Graph Filters for Signal Processing
and Machine Learning on Graphs

Elvin Isufi, Fernando Gama, David I Shuman, and Santiago Segarra

Overview Article

Abstract—TFilters are fundamental in extracting information from
data. For time series and image data that reside on Euclidean
domains, filters are the crux of many signal processing and ma-
chine learning techniques, including convolutional neural networks.
Increasingly, modern data also reside on networks and other
irregular domains whose structure is better captured by a graph.
To process and learn from such data, graph filters account for
the structure of the underlying data domain. In this article, we
provide a comprehensive overview of graph filters, including the
different filtering categories, design strategies for each type, and
trade-offs between different types of graph filters. We discuss how
to extend graph filters into filter banks and graph neural networks
to enhance the representational power; that is, to model a broader
variety of signal classes, data patterns, and relationships. We also
showcase the fundamental role of graph filters in signal processing
and machine learning applications. OQur aim is that this article
provides a unifying framework for both beginner and experienced
researchers, as well as a common understanding that promotes
collaborations at the intersections of signal processing, machine
learning, and application domains.

Index Terms—Graph signal processing, graph machine learning,
graph convolution, filter identification, graph filter banks and
wavelets, graph neural networks, distributed processing, collabo-
rative filtering, graph-based image processing, mesh processing,
point clouds, topology identification, spectral clustering, matrix
completion, graph Gaussian processes.

I. INTRODUCTION

Filters are information processing architectures that preserve
only the relevant content of the input for the task at hand.
In signal processing (SP), filtering preserves specific spectral
content of input signals and is a common building block in
domains including audio, speech, radar, communication, and
multimedia [1]. In machine learning (ML), filtering is used to
extract relevant patterns from the data or as an inductive bias for
building neural networks [2]. For instance, principal component
analysis (PCA) can be seen as a low-pass filter in the correlation
matrix, where only the parts of the data contributing to the
directions of the largest variance are preserved [3]. Likewise,
the success of convolutional neural networks (CNNs) can be
attributed to the convolutional filters used in each layer, allowing
for easier training and scalability, as well as exploiting structural
invariances in the data [2], [4].

Conventional filtering applies to signals defined on Euclidean
domains, but cannot be directly applied to irregular data struc-
tures arising in biological, financial, social, economic, power,
water, sensor, and multi-agent networks, among others [5], [6].
Graph filters are information processing architectures tailored to

E. Isufi is with the Faculty of Electrical Engineering, Mathematics and
Computer Science, Delft University of Technology, Delft, The Netherlands.
Email: e-isufi.1 @tudelft.nl.

F. Gama was with the Department of Electrical and Computer Engineering,
Rice University, Houston, TX 77005 USA. Email: fgama@ieee.org

D. I Shuman is with Franklin W. Olin College of Engineering, Needham, MA
02492 USA. Email: dshuman@olin.edu

S. Segarra is with the Department of Electrical and Computer Engineering,
Rice University, Houston, TX 77005 USA. Email: segarra@rice.edu

graph-structured data, generalizing the conventional Euclidean
counterparts.

Graph filters have many similarities with conventional ones;
they are linear, shift invariant, parametric functions of the input,
they enjoy a spectral interpretation via the spectral graph theory
[7], and their spectral design boils down to function fitting [8],
[9]. However, striking differences also arise from the new graph
medium; e.g., graph filters are equivariant to permutations in
the support, can be implemented distributively, and can have
more generalized forms such as node varying [8] or edge
varying [10]. Due to the wide variety of network-based data
and the flexibility of graphs to represent irregular structures,
graph filters are used in myriad SP tasks (signal reconstruction,
anomaly detection, image processing, distributed processing) and
ML tasks (semi-supervised and unsupervised learning, matrix
completion, Gaussian process regression), as well as robotics,
point clouds, Internet of Things, biology, and vision applications.

Early formalisms of graph filters find their roots in the 1990’s
in mesh processing [11], [12]. In the 2000’s, graph filters were
used in ML applications, mostly as graph kernels [13], [14],
and later on in graph-based image processing [15], [16]. From
a SP viewpoint, graph wavelets [17], [18] can be considered
as the first instances. The tutorial article [19] helped provide
a unifying mathematical framework for many of the problem-
specific efforts that were being carried out in different research
communities, encouraging more signal processing researchers
to readily dive into problems involving network-based data and
develop new filter methods derived from first principles, inspired
from the more familiar Euclidean setting. Simultaneously, a
specialization of the algebraic signal processing framework [20]
to the graph domain paved the way for a structured mathematical
framework of graph filtering [21], [22]. More recently, with the
advent of graph neural networks (GNNs), graph filters play a
fundamental role as the key component to learn representations
from graph-based data [23]-[27].

Despite the early roots of graph filtering, and its span across
different applications — often developed in an interdisciplinary
fashion — there is no comprehensive, point-of-entry reference
for new researchers interested in either conducting fundamental
research or exploring applications related to SP and ML, or
both. This article has been designed to target this need, thus
providing an extensive, principled overview of the fundamental
aspects of graph filtering research, as well as highlighting the
main application areas in both SP and ML. A number of valuable
tutorials and overviews on graph signal processing (GSP) and
GNNs that are worth discussing have been written since [19].
The survey in [5] and book [28] provide excellent starting points
on graph convolutional filtering and its links to the broader field
of GSP. Since the focus of these works is on the fundamentals
of GSP, they only cover a single type of graph filter and only
scratch the surface on design methods and applications. The
book chapter [29] provides more detail on filter design strategies

and their role in filter banks but leaves out a large portion of
other filtering methods and their applications. Ref. [30] focuses
specifically on how a single-level graph convolutional filter bank
can be used to build dictionaries of atoms for linear wavelet and
vertex-frequency transforms. The recent tutorial [23] discusses
the role of graph filters in building GNNs, whereas [27] shows
that different filtering solutions lead to fundamentally different
GNN architectures, evidencing trade-offs in terms of inductive
and transductive learning, locality, and representation capacity.
Nevertheless, these two works focus explicitly on the role of
graph filters in understanding GNNs. A recent survey on the
application of GSP tools and GNNs in machine learning can be
found in [6], and another one discussing the applicability of a
particular class of graph filters in [31]. Both works review the
applications where such tools can be used, but do not detail
the particular contribution of the filters, nor the implications
of the choice of graph filter type. Here, we aim to introduce
and compare in detail the different filter types, and subsequently
show their role in staple SP and ML applications.

