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Abstract: We propose and investigate two new methods to approximate f (A)b for large, sparse,
Hermitian matrices A. Computations of this form play an important role in numerous signal
processing and machine learning tasks. The main idea behind both methods is to first estimate
the spectral density of A, and then find polynomials of a fixed order that better approximate the
function f on areas of the spectrum with a higher density of eigenvalues. Compared to state-of-the-art
methods such as the Lanczos method and truncated Chebyshev expansion, the proposed methods
tend to provide more accurate approximations of f (A)b at lower polynomial orders, and for matrices
A with a large number of distinct interior eigenvalues and a small spectral width. We also explore
the application of these techniques to (i) fast estimation of the norms of localized graph spectral filter
dictionary atoms, and (ii) fast filtering of time-vertex signals.

Keywords: matrix function; spectral density estimation; polynomial approximation; orthogonal
polynomials; graph spectral filtering; weighted least squares polynomial regression

1. Introduction

Efficiently computing f (A)b, a function of a large, sparse Hermitian matrix times a vector,
is an important component in numerous signal processing, machine learning, applied mathematics,
and computer science tasks. Application examples include graph-based semi-supervised learning
methods [1–3]; graph spectral filtering in graph signal processing [4]; convolutional neural
networks/deep learning [5,6]; clustering [7,8]; approximating the spectral density of a large matrix [9];
estimating the numerical rank of a matrix [10,11]; approximating spectral sums such as the
log-determinant of a matrix [12] or the trace of a matrix inverse for applications in physics, biology,
information theory, and other disciplines [13]; solving semidefinite programs [14]; simulating random
walks [15] (Chapter 8); and solving ordinary and partial differential equations [16–18].

References [19] (Chapter 13), [20–22] survey different approaches to this well-studied problem of
efficiently computing

f (A)b := V f (Λ)V>b, (1)

where the columns of V are the eigenvectors of the Hermitian matrix A ∈ RN×N ; Λ is a diagonal
matrix whose diagonal elements are the corresponding eigenvalues of A, which we denote by

Algorithms 2020, 13, 295; doi:10.3390/a13110295 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-7598-9218
https://orcid.org/0000-0002-1989-3190
https://orcid.org/0000-0001-6942-7158
https://orcid.org/0000-0002-8614-5360
http://www.mdpi.com/1999-4893/13/11/295?type=check_update&version=1
http://dx.doi.org/10.3390/a13110295
http://www.mdpi.com/journal/algorithms


Algorithms 2020, 13, 295 2 of 22

λ1, λ2, . . . , λN ; and f (Λ) is a diagonal matrix whose kth diagonal entry is given by f (λk). For large
matrices, it is not practical to explicitly compute the eigenvalues of A in order to approximate (1).
Rather, the most common techniques, all of which avoid a full eigendecomposition of A, include (i)
truncated orthogonal polynomial expansions, including Chebyshev [23–25] and Jacobi; (ii) rational
approximations [21] (Section 3.4); (iii) Krylov subspace methods such as the Lanczos method [23,26–29];
and (iv) quadrature/contour integral methods [19] (Section 13.3).

Our focus in this work is on polynomial approximation methods. Let pK(λ) = c0 + ∑K
k=1 ckλk be

a degree K polynomial approximation to the function f on a known interval [λ, λ] containing all of
the eigenvalues of A. Then the approximation pK(A)b can be computed recursively, either through a
three-term recurrence for specific types of polynomials (see Section 3 for more details), or through a
nested multiplication iteration [30] (Section 9.2.4), letting x(0) = cKb, and then iterating

x(l) = cK−lb + Ax(l−1), l = 1, 2, . . . , K. (2)

The computational cost of either of these approaches is dominated by multiplying the sparse matrix A
by K different vectors. The approximation error is bounded by

|| f (A)− pK(A)||2 = max
`=1,2,...,N

| f (λ`)− pK(λ`)| (3)

≤ sup
λ∈[λ,λ]

| f (λ)− pK(λ)|. (4)

If, for example, pK is a degree K truncated Chebyshev series approximation of an analytic function f ,
the upper bound in (4) converges geometrically to 0 as K increases, at a rate of O

(
ρ−K), where ρ

is the radius of an open Bernstein ellipse on which f is analytic and bounded (see, e.g., [31]
(Theorem 5.16), [32] (Theorem 8.2)).

In addition to the computational efficiency and convergence guarantees, a third advantage of
polynomial approximation methods is that they can be implemented in a distributed setting [33].
A fourth advantage is that the ith element of pK(A)b only depends on the elements of b within K
hops of i on the graph associated with A (e.g., if A is a graph Laplacian matrix, a nonzero entry in
the (i, j)th element of A, where i 6= j, corresponds to an edge connecting vertices i and j in the graph).
This localization property is important in many graph-based data analysis applications, such as graph
spectral filtering [34] and deep learning [5]. Finally, as opposed to other methods that incorporate prior
knowledge about b into the choice of the approximating polynomial (e.g., [35] considers vectors b from
a zero-mean distribution with a known covariance matrix), the polynomial approximations resulting
from the methods we propose do not depend on b or any information about b. Thus, in applications
where the computation of f (A)b is repeated for many different vectors b with the same f and A,
the polynomial coefficients only need to be computed a single time.

