18],
[23], we see that the difference is:

∑

{s: cs<γn−1,j+L(s)−1}
ps ·

[
γn−1,j+L(s)−1 − cs

]
.

For all n ∈ {1, 2, . . . , N} and j ∈ IN , this term is non-
negative. Thus, for a fixed n and j, the threshold in the
restricted case is at least as high as the corresponding threshold



in the unrestricted case. It follows that the optimal stock-up
level bn(s) is also at least as high in the restricted case for
all n ∈ {1, 2, . . . , N} and s ∈ S . The intuition behind this
difference is that the sender should transmit more packets
under the same (medium) conditions, because it is not able
to take advantage of the best channel conditions to the same
extent due to the power constraint.

B. Infinite Horizon Discounted Expected Cost Problem

In this section, we show that the infinite horizon optimal
policy is the natural extension of the finite horizon optimal
policy; namely, it is a modified base-stock policy of the
same form, characterized by stationary target buffer levels
{b∞(s)}s∈S .

Theorem 2:
(a) lim

n→∞
Vn(x, s) exists and is finite, ∀x ∈ IR+,∀s ∈ S .

(b) Define f(x, s) := lim
n→∞

Vn(x, s). Then lim
x→∞

f(x, s) =
∞, ∀s ∈ S, and f(x, s) is convex in x for any fixed
s ∈ S .

(c) f(x, s) satisfies the infinite horizon functional equation
(2), and the minimum is achieved by:

y∗∞(x, s) :=





x, if x ≥ b∞(s)
b∞(s), if b∞(s)− P

cs
≤ x < b∞(s)

x + P
cs

, if x < b∞(s)− P
cs

,

where b∞(s) = lim
n→∞

bn(s).

(d) The optimal stationary policy is given by π∗∞ = y∗∞.

The proof of Theorem 2 follows the logic conveyed in the
statement of the theorem, and leverages techniques similar to
[25] and [26]. Details are included in a forthcoming paper.

IV. ANALYSIS OF THE MULTIPLE USERS CASE

Based on numerical experiments, it appears that the optimal
policies discussed in Section III extend to the case of multiple
receivers in the following sense:

1) For each vector of channel conditions, s, at time n, there
exists a vector of critical numbers (corresponding to
bn(s) in the single user case), with one critical number
for each user. These critical numbers satisfy:

Gn(bn(s), s) = min
y∈IRn

+

{Gn(y, s)} , where

Gn(y, s) := cTs · y + hT · y + α · IE[
Vn−1(y− d, S)

]

2) Each user’s critical number bi
n depends only on its

current channel condition si, and is independent of its
own current buffer level, other users’ current buffer
levels, and other users’ current channel conditions.

3) It is optimal for the transmitter to not transmit any
packets to any user whose current buffer level is greater
than or equal to its critical number.

4) If it is possible for the transmitter to schedule packet
transmissions to bring all other users’ buffer levels up

)( 11 sbn
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Fig. 3. Structure of the optimal policy for the two-user case in slot n, with
a fixed vector of channel conditions, s. The tails of the arrows represent the
buffer levels before transmission, and the heads represent buffer levels after
transmission.

to their respective critical numbers without exceeding
the power constraint, then it is optimal for it to do so.

5) If the power constraint prevents the transmitter from
doing so, then it should allocate the full power P for
transmission to different receivers in some manner yet
to be determined.

The above structure is analogous to the finite and infinite
horizon optimal policies in the case of multiple users with
stochastic playout requirements (demands) and deterministic
channel conditions (ordering prices) [27], [25].

Figure 3 illustrates an optimal policy of this structure in a
two-user problem, for a fixed vector of channel conditions. In
the upper right region, both users’ buffer levels are above their
critical numbers, so it is optimal to not transmit any packets.
In the lower right and upper left regions, it is optimal to only
transmit to user 2 or user 1, respectively. If the power budget
is sufficient to bring that user up to the critical number, then
it is optimal to do so; otherwise, the full power is allocated to
the user whose buffer level is below its critical number. In the
shaded region, both users start below their critical numbers,
but there is sufficient power to transmit enough packets to
make up the difference for both. In the unshaded portion of
the lower left region, there is not sufficient power to bring both
users to their critical numbers, so the sender should transmit
at full power. In this case, the distribution of power between
the two users is not specified.

V. CONCLUSION

In this paper, we considered the problem of transmitting
media streams over a wireless channel in a manner that
prevents the receiver’s buffer from emptying. In the case of
a single receiver, we showed that under both the finite and
infinite horizon discounted expected cost criteria, the optimal
transmission schedule is a modified base-stock policy. We also
presented a series of thresholds that completely characterize
this optimal policy. In the case of multiple receivers using
a shared channel, we discussed the structure of the optimal
policy.

In addition to proving the structure of the optimal policy,
future work on the multi-user case includes identifying low



complexity sub-optimal policies that perform well. We also
plan to explore how the single user results presented in this
paper may be leveraged in the special multi-user case of M
identical users.
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