In short, the above works discuss particular forms or properties
of graph filters linked to specific case studies or applications.
None of them, however, offers a comprehensive and unifying
treatment of the role of graph filtering that showcases the design
choices, trade-offs, and applications of graph-based data in both
SP and ML . Our goal in this paper is to give the reader a detailed
tour on the different graph filtering forms and their properties,
and to show how they can be used to develop more expressive
solutions via filter banks and neural networks. We also aim to
provide details on filter design and learning strategies. Another
key contribution of this unifying framework is to show that
graph filters are crucial in myriad applications in both SP and
ML. While these two fields remain somewhat different in their
approach to solving problems, a comprehensive understanding
of filtering as the fundamental tool in both fields promotes
collaboration and facilitates new research developments.

A. Organization

Sec. II sets up the basic concepts about graphs, signals
and embeddings, including also a list of landmark applications
encountered in SP and ML. Sec. III introduces the central
piece of this paper, the graph convolutional filter (GCF), which
is viewed as a shift-and-sum operation of graph signals with
respect to any graph representation matrix (see Figs. 2 and 3),
thus generalizing the principle of convolution for discrete-time
signals. Here, we also discuss several properties of this filter
from a vertex perspective, such as its invariances and distributed
implementation. In Sec. IV, we characterize the spectral response
of the GCF using a notion of graph Fourier transform. We then
discuss the spectral properties of GCFs, including the general-
ization of the convolution theorem to the graph setting. Sec. V
is dedicated to filter design and identification strategies, either
when a user-specific operator (e.g., a low-pass filter) is given or
when the design is based on input-output data pairs. In Sec. VI,
we discuss other forms of graph filters and their link with the
GCF. Table I provides an overview of the different architectures,
their properties, and a discussion about the advantages and
limitations of each form. Sec. VII is dedicated to building graph
filter banks and graph wavelet transforms. We review different
structures for graph filter banks (see, e.g., Figs. 5 and 6) and
examine important design considerations. Then, in Sec. VIII,
we show how the popular graph convolutional neural networks
(GCNNs) can be seen as no more than a nonlinear graph filter

built by nesting a GCF into an activation function (see Fig. 7).
We also discuss here how to build a non-convolutional GNN
by changing the GCF with another filter type from Table I.
The next two sections are dedicated to staple applications of
graph filters in SP (Sec. IX) — signal interpolation, anomaly
detection, image processing, and distributed signal processing —
and in ML (Sec. X) — semi-supervised and unsupervised learning
on graphs, matrix completion, Gaussian processes, point clouds,
and computer vision. Fig. 1 illustrates how the filtering concepts
in Sections III-VI relate to the filterbanks and GNNs, and how
each of them has been used in select applications. In Sec. XI, we
provide some suggestions for researchers and developers new to
the area, including a suggested order in which to explore the
graph filtering tools. Finally, in Sec. XII, we highlight some
future directions.

II. GRAPHS AND SIGNALS

This section first reviews ways to construct graphs and the
basic terminology for representing them (Sec. II-A). This will
bridge the high-level discussion of the previous section with
the more detailed mathematical formulations of graph filters in
the succeeding sections. Next, it highlights some landmark tasks
where graph filters are used (Sec. II-B).

A. Graph Terminology

We denote a weighted graph by G = (V, &, W), where V =
{1,..., N} is the set of nodes, £ C V x V is the set of edges
such that (¢,7) € £ if and only if there is an edge from node
i to node j, and W : £ — R, is a weight function. If all edge
weights equal one, the graph is said to be unweighted. A graph
is undirected if there is no orientation in the edges in £. For
an undirected graph, we denote the neighboring set for a node
iby N; = {j € V: (i,j) € £}. Instead, in a directed graph
(or digraph), an edge (i,7) € £ has an orientation starting from
node ¢ and ending at node j. We say that node j is an out-
neighbor of 7 (and ¢ an in-neighbor of j). The out-neighboring
set of node ¢ is denoted by N?™ = {j € V : (i,5) € £} and,
likewise, the in-neighboring set by N" = {j € V: (j,4) € £}.

We represent graph G via the weighted adjacency matrix A,
which is an IV x N sparse matrix with nonzero elements [A];; =
a;; > 0 representing the strength of edge (¢,j) € £. Matrix A
is symmetric (a;; = a;; for all 4, 7) for an undirected graph, but
may be asymmetric for a directed one. For undirected graphs,
another widely used matrix is the graph Laplacian L =D — A,
where the diagonal matrix D = diag(A1) has as ith diagonal
element the sum of all edge weights incident to node i.

Graph shift operator (GSO). We represent the structure
of a graph G with a generic matrix S € RV*¥ called the
graph shift operator matrix. The only requirement for S to
be a valid GSO is that

[Slji = sj; =0 whenever (i,j) ¢ & for i#j.

Both matrices A and L are special cases for S [5], [21].
Other examples include the normalized adjacency matrix
A, = D-Y/?AD~1/2, the normalized Laplacian matrix L, =
D~/2LD~'/2, and the random walk Laplacian Ly, = D~'L.