While the classical truncated orthogonal polynomial expansion methods (e.g., Chebyshev,
Legendre, Jacobi) aim to approximate the function f throughout the full interval [λ, λ], it is only
the polynomial approximation error at the eigenvalues of A that affects the overall error in (3).
With knowledge of the complete set of eigenvalues, we could do better, for example, by fitting a degree
K polynomial via the discrete least squares problem minp∈PK ∑N

`=1 [ f (λ`)− p(λ`)]
2. In Figure 1,

we show an example of such a discrete least squares fitting. The resulting approximation error
|| f (A) − pK(A)||2 for K = 5 is 0.020, as opposed to 0.347 for the degree 5 truncated Chebyshev
approximation. This is despite the fact that supλ∈[λ,λ] | f (λ)− pK(λ)| is equal to 0.650 for the discrete
least squares approximation, as opposed to 0.347 for the Chebyshev approximation.

While in our setting we do not have access to the complete set of eigenvalues, our approach
in this work is to leverage recent developments in efficiently estimating the spectral density of
the matrix A, to adapt the polynomial to the spectrum in order to achieve better approximation
accuracy at the (unknown) eigenvalues. After reviewing spectral density estimation in the next section,
we present two new classes of spectrum-adapted approximation techniques in Section 3. In Section 4,
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we perform numerical experiments, approximating f (A)b for different matrices A and functions
f , and discuss the situations in which the proposed methods work better than the state-of-the-art
methods. In Sections 5 and 6, we explore the application of the proposed technique to fast estimation
of the norms of localized graph spectral filter dictionary atoms and fast filtering of time-vertex
signals, respectively.
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Figure 1. Degree 5 polynomial approximations of the function f (λ) = e−λ of the graph Laplacian of
a random Erdös–Renyi graph with 500 vertices and edge probability 0.2. The discrete least squares
approximation incurs larger errors in the lower end of the spectrum. However, since the eigenvalues are
concentrated at the upper end of the spectrum, it yields a lower approximation error || f (A)− p5(A)||2.

2. Spectral Density Estimation

The cumulative spectral density function or empirical spectral cumulative distribution of the matrix A is
defined as

Pλ(z) :=
1
N

N

∑
`=1

11{λ`≤z}, (5)

where 11{C} = 1 if statement C is true and 11{C} = 0 otherwise. The spectral density function [36]
(Chapter 6) (also called the Density of States or empirical spectral distribution [37] (Chapter 2.4)) of A is
the probability measure defined as

pλ(z) :=
1
N

N

∑
`=1

11{λ`=z}.

Lin et al. [9] provide an overview of methods to approximate these functions. In this work,
we use a variant of the Kernel Polynomial Method (KPM) [38–40] described in [9,41] to estimate
the cumulative spectral density function Pλ(z) of A. Namely, for each of S linearly spaced points
{ξi}S

i=1 between λ and λ, we estimate the number of eigenvalues less than or equal to ξi via stochastic
trace estimation [42,43]. Let x denote a Gaussian random vector with distribution N (0, I), {x(j)}J

j=1
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denote a sample of size J from this distribution, and Θ̃ξi denote a Jackson–Chebyshev polynomial
approximation to Θξi (λ) := 11{λ≤ξi} [44,45]. The stochastic trace estimate of the number of eigenvalues
less than or equal to ξi is then given by

ηi = tr
(
Θξi (A)

)
= E[x>Θξi (A)x] ≈ 1

J

J

∑
j=1

x(j)>Θ̃ξi (A)x(j). (6)

As in [46], we then form an approximation P̃λ(z) to Pλ(z) by performing monotonic piecewise cubic
interpolation [47] on the series of points

{(
ξi,

ηi
N
)}

i=1,2,...,S. Analytically differentiating P̃λ(z) yields
an approximation p̃λ(z) to the spectral density function pλ(z). Since P̃λ(z) is a monotonic cubic
spline, we can also analytically compute its inverse function P̃−1

λ (y). The spectrum-adapted methods
we propose in Section 3 utilize both pλ(z) and P̃−1

λ (y) to focus on regions of the spectrum with
higher eigenvalue density when generating polynomial approximations. Figure 2 shows examples
of the estimated cumulative spectral density functions for eight real, symmetric matrices A: the
graph Laplacians of the Erdös–Renyi graph (gnp) from Figure 1, the Minnesota traffic network [48]
(N = 2642), and the Stanford bunny graph [49] (N = 2503); the normalized graph Laplacian of
a random sensor network (N = 5000) from [50]; and the net25 (N = 9520), si2 (N = 769), cage9
(N = 3534), and saylr4 (N = 3564) matrices from the SuiteSparse Matrix Collection [51] (We use A+A>

2
for cage9, and for net25 and saylr4, we generate graph Laplacians based on the off-diagonal elements
of A. For saylr4, we scale the entire Laplacian by a factor of 1

2000 ).
The computational complexity of forming the estimate P̃λ(z) isO(MJKΘ), where M is the number

of nonzero entries in A, J is the number of random vectors in (6) (in our experiments, J = 10 suffices),
and KΘ is the degree of the Jackson–Chebyshev polynomial approximations Θ̃ξi [41]. While this cost is
non-negligible if computing f (A)b for a single f and a single b, it only needs to be computed once for
each A if repeating this calculation for multiple functions f or multiple vectors b, as is often the case in
the applications mentioned above.
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Figure 2. Estimated and actual cumulative spectral density functions for eight real, symmetric matrices
A. We estimate the eigenvalue counts for S = 10 linearly spaced points on [λ, λ] via (6), with degree
KΘ = 30 polynomials and J = 10 random vectors x(j).