Graphs and associated GSOs can represent:
1) Physical networks: Here, nodes and edges physically exist.
For example, in a sensor network, nodes are sensors and

Sec. IIT Graph Convolutional Filters

Sec. IV Spectral Analysis Sec. V Filter Design And Implementation Sec. VI Other Graph Filters
Sec. IV-B Sec. V-A Sec. VI-A Sec. VI-B Sec. VI-C Sec. VI-D Sec. VI-E
Secdlg¥-A Freq. ——— Operator DS:’;C-DV.'B Rational Node Domain Nonlinear Graph Filtering by 1\3[?&[1‘(;3()
Response Matching ata Driven Filtering Filtering Filtering Regularization Filters
Sec. IX-A Sec. IX-A Sec. IX-A Sec. IX-A [Sec. IX-A| [Sec. IX-A|
Sec. IX-C Sec. IX-C Sec. IX-C
Sec. IX-D Sec. IX-D Sec. IX-D
Sec. IX-E Sec. IX-E Sec. IX-E
Sec. X-A
Sec. X-C
S
Sec. X-E
vy v
Sec. VII Graph Filterbanks and Wavelets Sec. VIII Graph Neural Networks
Sec. VII-A Sec. VII-B l l Q_» . l Q_» l Q_, l C)_> l
ime /nsa ing Sec. VII-C Sec. VII-D Sec. VII-E Sec. VIII-A Sec. VIII-B Sec. VIII-C
Lgllnl;ljtl,nﬂ:leﬁ and '(J‘r’,“‘,ﬂ;ﬁ'\m’g](‘,‘,‘,%pltd Alternative Structures Multi-Level Data-adaptive GCNN : Non-convolutional Other uses
[Sec. IX-A] [Sec. IX-A]
Sec. IX-B Sec. IX-B
Sec. IX-C
Sec. IX-D Sec. IX-D [Sec. IX-D] [Sec. IX-D|
Sec. IX-E Sec. IX-E Sec. IX-E Sec. IX-E
Sec. X-A

Fig. 1: A roadmap of this article. Solid arrows prerequisite relationships between sections. For example, Sec. VII can be mostly understood without reading Sec.
VI, but not without reading Sec. IV. The boxes for applications in signal processing and machine learning correspond to specific application examples we discuss
in this article, and are not meant to be a comprehensive representation of all work that has been done in the field.

2)

edges are communication links [32]. A directed edge in-
dicates the communication direction and the edge weight
captures the communication channel properties. Other ex-
amples include: (i) multi-agent robot systems where nodes
are robots and edges are communication channels [33];
(i) power networks where nodes are buses and edges are
power lines [34]; (iii) telecommunication networks where
nodes are transceivers and edges are channels [35], [36];
(iv) water networks where nodes are junctions and edges
are pipes [37], and; (v) road networks where nodes are
intersections and edges are roads [38].

Abstract networks: These graphs typically represent depen-
dencies between the data points. Consider N data points,
each described by a feature vector f; € R¥, and let
dist(f;, f;) be a distance measure (e.g., Euclidean) between
data points ¢ and j. Each data point is considered as a node
and two data points could be connected based on [39]: (i)
e—neihborhood, where the edge weight is
{f(dist(fi,fj);e) if dist(f;,f;) <e,

0

i otherwise, (1)
where f(+; 0) is a parametric function (e.g., a Gaussian ker-
nel f(dist(f;, f;); 0) = exp (—dist(f;,;)/26)) and & > 0
is a constant controlling the edge sparsity; (ii) k—nearest
neighbor, where each node is connected only to the k
closest data points with respect to f(dist(f;, f;); #), which
can again be a Gaussian kernel or a Pearson correlation.
The covariance matrix or modifications thereof have also
been used to build abstract networks as we elaborate on in
Sec. IX-C; see also [40], [41].

The above approaches build undirected abstract networks
but alternatives for directed or causal dependencies are also
possible; see [40]-[42]. These abstract networks are useful,

for example, in: (i) recommender systems, where two items
are connected, e.g., if their Pearson correlation is greater
than some value [43]; (ii) brain networks, where the nodes
are brain regions and the edges are given, e.g., by the cross-
correlation or mutual information of electroencephalogra-
phy (EEG) time series in the different regions [44]; (iii)
social networks, where nodes are users and edge weights
may represent the number of interactions between them; (iv)
economic networks, where nodes are different economic
sectors and the edges may represent the input and output
production going from one sector to another [45].

Since abstract networks represent dependencies between dat-
apoints, they can be manipulated by recomputing edge weights,
clustering, or pruning to facilitate representation. However, this
is not typically the case for physical networks, as they often
represent the medium with respect to which processing is per-
formed. We shall see in Sec. IX-E that graph filters can leverage
such structure for distributed processing.

B. Signals Defined on Graphs and Common Processing Tasks

We often encounter data that can be represented as a signal
or set of features, with one value associated to each node.

Graph signal. A graph signal x is a function from the
node set to the field of real numbers; i.e., x : V — R. We
can represent a graph signal as a vector x € RY, where
the ith entry [x]|; = x; is the signal value at node 4 [19].

We denote the space of all graph signals defined on graph G
with node set V as X¥ = {x : V — R}. An example of a
graph signal is a recording in a brain network, i.e., each brain
area corresponds to a node, two nodes share a link based on
structural connectivity, and the brain EEG measurement is the

signal of a particular node. We may want to process such a signal
to understand, e.g., how different individuals have mastered a
specific task [46].

Processing and learning tasks with graph signals include:

1) Signal reconstruction, including interpolation and denois-
ing: We often observe a corrupted version of the graph
signal, possibly at only a subset of nodes. Examples include
noisy or subsampled measurements in sensor [32], power
[34], and water networks [47]. The goal is to denoise the
signal or interpolate the missing values by leveraging the
neighboring signal values and the graph structure.

2) Signal compression: When graph signals have similar val-
ues at neighboring vertices, it is possible to compress
the signal by developing representations that require fewer
coefficients, and storing those coefficients rather than the
original signal [30].

3) Signal classification: This task consists of classifying dif-
ferent graph signals observed over a common underlying
graph. One such example is classifying patients based on
their brain recordings, as discussed above [46].

4) Node classification: This task consists of classifying a
subset of nodes in the graph given the class labels on
another subset. When node features are available, we can
treat them as a collection of graph signals and leverage
their coupling with the underlying connectivity to infer
the missing labels. The state-of-the-art for this task is
achieved by GNNs, which, as we shall see in Section VIII,
rely heavily on graph filters [23]. When node features are
unavailable, we treat the available labels as graph signals
and transform node classification into a label interpolation
task that can be solved with graph filters [22].

5) Graph classification / regression: These tasks start with a
collection of different graphs and (optionally) graph signals.
The classification task assigns a label to the whole graph
(e.g., classifying molecules into different categories such
as soluble vs. non-soluble), whereas the regression task
assigns a continuous number to each graph (e.g., the degree
of solubility) [48].

6) Link prediction: Here, the goal is to infer if two nodes
are connected given the current structure and the respective
graph signals [49]. This is the case of friend recommenda-
tion in social networks, whereby leveraging the friendship
connectivity between users based on their feature signals
(e.g., geo-position, workplace) we can infer missing links.

7) Graph identification: This task extends the link prediction
to that of inferring the whole graph structure given only
the graph signals [41]. Graph filters play a role in modeling
the relationships between candidate graph structures and the
observed signals. We detail this problem in Sec. IX-C.

8) Distributed processing: Here the graph topology represents
the structure of a sensor network and we want to distribu-
tively solve a task related to graph signals [9]. Graph filters
lend themselves naturally to this setup because they rely
only on local information. In Sec. IX-E, we discuss their
use for different distributed tasks.

III. GRAPH CONVOLUTIONAL FILTERS

The convolution is a key operation in SP as it helps to de-
fine filtering operations and to understand linear, time-invariant
systems. In ML, convolutional filters are the building block of
CNNS, and their computational efficiency and parameter-sharing

property tackle the curse of dimensionality. Convolutions also
leverage the symmetries in the domain (such as translations in
space) and allow for a degree of mathematical tractability with
respect to domain perturbation [50]. We present here a now
standard generalization of the convolutional filter to the graph
domain, with the goal of inheriting the above properties. Then,
in Sec. IV we analyze the filter behavior in the graph spectral
domain, akin to the Fourier analysis for temporal filters, and in
Sec. V we discuss strategies to design the filter parameters.

A. Definition

A convolutional filter is a shift-and-sum operation of the input
signal [51]. While a shift in time implies a delay, a graph signal
shift requires taking into account the topological structure.

Graph signal shift. A graph signal shift is a linear
transformation S : X¥ — XY obtained from applying a
GSO S to a signal x, i.e. S(x) = Sx. The shifted signal at
node ¢ is computed as

N

[Sx]; = [S]ix =

j=1

>

JENIMU{i}

S,)

which is a local linear combination of the signal values at
neighboring nodes.

If the GSO is the adjacency matrix A, the shifted signal
represents a one-step propagation. Instead, if the GSO is the
graph Laplcaian L, the shifted signal is a weighted difference of
the signals at neighboring nodes [Lx|; = >, c v, aij(@i — ;).

Graph convolutional filter. Given a set of parameters
h = [hg,...,hk]", a graph convolutional filter of order
K is a linear mapping H : X¥ — XY comprising a linear
combination of K shifted signals

K
H(x) =Y hS*x = H(S)x 3)
k=0

where H(S) = Y5, hS* is the N x N polynomial
filtering matrix.

The output at node i is y; = hoz; + h1[Sx); + ...+ hx[SEx];,
which is a linear combination of signal values located at most
up to K —hops away. This is because [S*];; # 0 implies that
there exists at least one path of length k& between nodes ¢ and j
through which the signals can diffuse. These signals are shifted
repeatedly over the graph as per (2); see also Fig. 2. The term
convolution for (3) is rooted in the algebraic extension of the
convolution operation [20] and the discrete-time counterpart can
be seen as a particular case over a cyclic graph; see Box 1.

B. Properties

Graph convolutional filters satisfy the following properties.

Property 1 (Linearity). For two inputs x1, X2, scalars «, 3, and
filter H(S), it holds that

OLH(S)Xl + ﬂH(S)Xg = H(S)(ax1 + 5}(2).

Property 2 (Shift invariance). The graph convolution is invariant
to shifts, i.e., SH(S) = H(S)S. This implies that given two

ho

2
S S 57 S
h2 h3
H(S)x
@ @

N (%

Fig. 2: The graph convolutional filter as a shift register. Highlighted are the nodes that reach node 1 on each consecutive shift; that is, the nodes j whose signal value
x; contributes to [SFx];. The resulting summary of each communication S¥x is correspondingly weighted by a filter parameter hy. For each k, the parameter
hy, is the same for all nodes. In this example, S = L, and H(S) = 1LY — 1.5LL 4 1L2 — 0.25L2 is a lowpass filter that smooths the input signal.

filters H; (S) and H2(S) and an input signal x, it holds that we
can switch the order of the filters:

H1 (S)HQ(S)X = HQ(S)Hl (S)X

Property 3 (Permutation equivariance). Denote the set of per-
mutation matrices by

P={Pe{0,1}"V*V:P1=1, P'1=1}.

Then for a graph with GSO S and P € P, the permuted graph
(the graph obtained by permuting the node indices by P") has
the GSO S = PTSP, which describes the same topology but
with a reordering of the nodes. Likewise, the permuted signal
corresponding to the ordering in S is & = PTx. Permutation
equivariance for filter (3) implies

H(S)x = PTH(S)x;

i.e., the filter output operating on the permuted graph S with
the permuted signal X is the permuted output of the same filter
operating on the original graph S with the original signal x.