3. Spectrum-Adapted Methods

In this section, we introduce two new classes of degree K polynomial approximations pK(A)b
to f (A)b, both of which leverage the estimated cumulative spectral density function P̃λ(z).
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3.1. Spectrum-Adapted Polynomial Interpolation

In the first method, we take yk :=
cos( kπ

K )+1
2 , for k = 0, 1, . . . , K, which are the K + 1 extrema of

the degree K Chebyshev polynomial shifted to the interval [0, 1]. We then warp these points via the
inverse of the estimated cumulative spectral density function by setting xk = P−1

λ (yk), before finding
the unique degree K polynomial interpolation through the points {(xk, f (xk))}k=0,1,...,K. The intuition
behind warping the interpolation points is that (i) a better approximation is attained in areas of the
spectrum (domain) with more interpolation points, (ii) the error in (3) only depends on the errors at
the eigenvalues of A, so we would like the approximation to be best in regions with many eigenvalues,
and (iii) as shown in Figure 3, using the inverse of the estimated cumulative spectral density function
as the warping function leads to a higher density of the warped points {xk} falling in higher density
regions of the spectrum of A. Thus, the warping should ideally lead to more interpolation points in
high density regions of the spectrum, better approximation of the target function in these regions, and,
in turn, a reduction in the error (3), as compared to interpolations generated from points spread more
evenly across the spectrum.

To find the (unique) degree K polynomial interpolation, our numerical implementation uses
MATLAB’s polyfit function, which centers and scales the data and then solves the resulting system
of equations via a QR decomposition. Once the interpolating polynomial coefficients are attained,
pK(A)b can be computed, e.g., via (2) or by representing the interpolating polynomial as a linear
combination of Chebyshev polynomials and using Chebyshev coefficients in the associated three-term
recurrence [23,32]. This entire procedure is detailed in Algorithm 1.
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0.5
0.6
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0.8
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P̃�(z)

12

y2

x2 = P̃�1
� (y2)

Figure 3. Construction of six interpolation points for the same graph Laplacian matrix described in Figure 1.
The interpolation points {xk} on the horizontal axis are computed by applying the inverse of the estimated
cumulative spectral density function to the initial Chebyshev points {yk} on the vertical axis.

Algorithm 1 Spectrum-adapted polynomial interpolation.

Input Hermitian matrix A ∈ RN×N , vector b ∈ RN , function f , polynomial degree K
Output degree K approximation pK(A)b ≈ f (A)b ∈ RN

1: Compute P̃λ(z), an estimate of the cumulative spectral density of A
2: for k in 0 : K do
3: yk ← 1

2 [cos( kπ
K ) + 1]

4: xk ← P̃−1
λ (yk)

5: end for
6: Find the (unique) degree K polynomial interpolation pK through the points {(xk, f (xk))}k=0,1,...,K

7: Compute pK(A)b via (2)
8: return pK(A)b
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3.2. Spectrum-Adapted Polynomial Regression/Orthogonal Polynomial Expansion

A second approach is to solve the weighted least squares polynomial regression problem

min
p∈PK

M

∑
m=1

wm [ f (xm)− p(xm)]
2 , (7)

where the abscissae {xm}m=1,2,...,M and weights {wm}m=1,2,...,M are chosen to capture the estimated
spectral density function. We investigated several methods to set the points (e.g., linearly spaced points,
Chebyshev points on the interval [λ, λ], Chebyshev points on each subinterval [ξi, ξi+1], and warped
points via the inverse of the estimated cumulative spectral density function as in Section 3.1) and
weights (e.g., the analytically computed estimate p̃λ of the spectral density function, a discrete estimate
of the spectral density function based on the eigenvalue counts in (6), the original KPM density of
states method based on a truncated Chebyshev expansion [9] (Equation 3.11), or equal weights for
warped points). Without going into extensive detail about these various options, we remark that
choosing abscissae {xm} that are very close to each other, which may occur when using points warped
by the inverse of the estimated density function, may lead to numerical instabilities when solving the
weighted least squares problem. In the numerical experiments, we use M evenly spaced points on
the interval [λ, λ] (i.e., xm = m−1

M−1 (λ− λ) + λ), and set the weights to be wm = p̃λ(xm). To solve (7),
we use a customized variant of MATLAB’s polyfit function that solves, again via QR decomposition,
the normal equations of the weighted least squares problem:

Ψ>x WΨxc = Ψ>x Wy,

where Ψx is the Vandermonde matrix associated with the points {xm}, W is a diagonal matrix with
diagonal elements equal to the weights {wm}, y is a column vector with entries equal to { f (xm)}, and c
is the vector of unknown polynomial coefficients. Once the coefficients c of the optimal polynomial,
p∗K are attained, p∗K(A)b can once again be computed, e.g., via (2). A summary of this method is
detailed in Algorithm 2 (As pointed out by an anonymous reviewer, since our estimate p̃λ of the spectral
density function is a piecewise quadratic function, the optimization problem (7) could be replaced by

its continuous analog, minp∈PK

∫ λ
λ [ f (x)− p(x)]2 p̃λ(x) dx, which can be solved analytically for many

functions f (·)).

Algorithm 2 Spectrum-adapted polynomial regression.