Thus, graph convolutions are independent of the arbitrary
ordering of the nodes. Moreover, the permutation equivariance
shows that the graph convolutional filter exploits the signal
patterns with respect to the underlying graph structure. This is a
direct analogue of translation equivariance in temporal or spatial
signals, where the respective convolutional filters are translation
equivariant functions. This is key to their success in learning
from a few training samples [4].

Property 4 (Parameter sharing). All the nodes share the pa-
rameters among them. For two nodes i, j, the respective outputs
are y; = hol’i + hl[SX]Z + ...+ hK[SKX]l and Yy = hol’j +
hi[Sx];+...4+hk[S¥x];, which shows that the k-shifted signal
S*x is weighted by the same parameter hy.

Props. 3-4 imply that graph convolutions are inductive pro-
cessing architectures. They can be designed or trained over a
graph G and transferred to another graph G (with possibly a
different number of nodes) without redesigning or retraining.
This is particularly useful, e.g., when using graph filters for
distributed SP tasks, as the physical channel graph may change.
In Sec. IV (Prop. 8), we discuss the degree of transference.

Property 5 (Locality). Graph convolutions are local architec-
tures. To see this, set z(°) = S°x. The one shifted signal z(1) =
Sx = Sz(® is local by definition. The k > 1 shift z(¥) = S*x

can be computed recursively as z(*) = S(S*~Vx) = Sz(k—1),
which implies that the (k — 1)st shift z(*~1) needs to be shifted
locally to the neighbors. Hence, to compute the output, each node
exchanges locally with neighbors all K shifts z(®), ... z(K=1),

Locality of computation makes the graph convolutional filters
readily distributable, as we discuss in Sec. IX-E.

Property 6 (Linear computation cost). Graph convolutions have
a computational complexity of order O(K|E|+ K N); i.e., linear
in the number of edges and filter order.

Props. 4-6 imply that graph convolutions tackle the curse of
dimensionality in large graphs. The parameter sharing makes
them suitable architectures to learn input-output mappings from
a few training samples, irrespective of the graph dimensions
(i.e., O(K) number of parameters); their locality allows them
to extract patterns in the data in the surrounding of a node, and;
their linear computational complexity facilitates scalability. In
Sec. VIII, we discuss how to learn more expressive representa-
tions via neural networks while preserving these benefits in a
form akin to CNNs for time series and images.

IV. SPECTRAL ANALYSIS

While in the previous section we discussed the graph convo-
lutional filter in the vertex domain, we now shift attention to the
graph spectral domain to characterize the frequency response of
these filters. This frequency response is key to interpreting the
filter behavior, and it facilitates design when we want to achieve
a desired spectral response, as we detail in Sec. V.

A. Graph Fourier Transform

The DFT can be seen as the projection of a temporal signal
onto the eigenvectors of the cyclic graph adjacency matrix (see
Fig. 3). We define similarly the graph Fourier transform (GFT).

Graph Fourier transform (GFT). Consider the eigende-
composition of the diagonlizable GSO S = VAV ! with
eigenvectors V = [vy,...,vy], and where A = diag(\)
is a diagonal matrix with the corresponding eigenvalues
A =[A1,...,An]. The GFT of a signal x is defined as the
signal projection onto the GSO eigenspace

%=V Ix 4)
The inverse GFT is defined as x = VXx.

the signal to the next time instant node.

[Acx]l-l-n mod N = Tn.

eigenvalues A =

(Box 1) Discrete-time circular convolution. The graph signal shift (2), the graph convolutional filter (3), and their
spectral equivalents in Sec. IV generalize the respective concepts developed for discrete-time periodic signals.

1 Z6
.\ zs5 z1 0 00 0 0 1
T) 1 0 0 0 0 O
C/ S N (‘\ A |01 0000
s s c=1o 0100 0
B N, 000100
4 o5 000010
Fig. 3: Discrete-time periodic signals as graph signals over a directed cycle graph. Each node V. = {1,...,6} is a time instant with adjacencies

captured in the matrix A.. The temporal signal forms the graph signal x = [z1, ..

We can represent an arbitrary discrete-time periodic signal as a graph signal x = [z1, . .
of a directed cyclic graph G. = (., &.) in which each node is a time instant and directed edges connect adjacent time
instances of the form (n,1+mn mod N), n =1,...,N, as shown in Fig. 3. The adjacency matrix of this graph is a
cyclic matrix A, such that [A;]14, mod N,» = 1 and zeros everywhere else.

Signal shift: Setting the GSO S = A, operation (2) shifts the signal cyclically and acts as a delay operation, i.e.,

Convolutional filter: The graph convolutional filter (3) for graph G. reduces to the circular convolution, i.e., the output
. K

at the temporal node 7 is ¥, = [H(A:)X]n = Do Pr[X]14(—k+1) mod N-

Signal variation: Using the total variation in (7), we measure how much the signal changes from its delayed version.

This is a key building block for developing filters in standard signal processing [52].

Fourier transform: The cyclic adjacency matrix can be eigendecomposed as A, = DFT Ndiag()\)DFTR,1 with

eigenvectors [DFTy|p, = (1/V/N)exp27*=D(=1D/N forming the discrete Fourier transform (DFT) matrix and

[exp(—j270/N,...,—j2x(N — 1)/N)] containing the frequencies. The DFT for signal x is

x = DFT yx, which coincides with the graph Fourier transform (GFT) for this particular graph.

.,x]" and the shift A.x acts as a delay operation that moves

.,on]|T residing over the vertices

In the definition of the GFT, we are assuming the GSO S is
diagonalizable. While definitions of GFT for nondiagonalizable
GSOs exist [22], [53], [54], we hold to the diagonalizability
assumption for a consistent and simple exposition. Furthermore,
in some specified examples — particularly those with a spectral
interpretation — we additionally assume that S is Hermitian; i.e.,
S is equal to S, its conjugate transpose. Common choices of
shift operators such as the combinatorial and normalized graph
Laplacians on undirected graphs satisfy this condition. Such
operators have the nice property that S = VAVH, where the
entries of the diagonal matrix A are real, and V is a unitary
matrix satisfying VHV = I. Refer, for example, to [55] for more
details on the choice of the GSO and its spectral consequences.