Input Hermitian matrix A ∈ RN×N , vector b ∈ RN , function f , polynomial degree K, number of
grid points M

Output degree K approximation pK(A)b ≈ f (A)b ∈ RN

1: Compute p̃λ(z), an estimate of the spectral density of A
2: for m in 1 : M do
3: xm ← m−1

M−1 (λ− λ) + λ

4: wm ← p̃λ(xm)

5: end for
6: pK ← argminp∈PK

∑M
m=1 wm [ f (xm)− p(xm)]

2

7: Compute pK(A)b via (2)
8: return pK(A)b
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An alternative way to view this weighted least squares method [52] is as a truncated expansion in
polynomials orthogonal with respect to the discrete measure dλM with finite support at the points {xm},
and an associated inner product [53] (Section 1.1)

〈 f , g〉dλM =
∫
R

f (x)g(x)dλM =
M

∑
m=1

wm f (xm)g(xm).

The M discrete monic orthogonal polynomials {πk,M}k=0,1,M−1 satisfy the three-term recurrence
relation [53] (Section 1.3)

πk+1,M(x) = (x− αk,M)πk,M(x)− βk,Mπk−1,M(x), k = 0, 1, . . . , M− 1, (8)

with π−1,M(x) = 0, π0,M(x) = 1, β0,M = ∑M
m=1 wm,

αk,M =
〈xπk,M, πk,M〉dλM

〈πk,M, πk,M〉dλM

, k = 0, 1, . . . , M− 1, and βk,M =
〈πk,M, πk,M〉dλM

〈πk−1,M, πk−1,M〉dλM

, k = 1, 2, . . . , M− 1.

Given the abscissae {xm} and weights {wm}, the three-term recursion coefficients {αk,M}k=0,1,...,M−1
and {βk,M}k=1,2,...,M−1 can also be computed through a stable Lanczos type algorithm on an (M + 1)×
(M + 1) matrix [53] (Section 2.2.3), [54]. In matrix-vector notation, the vectors πk,M ∈ RM, which are
the discrete orthogonal polynomials evaluated at the M abscissae, can be computed iteratively by
the relation

πk+1,M = (diag({xm})− αk,MIM)πk,M − βk,Mπk−1,M, k = 0, 1, . . . , M− 1,

with π−1,M = 0M and π0,M = 1M. Figure 4 shows an example of these discrete orthogonal
polynomials.
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Figure 4. Comparison of (top) the first six discrete orthogonal polynomials defined in (8), adapted
to the estimated cumulative spectral density of the random Erdös–Renyi graph from Figures 1–3,
to (bottom) the first six standard shifted Chebyshev polynomials with degree k = 0 to 5. In the region
of high spectral density, shown in the zoomed boxes on the right, the discrete orthogonal polynomials
feature more oscillation while maintaining small amplitudes, enabling better approximation of smooth
functions in this region.
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Finally, the degree K polynomial approximation to f (A)b is computed as

pK(A)b =
K

∑
k=0

〈 f , πk,M〉dλM

〈πk,M, πk,M〉dλM

πk,M(A)b,

with π−1,M(A)b = 0N , π0,M(A)b = b, and

πk+1,M(A)b = (A− αk,MIN)πk,M(A)b− βk,Mπk−1,M(A)b, k = 0, 1, . . . , K− 1 (where K ≤ M− 1).

Before proceeding to numerical experiments, we briefly comment on the relationship between the
spectrum-adapted approximation proposed in this section and the Lanczos approximation to f (A)b,
which is given by [19] (Section 13.2), [23]

QK f (TK)Q>K b = ||b||2QK f (TK)e1, (9)

where QK is an N × (K + 1) matrix whose columns form an orthonormal basis for KK(A, b) =

span
{

b, Ab, . . . , AKb
}

, a Krylov subspace. In (9), TK = Q>K AQK is a (K + 1)× (K + 1) tridiagonal
Jacobi matrix. The first column of QK is equal to b

||b|| . The approximation (9) can also be written as
qK(A)b, where qK is the degree K polynomial that interpolates the function f at the K + 1 eigenvalues
of TK [19] (Theorem 13.5), [55]. Thus, unlike classical polynomial approximation methods, such as the
truncated Cheybshev expansion, the Lanczos method is indirectly adapted to the spectrum of A.
The Lanczos method differs from proposed method in that TK and the Lanczos approximating
polynomial qK depend on the initial vector b. Specifically, the polynomials {π̃k} generated from
the three-term recurrence of the form (8)

γk+1π̃k+1(x) = (x− αk)π̃k(x)− γkπ̃k−1(x),

with the {αk}k=0,1,...,K and {γk}k=1,2,...,K coefficients taken from the diagonal and superdiagonal entries
of TK, respectively, are orthogonal with respect to the piecewise-constant measure

µ(x) =


0, x < λ1

∑i
j=1[b̂(j)]2, λi ≤ x < λi+1

∑N
j=1[b̂(j)]2 = 1, λN ≤ x

,

where b̂ = V>q1 = V>
(

b
||b||

)
, and b̂(j) is its jth component [56] (Theorem 4.2). If b̂ happens to

be a constant vector, then µ(x) = Pλ(x) from (5). If A is a graph Laplacian, b̂ is the graph Fourier
transform [4] of b, normalized to have unit energy.

4. Numerical Examples and Discussion

In Figure 5, for different functions f (λ) and matrices A, we approximate f (A)b with b = V1
and polynomial approximation orders ranging from K = 3 to 25. To estimate the cumulative spectral
density function P̃λ(z) with parameters S = 10, J = 10, and KΘ = 30, we use the KPM, as shown
in Figure 2. Based on the analytical derivative and inverse function of P̃λ(z), we obtain the two
proposed spectrum-adapted polynomial approximations for f (λ), before computing each pK(A)b
via the corresponding three-term recursion. We compare the proposed methods to the truncated
Chebyshev expansion and the Lanczos method with the same polynomial order. Note that when

b is a constant vector in the spectral domain of A, the relative error || f (A)b−pK(A)b||22
|| f (A)b||22

is equal to

∑N
`=1( f (λ`)−pK(λ`))

2

∑N
`=1 f (λ`)2 , the numerator of which is the discrete least squares objective mentioned in Section 1.

The first column of Figure 5 displays the errors at all eigenvalues of A for each order 10 polynomial
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approximation of f (λ) = e−λ. The second column examines the convergence of relative errors in
approximating e−Ab for matrices with various spectral distributions, for each of the four methods.

In the field of graph signal processing [4], it is common to analyze or modify a graph signal b ∈ RN ,
where b(i) is the value of the graph signal at vertex i of a weighted, connected graph G with N vertices,
by applying a graph spectral filter fl . The filtered signal is exactly the product (1) of a function of
the graph Laplacian (or some other symmetric matrix) and a vector, the graph signal b. In Figure 6,
we show examples of collections of such functions, commonly referred to as graph spectral filter banks.
In the right three columns of Figure 5, we examine the relative errors incurred by approximating
fl(A)b for the lowpass, bandpass, and highpass graph spectral filters f1, f3, and f5 shown in Figure 6a.
We expand on the applications of such graph spectral filters in Section 5.

We make two observations based on the numerical examples:

1. The spectrum-adapted interpolation method often works well for low degree approximations
(K ≤ 10), but is not very stable at higher orders due to overfitting of the polynomial interpolant
to the specific K + 1 interpolation points (i.e., the interpolant is highly oscillatory).

2. The proposed spectrum-adapted weighted least squares method tends to outperform the
Lanczos method for matrices such as si2 and cage9 that have a large number of distinct interior
eigenvalues.
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|e−λ − p10(λ)|
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Figure 5. Approximations of f (A)b with b = V1 and f (λ) equal to e−λ (first two columns) and lowpass, bandpass, and highpass spectral graph filters (last three
columns, respectively).
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Figure 6. Spectral graph filter bank examples. (a) A set of five uniform translates of an itersine kernel
sin
(

π
2 cos2(πx)

)
[46,57]. (b) A set of four log-warped translates (also called octave-band or wavelet

filters) [46]. We plot both sets of spectral graph filters on the spectrum of the Stanford bunny graph
with N = 2503 vertices; however, the design only depends on the spectral range [0, λmax], so the filters
will look the same (except stretched) for all graphs considered, e.g., in Figure 5.

5. Application I: Estimation of the Norms of Localized Graph Spectral Filter Dictionary Atoms

A common method to extract information from data residing on a weighted, undirected graph
is to represent the graph signal as a linear combination of building block graph signals called atoms,
a collection of which is called a dictionary. In this section, we consider localized spectral graph filter
dictionaries with the form D = {ϕi,l}i=1,2,...,N; l=1,2,...,L, where each atom is defined as ϕi,l := fl(L)δi
with L being the graph Laplacian and δi having a value of 1 at vertex i and 0 elsewhere. Each atom
can be interpreted as the result of localizing a spectral pattern characterized by the filter function fl
to be centered at vertex i in the graph. See [58] for more details about localized spectral graph filter
dictionaries and their applications as transforms and regularizers in myriad signal processing and
machine learning tasks.

For large, sparse graphs, the dictionary atoms are never explicitly computed; rather, their
inner products with the graph signal are approximated by 〈b,ϕi,l〉 = δ>i fl(L)b ≈ δ>i pl,K(L)b,
using polynomial approximation methods such as those described in Section 1 or those proposed in
this work. However, in graph signal processing applications such as thresholding for denoising or
compression [58–60] or non-uniform random sampling and interpolation of graph signals [41,45,58,61],
it is often important to form a fast estimate of the norms of the dictionary atoms, {||ϕi,l ||2}i,l . Since
||ϕi,l ||22 = 〈ϕi,l ,ϕi,l〉 = δ>i f 2

l (L)δi is a bilinear form of the type u> f (A)u, the norm of a single atom
can be estimated via quadrature methods such as Lanczos quadrature [53] (Ch. 3.1.7), [56] (Ch. 7), [62];
however, doing this for all NL atoms is not computationally tractable since each requires a different
combination of function and starting vector. Other alternatives include the methods discussed in [63]
for estimating diagonal elements of a matrix that is not explicitly available but for which matrix-vector

products are easy to evaluate, as ||ϕi,l ||2 =
√[

f 2
l (L)

]
i,i.

In this application example, we estimate the norms of the dictionary atoms through the products
of matrix functions with random vectors, as follows. Let x be a random vector with each component
having an independent and identical standard normal distribution (in fact, we are only utilizing the
property that the random components have unit variance). Then we have

var
(
〈ϕi,l , x〉

)
= var

(
N

∑
n=1

x(n)ϕi,l(n)

)
=

N

∑
n=1

[ϕi,l(n)]2var(x(n)) = ||ϕi,l ||
2
2.