The eigenvectors V serve as the basis expansion for the GFT.
In the discrete-time case, the complex exponentials fulfill this
role. The GFT coefficients X are the weights each of these
eigenvectors contribute to represent the signal. Following again
this analogy, the vector A contains the so-called graph frequen-
cies. Interpreting these graph frequencies A and the respective
GFT coefficients X requires understanding how the signal varies
over the graph. In turn, measuring the signal variability requires
accounting for the graph structure. We review two basic criteria
used for undirected [19] and directed graphs [21], [22].

Undirected graphs. The variability of a signal over an undi-
rected graph is measured via the quadratic variation (QV)

1
QV(x) :=x"Lx = 3 Z aij(x; — Ij)2, &)

i€V, JEN;

which quantifies how much a signal at a node is different from
that of the strong connected ones [19]. The lower QV(x), the
smoother signal x is with respect to the underlying graph. In
fact, the constant graph signal x = c1 has a zero variability.

Using (5), we can interpret the variability of the Laplacian
eigenvectors L = Vdiag(\)VH so as to provide a Fourier basis.
Treating each eigenvector v; as a graph signal, we have

Thus, we can sort eigenvectors based on their variability 0 =
QV(vy) < QV(vy) < ... < QV(vy), which implies that
the respective eigenvalues 0 < A} < Ay < ... < Ay carry
the notion of frequency in the graph setting. We refer to the
eigenvalues \; close to 0 as low frequencies and to those A\; > 0
as high frequencies. The lowest graph frequency is Ay = 0 which
corresponds to a constant eigenvector for a connected graph.
Accordingly, when S = L, the GFT coefficient Z; indicates how
much eigenvector v; contributes to the variability of signal x
over G.

Directed graphs. To measure the signal variability for directed
graphs, we use again the analogy with the cyclic graph repre-
senting time signals, shown in Fig. 3. We measure how much
the diffused signal Sx changes from the signal x via the total
variation (TV)

TV(x) = x — Sx|1,)

Expression (7) attains a high value if the shifted signal differs
more from the original one. However, unlike the quadratic
measure for undirected graphs (5), the total variation in (7) may
be non-zero for constant signals.

If the shift operator is S = |Apax| 1A and Apax is the
eigenvalue of maximum amplitude, then TV(x) = ||x —
|Amax| " Ax||;. In this case, we can measure the variability of
the adjacency matrix eigenvectors A = Vdiag(A\)V~!; we have
that TV(v;) < TV(v;) iff [Amax — Ai| < [Amax — A;|. That is, the
eigenvector associated with the largest eigenvalue has the lowest
variability, while the eigenvector associated with the eigenvalue

farthest from Ap,.x has the highest variability. Since the eigen-
values may be complex, the distances have to be computed in
the complex plane. The order of the eigenvalues according to
increasing variability is Re{A1} > Re{A2} > -+ > Re{An},
see [22, Figs. 2, 3]. In this case, the eigenvalues located (in
a complex-plane sense) closest to the largest real eigenvalue
are the ones corresponding to lower frequencies, while the
eigenvalues located farthest from it correspond to the highest
frequency.

Either on a directed or an undirected graph, the variability of
a graph signal x can often be expressed by only a few N’ <
N GFT basis vectors. In this case, we say the graph signal is
N’—bandlimited and expand it as

X:VN/iN/, (8)

with Vi = [vq,...,vn/] and Xy € RV,
B. Frequency Response

By subsituting the eigendecomposition S = VAV ! into (3),
we can write the filter output as

K K
y=> mSx =Y nVAVx ©)
k=0 k=0

Using (4) and defining the GFT of the output ¥ := V~ly, we
can write the filter input-output spectral relation as

K
y= Z hpAFx. (10)
k=0

Convolution theorem for graph filters. It follows from
(10) that a shift-and-sum graph convolutional filter of the
form (3) operates in the spectral domain as a pointwise
multiplication §; = h(\;)Z; between the input signal GFT
% = V~!x and the filter frequency response

K
h(A) = hek. (1)
k=0

Such a result is reminiscent of the convolution theorem [52],
whereby the convolution in the graph domain corresponds to
multiplication in the frequency domain. The filter frequency
response is an analytic polynomial in A and it is independent
of the graph. The specific filter effect on a given graph is on
the positions where the frequency response is instantiated; see
Fig. 4.

In this context, graph convolutional filters satisfy the following
spectral properties.

Property 7 (GFT of the filter). Eq. (10) can be rewritten as
¥ = diag(h)% with h = ¥h, (12)

where ¥ € CV*(E+1) j5 a Vandermonde matrix such that
[®]ix = AL The vector h € CV is known as the GFT of
the filter parameters, which depends on the eigenvalues of the
GSO (cf. (12)), unlike that of the signal, which depends on the
eigenvectors (cf. (4)). Refer to [8] for more detail.

From (12), it follows that a graph convolutional filter defined
as in (3) has the same frequency response for two frequencies
with the same eigenvalues, as this results in ¥ having repeated

A1 i AN

Fig. 4: The frequency response of the filter (11), given in the black solid line,
is completely characterized by the values of the filter parameters h. Given a
graph, this frequency response gets instantiated on the specific eigenvalues of
that graph, determining the effect the filter will have on an input (10).

rows. Alternatively, one can define graph convolutional filters
through their action in the frequency domain, potentially ac-
commodating different responses for repeated eigenvalues.