Thus, to estimate ||ϕi,l ||2, it suffices to estimate sd
(
〈ϕi,l , x〉

)
= sd

(
δ>i fl(L)x

)
≈ sd

(
δ>i pl,K(L)x

)
for

a degree K polynomial approximation pl,K to fl . We therefore define each atom norm estimate as the
sample standard deviation

νi,l := sd
({

δ>i pl,K(L)x
(j)
}

j=1,2,...,J

)
≈ ||ϕi,l ||2, (10)
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where each x(j) is a realization of the random vector x. In the numerical experiments, we compare
the estimates resulting from Chebyshev polynomial approximation to those resulting from
spectrum-adapted weighted least squares polynomial approximation. As a computational aside,
in the process of estimating the spectral density via KPM in (6), we have already computed T̄k(L)x(j)

for each k = 0, 1, . . . , K and each j, where T̄k are the Chebyshev polynomials shifted to the interval
[0, λmax]. From these quantities, we can easily compute the pl,K(L)x(j) vectors in (10) for different
values of l (different filters). See [41] (Sec. III.B.1) for details.

In the top row of Figure 7, we demonstrate the estimation of the norms of the atoms of a spectral
graph wavelet dictionary generated by localizing the four filters in Figure 6b to each of the vertices of
the bunny graph. Figure 7a shows the exact norms of the NL = 2503 · 4 = 10012 dictionary atoms.
In Figure 7b, we plot the estimated norms of the atoms, generated via degree K = 8 spectrum-adapted
weighted least squares polynomial approximation with J = 50 random vectors in (10), against the
actual atom norms. The ratios of the estimated atom norms to the actual norms are shown in Figure 7c.
We show the mean of the relative error

∣∣∣ νi,l
||ϕi,l ||2

− 1
∣∣∣ across all of these atoms as a single point in

Figure 7d, and also repeat this experiment with different values of K and J and different classes of
approximating polynomials, as well as for different graphs in Figure 7e–f. On all three graphs and at
both values of J, for low degrees K, the estimates generated from the spectrum-adapted polynomial
least squares method have lower mean relative error than those based on Chebyshev polynomial
approximation. While these examples are on small to medium graphs for comparison to the exact
atom norms, the method scales efficiently to dictionaries designed for large, sparse graphs.
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Figure 7. Estimation of the norms of the atoms of spectral graph wavelet dictionaries. (a) Exact atom
norms, {||ϕi,l ||2}, colored by the indices of the generating filters (shown in Figure 6), each of which is
localized to every vertex on the bunny graph. (b) Comparison of the estimated norms, {νi,l}, to the
corresponding exact norms (shown in black). The atoms are sorted in descending order of exact norm
to aid visual comparison. (c) The ratios of the estimated norms to the exact atom norms. (d–f) The mean
relative errors across all atoms for dictionaries generated by the same set of filters on three different
graphs, with varying polynomial approximation methods, polynomial degrees K, and numbers of
random vectors J.
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6. Application II: Fast Filtering of Time-Vertex Signals

In this section, we demonstrate the use of the spectrum-adapted approximation methods in
Section 3 to accelerate the the joint filtering of time-vertex signals in both time and graph spectral
domains [50,64,65].

6.1. Time-Vertex Signals

We consider a weighted, undirected graph G = {V , E , WG} with N vertices, where V is the set
of vertices, E is the set of edges, and WG is the weighted adjacency matrix. The combinatorial graph
Laplacian is defined as LG := DG −WG, where DG is diagonal with DG(i, i) equal to the degree of the
ith vertex. At each vertex, we observe a time series of T observations. Thus, the time-varying graph
signal can be represented as a matrix X ∈ RN×T , where Xi,j is the value on the ith vertex at the jth time.
Figure 8 shows an example of a time-vertex signal.

Figure 8. A time-vertex signal defined on a sensor graph G with N = 64 vertices and T = 4
observations, visualized on a multilayer graph structure. Each layer is a copy of G observed at
one time point.

6.2. Time-Vertex Filtering

Fixing a point in time, each column of X is a graph signal defined on G. Let xtj ∈ RN×1 denote the
jth column of X, j = 1, · · · , T. Based on the graph structure of G, we can perform high-dimensional
graph signal processing tasks on xtj , such as filtering, denoising, inpainting, and compression [4].
In particular, for a filter g : σ(LG)→ C defined on the eigenvalues of LG, the graph spectral filtering of
xtj can be computed as g(LG)xtj = UGg(ΛG)U∗Gxtj , where U∗G is the conjugate transpose of UG, and
LG = UGΛGU∗G is the spectral decomposition of LG.

Conversely, focusing on one vertex of G, the ith row of X is a discrete time signal x>vi
∈ R1×T ,

which indicates how the signal value changes over time on the ith vertex. We can compute the
one-dimensional discrete Fourier transform (DFT) of x>vi

by x̃>vi
= x>vi

UR, where UR is the normalized
DFT matrix of size T, and UR is its complex conjugate. The DFT converts a signal from the
time domain to the frequency domain, and allows for the amplification or attenuation of different
frequency components of the signal. This process is referred to as frequency filtering in classical
signal processing [4]. Frequency filtering of classical one-dimensional signals is equivalent to graph
spectral filtering of graph signals on a ring graph [66] (Theorem 5.1). Let LR denote the graph
Laplacian of a ring graph with T vertices. Its spectral decomposition gives LR = URΛRU∗R, where UR
comprises the DFT basis vectors (normalized to have length 1), and the kth eigenvalue is given by
ΛR(k, k) = 2− 2 cos 2π(k−1)

T , for k = 1, · · · , T.
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The joint time-vertex Fourier transform of a time-varying graph signal X is defined as the
combination of a graph Fourier transform and a DFT [50]:

X̂ := U∗GXUR.