Property 8 (Lipschitz continuity to changes in S). Let S,S
RY*N be two GSOs, potentially corresponding to different
graphs with the same number of nodes N. Define the relative
difference of S with respect to S as

d(S;8) = . IE| (13)

min
R(S;S)
for R(S;S) = {E : PTSP = S + (ES + SE) , P € P},
the set containing all the relative difference matrices E. Let the
frequency response of the filter (cf. (11)) satisfy [Ah'(N)] < C
for some C' < oo and where h’()\) is the derivative of (11).
Then, it holds that

|FL(S)x—H(S)x]|, < d(8;S)(1+8VN)C|x|2+0(d*(S; S)).

(14)
Thus, if the relative difference between two GSOs is small, the
outputs of the filters with the same input signal will also be small.
This is a scenario that arises often when learning on graph-
structured data. The graph observed at training time is often
different than the graph observed at testing time. Thus, we would
like to obtain certain guarantees that the learned filters will still
be useful at inference time. Property 8 provides one type of
guarantee. Refer to [56] for an extensive discussion on the choige
of (13) as the function to capture differences between S and S.

Filters whose frequency response satisfies |A\h'(\)| < C' are
known as integral Lipschitz filters. These filters may exhibit high
variability for low values of A (because its derivative can be
high), but they have to be approximately constant for high values
of A\ (because its derivative has to be small). An example is
shown in Fig. 4. For finite graphs with finite edge weights, all
convolutional filters (cf. (3)) are integral Lipschitz within the
spectrum interval of interest, but the constant C' may be large.
This constant depends only on the filter parameters and, thus,
filters can be designed or learned to have a small value of C,
guaranteeing a tighter bound; see [56] for details.

V. FILTER DESIGN AND IDENTIFICATION

In this section, we discuss strategies to find the graph filter
parameters to solve a specific task. We split our discussion into
two common scenarios, each of which arises in the applications
in Sec. IX and Sec. X. First, we consider designing the filter (3)
to match (or approximately match) a given operator B € RV*V;
i.e., find H such that H(S) = B (or H(S) ~ B) (Sec. V-A).
Second, we seek a filter (3) that represents a data-driven mapping
between input-output signal pairs (Sec. V-B).

A. Operator Matching

Many SP applications on graphs can be formulated as a linear
operator B on the signal x. Such an operator may arise from
the solution to a denoising problem [57], be the consensus
operator [58], or implement a specific spectral response that can
be useful for graph wavelets (Sec. VII) or spectral clustering
(Sec. X-B). We want to represent the operator as a graph filter
to reduce the computational cost (Property 6) if the matrix B is
dense, or to implement B distributively over a sensor network
(Property 5). In the following, we distinguish between exactly
and approximately matching the operator B with a graph filter.

Exact match. Denote by H(h,S) the convolutional filtering
matrix in (3), where we make explicit the dependency on
parameters h. The following holds.

Proposition 1 ([8]). Given the three following conditions:

1) Matrices B and S are simultaneously diagonalizable; i.e.,
S = VAV~ and B = Vdiag(B)V~! with eigenvalues
/6 = [ﬁla /627 o 7/8N]T~

2) For all (k1,ke) such that A\, = Ak, , it holds By, = Bk.,.

3) The order of H(h, S) is such that K > D, where D denotes
the number of distinct eigenvalues of S.

Then, B =H(h*,S) where h* = W8, W is the Vandermonde
matrix defined after (12), and (-)! denotes the pseudo-inverse.

Condition 1 implies that transformation B is diagonalized by
the GFT matrix. This implies that we can specify the spectral
response of the operation and implement it via the filter in (3).
Since obtaining the eigendecomposition of S has a cost O(N?),
such an operation is not important for a centralized solution,
as we could perfectly filter the signal in the spectral domain.
However, it is important for distributed processing, because of
the filter locality (Property 5). We shall detail this in Sec. IX-E.

Approximate match. When the conditions of Proposition 1 are
too stringent (especially the first one), we resort to optimally
approximating the desired operator. If Condition 1 holds, it
might be that we want to approximate B with a low-degree
polynomial (violating Condition 3) or that we do not have
access to the specific eigenvalues of B due to the computational
cost of obtaining them. In either case, we can perform the
spectral approximation described below. If Condition 1 does not
hold (i.e., B does not have the same eigenvectors as the shift
operator), we can approximate B directly in the vertex domain
via the non-spectral approximation described below.

Spectral approximation: Consider the common situation
where S is a real, symmetric GSO, the desired operator B is
jointly diagonalizable with S, and the spectral response 3(A) of
B is a real-valued function. The goal is to find a low-order filter
h(\) that approximates this spectral response. If we have access
to the specific eigenvalues of S, we can easily obtain the spectral
response [5(A1), B(A2), ..., B(An)] on those eigenvalues. Then,
Proposition 1 offers the least squares approximate solution [22].
If, on the other hand, we only know the analytic expression of
B(A) on a graph frequency interval [Amin, Amax], the problem re-
duces to a one-dimensional polynomial approximation problem,
such as the least squares problem

~ A max
h = argmin /
h A

min

2

K
B =D X dr, (15)

k=0

or the minimax problem

K
h = argmin sup {'B()\) — Z hi AP
k=0

h AE[Amin;Amax]

} . (16)

The approaches in (15) and (16) are referred to as universal
design, because the approximating filters are designed over the
interval [Amin, Amax], as opposed to specific eigenvalues. Thus,
if the same filter is used on a different graph with the same
spectral bounds, the approximating filter will also be the same.
The solution to (15) can be found by orthogonally projecting
B(\) onto the span of the first K + 1 Legendre polynomials.
A near-optimal solution to (16) can be found by truncating the
expansion of 5(\) into shifted Chebyshev polynomials [59] (see
Box 2). Alternative minimax approximations are investigated
in [60], [61]. For more details on the trade-offs involved in
polynomial approximations, see, e.g, [9, Sec. V.C] and [62].