A joint time-vertex filter h : σ(LG)× σ(LR) → C is defined for all combinations of (λG, λR) where
λG is an eigenvalue of LG and λR is an eigenvalue of LR. The joint time-vertex filtering is defined
accordingly as

h(LG, LR)X := UG(H ◦ (U∗GXUR))U>R , (11)

where H ∈ RN×T has entries Hi,j = h(λGi , λRj), and ◦ denotes the entry-wise product of two matrices.
Figure 9 shows two examples of time-vertex filters: an ideal lowpass filter

h(λG, λR) = 11(λG<
1
2 λGmax,λR<2), (12)

and a wave filter

h(λG, λR) = 5e
−100

∣∣∣arccos
(

2−λR
2

)
−arccos

(
1− λG

2λGmax

)∣∣∣2
, (13)

where λGmax is the largest eigenvalue of LG. The eigenvalues of LR range from 0 to 4 regardless of the
size of T, so 1

2 λRmax = 2.

(a) (b)

Figure 9. Two time-vertex filters defined for a random Erdös–Renyi graph with 500 vertices and edge
probability 0.2. (a) An ideal lowpass filter; (b) a wave filter. The blue dots correspond to the positions
of eigenvalue pairs.

As a two-dimensional extension of spectral filtering, the time-vertex filtering decomposes the
input signal into NT orthogonal components, where each component corresponds to an outer product
of a graph Laplacian eigenvector and a DFT basis function. Then, the components are amplified or
attenuated by the corresponding scalars h(λG, λR). Finally, the scaled components are added together
to obtain the filtered signal.

6.3. Spectrum-Adapted Approximation of Time-Vertex Filtering

Due to the high complexity of the spectral decomposition required to compute UG, approximation
methods have been developed to accelerate joint time-vertex filtering, such as Chebyshev2D [64],
ARMA2D [67], and the Fast Fourier Chebyshev algorithm [50].

As outlined in Algorithm 3, we can use the methods described in Section 3 to efficiently
approximate the filtering of time-vertex signals. The overall complexity of our method isO(NT log T +

TKM), where M is the number of nonzero entries in LG. The FFT of N discrete-time signals of length
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T takes O(NT log T). The loop computes T spectrum-adapted approximations to matrix functions
with polynomials of degree K, and thus has a complexity of O(TKM) for sparse LG.

Algorithm 3 Spectrum-adapted approximate time-vertex filtering.

Input weighted undirected graph G with N vertices, time-vertex signal X ∈ RN×T , filter h
Output time-vertex filtered signal Y = h(LG, LR)X ∈ RN×T

1: X̃← FFT of X, where the nth row of X̃ is the 1D FFT of the nth row of X, for n = 1, · · · , N
2: Estimate the spectral density of G
3: for t in 1 : T do
4: ft(λG) = h(λG, λRt)

5: Find the best order K polynomial approximation pk(λG) to ft(λG) via interpolation on the

warped Chebyshev points (described in Section 3.1), or weighted least squares regression with

evenly spaced abscissae and weights from the estimated spectral PDF (described in Section 3.2)
6: Compute pk(LG)x̃t, where x̃t is the tth column of X̃
7: tth column of Ỹ← pk(LG)x̃t

8: end for
9: Y← inverse FFT of Ỹ, where the nth row of Y is the 1D inverse FFT of the nth row of Ỹ

10: return Y

6.4. Numerical Experiments

We consider the ideal lowpass filter (12) and the wave filter (13). We approximate h(LG, LR)X for
both filter functions, with T = 1000 observations, and for different graphs G: gnp (N = 500), saylr4
(N = 3564) and a random sensor network (N = 5000), the cumulative spectral densities of which are
shown in Figure 2. In each case, we choose X = 1√

NT ∑i=1,··· ,N;j=1,··· ,T vGi v
>
Tj

, i.e., a constant vector in
the joint spectral domain of LG and LR, in order to test the average performance of the approximation
methods over different combinations of eigenvalue pairs. With polynomial approximation orders
ranging from K = 1 to 30, we follow the procedure described in Algorithm 3 to approximate
h(LG, LR)X. We estimate the cumulative spectral density functions P̃λ(z) with parameters T = 10,
J = 10, and KΘ = 30. We use M = 100 in the spectrum-adapted polynomial regression/orthogonal
polynomial expansion when finding the best polynomial approximation. We compare the proposed
methods to the truncated Chebyshev expansion and the Lanczos method with the same polynomial
order. For each method, we examine the convergence of relative errors in Frobenius norm as a function
of K for graphs with various structures (and thus various distributions of Laplacian eigenvalues).
The results are summarized in Figure 10. Similar to our observation in Figure 5, we see that the
spectrum-adapted interpolation method performs well for lower polynomial orders (K ≤ 5), but tends
to be unstable at higher polynomial orders.
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Figure 10. Approximation errors ||h(LG ,LR)X−Y||F
||h(LG ,LR)X||F for h(LG, LR)X when h is an ideal lowpass filter (12)

and a wave filter (13).

6.5. Dynamic Mesh Denoising

Finally, we replicate a dynamic mesh denoising example presented in [50] (Sec. VI.B). The original
time-varying sequence of 3D meshes of a walking dog features meshes from T = 59 time instances,
each with N = 2502 points in 3D space (x-y-z coordinates). This sequence is denoted by the
2502× 59× 3 matrix X. The original 3D mesh from time t = 5 is shown in Figure 11a. The dynamic
mesh sequence is corrupted by adding Gaussian noise (mean 0, standard deviation equal to 0.2||X||F√

2502·59·3 )
to each mesh point coordinate. We denote the noisy 3D mesh sequence, one element of which is shown
in Figure 11b, by Y. A single graph is created by subtracting the mean x, y, and z coordinates of each
noisy mesh from that mesh, averaging the centered noisy mesh coordinates across all 59 time instances,
and then building a 5-nearest neighbor graph on the average centered noisy mesh coordinates.
The resulting graph and its spectral density function are shown in Figure 11e–f. The dynamic mesh
sequence is denoised by solving the Tikhonov regularization problem [50] (Equation (30))

Xdenoised = argmin
Z
||Z− Y||2F + τ1tr(Z>LGZ) + τ2tr(ZLRZ>). (14)

The optimization problem (14) has a closed-form solution

Xdenoised(:, :, i) = htik(LG, LR)Y(:, :, i), i = 1, 2, 3; (15)
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i.e., the joint time-vertex filtering operation defined in (11) is applied to each of the noisy x, y, and z
coordinates, using the same joint non-separable lowpass filter htik, which is defined in the joint spectral
domain as [50] (Equation (31))

htik(λG, λR) =
1

1 + τ1λG + τ2λR
. (16)

We perform a grid search to find the values of the parameters τ1 and τ2 that minimize the relative

error
||Xdenoised−X||F

||X||F
averaged over multiple realizations of the noise. In Figure 11g, we show the

resulting filter htik(λG, λR) with τ1 = 7.20 and τ2 = 0.45 on the joint spectrum of the graph shown in
Figure 11e. The dashed black line in Figure 11h shows the relative error between the denoised sequence
computed exactly in (15) and the original dynamic 3D mesh sequence, averaged over 20 realizations
of the additive Gaussian noise. The other three curves in the same image show the average relative
error when the computation in (15) is approximated by the fast Fourier Chebyshev method of [50],
the Chebyshev2D method of [64], and the spectrum-adapted approximate time-vertex filtering (fast
Fourier weighted least squares) of Algorithm 3, for different values of the polynomial degree K.
All three approximations converge to the exact solution and corresponding error, but at low degrees
(K ≤ 10), the spectrum-adapted fast Fourier weighted least squares yields a better approximation.
Figure 11c–d display examples of the denoised mesh at a single time (t = 5) resulting from two
of these approximations, with K = 6. The difference between the two is subtle, but can be seen,
e.g., by scanning the top of the dog, where the mesh points form a slightly smoother surface.
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Figure 11. Denoising of a time-varying sequence of 3D meshes of a walking dog. Top row: one element
each of the dynamic sequences of (a) original, (b) noisy, and (c,d) denoised (using two different
approximation methods) meshes. Bottom row: (e,f) a 5-nearest neighbor graph (and its spectral CDF)
constructed from the entire sequence of noisy meshes, which is used to denoise the meshes at all
times instances; (g) the joint time-vertex lowpass filter (16); and (h) the average relative errors between
the original sequence of meshes and the denoised versions attained by exactly or approximately
computing (15) with different polynomial approximation methods, for a range of polynomial degrees.
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7. Conclusions

We presented two novel spectrum-adapted polynomial methods for approximating f (A)b
for large sparse matrices: spectrum-adapted interpolation and spectrum-adapted weighted least
squares/orthogonal polynomial expansion. These methods leverage an estimation of the cumulative
spectral density of the matrix to build polynomials of a fixed order K that yield better approximations
to f in the higher density regions of the matrix spectrum. In terms of approximation accuracy,
numerical experiments showed that, relative to the state-of-the-art Lanczos and Chebysev polynomial
approximation techniques, the proposed methods often yield more accurate approximations at lower
polynomial orders; however, the proposed spectrum-adapted interpolation method is not very stable
at higher degrees (K > 10) due to overfitting. The proposed spectrum-adapted weighted least squares
method performs particularly well in terms of accuracy for matrices with many distinct interior
eigenvalues, whereas the Lanczos method, e.g., is often more accurate when K is higher and/or the
matrix A has many extreme eigenvalues. One potential extension would be to investigate a hybrid
method that combines the Lanczos and spectrum-adapted weighted least squares approaches. We did
not notice consistent trends regarding relative approximation accuracy with respect to the shape of the
function f .

In terms of computational complexity, the cost of our methods, like Chebyshev polynomial
approximation, is O(MK), where M = nnz(A). For very large, sparse matrices, this complexity
reduces to O(NK), where A is an N × N matrix. The Lanczos method, on the other hand, incurs an
additionalO(NK2) cost due to the orthogonalization step, making it more expensive for large enough K.
Finally, the proposed spectrum-adapted methods, like the Chebyshev approximation, are amenable to
efficient parallel and distributed computation via communication between neighboring nodes [33].
The inner products of the Lanczos method, on the other hand, may lead to additional communication
expense or severe loss of efficiency in certain distributed computation environments (e.g., GPUs).
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