While these approximations are constructed for the entire
interval [Amin, Amax], it is only the approximation error at the
(unknown) eigenvalues of S that affects the spectral approxima-
tion error. Thus, additional partial knowledge of the spectrum
can be leveraged to improve the polynomial approximation.
In this regard, [63] proposes a fast spectrum approximation
method for specific families of graphs, whereas [64] leverages
a fast estimation of the eigenvalue density for any graph shift
operator to achieve a lower error in the high density regions
of the spectrum. Alternatively, [58], [65] estimate the spectral
distribution of frequencies via random matrix theory for random
graphs (e.g., Erd6s-Rényi). All these approaches are developed
for symmetric GSOs with real eigenvalues, while extensions for
directed graphs with complex eigenvalues are discussed in [66],
[67].

Non-spectral approximation: When the desired operation B is
not jointly diagonalized with S, we can instead approximate it
directly in the vertex domain, as stated by the following result.

Proposition 2 ([8]). Define the N? x (K + 1) matrix © =
[vec(I),vec(S),...,vec(SK)]. The optimal filter parameters
h* = argmin,, ||B — H(h, S)||r are h* = @fvec(B).

B. Data-driven

In many cases, we do not know the exact operator but
rather have input-output realizations of a graph-based system.
This is for instance the case of opinion formation and source
identification in social networks, biological signals supported on
graphs, and modeling and estimation of diffusion processes in
multi-agent networks. The assumption here is that the data input-
output relation can be modeled as a graph filter map and our goal
is to identify the filter parameters. Formally, consider the input
x and output y satisfy

y =H(h,S)x +n, 21

where n is a zero-mean measurement noise. Different variants
of the problem have been studied depending on whether x and
y are fully observed or not, and whether we have additional side
information (statistical or structural) about the input [68], [69].
Particularly, we distinguish between (i) system identification,
where we estimate the parameters h from S, x, and a partial or
complete observation of y; and (ii) blind deconvolution, where
we jointly estimate h and x from y and S.

System identification. The goal is to use the (partial) observa-
tion of y to recover the unobserved elements of y and the filter

(Box 2) Chebyshev polynomial approximation. Stretched and shifted Chebyshev polynomials offer an orthogonal basis
for approximating a desired frequency response S(\) via a low-order polynomial graph convolutional filter [9], [62].
Moreover, they offer a closed-form solution for the approximating polynomial filter coefficients. Formally, our goal is to
approximate Bx = Vdiag(3(\))VHx by Vdiag(h(A))V"x, where h is a degree K polynomial. Let {Tx(z)}r=0.1,..
€ i)-
Since, our frequency response () is defined on the interval [0, Ap,ax] (for positive semidefinite GSOs), we consider
the change of variable A\ = %Amax(x + 1). This leads to the stretched and shifted Chebyshev polynomials

be Chebyshev polynomials of the first kind, which form an orthogonal basis for the function space L> ([—1, 1],

- A— >\max
Tr(A) =Tk (7) and 7 = 2 (17)
¥ 2
which can be used to expand the desired frequency response as
_ 1 >
B = 500+ ; ek TE(N): YA€ [0, Amand, (18)
where each parameter c; can be found in closed-form by solving the integral
2 [T ~
C = ;/ cos(k8)3(v(cos(d) + 1))db. (19)
0

For computational efficiency, we truncate the summation in (18) to a finite K, resulting in an approximation [59]

>

K
BO) % RO) = oo+ 30 exTelN), YA€ [0, Amas]
k=1

This Chebyshev polynomial approximation yields a K'th order graph convolutional filter (3); i.e., for any graph signal
X, we have

K

Bx~ H(S)x = > Ti(S)x, (20)
k=0

where we can compute the kth term recursively as Ty (S)x = 2 (S — 7I) Ty—1(S)x — Ty—2(S)x, with initial values

To(S)x = x and T1(S)x = 1Sx — x [59]. The closed-form parameters can therefore be computed offline ahead of
time and because of the recursive implementation, these filters can also be implemented distributively (cf. Property 5).

parameters h. Consider only M < N nodes are observed and
define the sampling matrix M € {0, 1} >N which has one 1
in each row m corresponding to the mth observed node and zero
elsewhere. The filter identification problem comprises solving

h* = arg min IM(y — H(h, S)x) |3 + vl|diag(w)h||1, (22)

where w € Rf +1 is a weighting vector [69]. The first term
quantifies the fitting loss between the observed My and its
prediction generated by h. The second term is a sparsity-
promoting regularizer on h. Since we often do now know the
filter degree, we can overestimate it and then penalize higher
degrees to promote simpler filters. Consequently, we can select
the weights in w to increase with the entry index. So, the
parameters associated with higher powers of S are more heavily
penalized, thus promoting a low-complexity and numerically
stable model. The scalar v > 0 is the regularizer weight relative
to the fitting loss. Extended versions of problem (22) consider
also estimating the topology in addition to the filter parameters;
see e.g., [70]-[72].

Blind deconvolution. This problem arises when both the input
x and the filter parameters h are unknown. To formalize this
problem, for a given S, y is a bilinear function of h and x,
which we can denote as y = A(xh"). The linear operator A()
depends on the eigenvalues and eigenvectors of S and acts on the
outer product of the sought vectors. More precisely, A(xh ') =
(AT @ (VT) ™) Tvec(xh ™), where ® denotes the Khatri-Rao
(i.e., columnwise Kronecker) product. While in principle we can
jointly estimate x and h, this leads to a non-convex problem

with few theoretical guarantees. Instead, using the classical idea
of lifting [73], we can derive a convex relaxation of the blind
deconvolution problem by noting that y is a linear function of
the entries of the rank one matrix Z = xh'. Assuming further
that x is a sparse vector (only a few nodes inject a signal into
the filter), [68] proposes solving the convex problem

Z" = argmin ly - A@IIE + il Zl + 72l Zll2- (23)
The nuclear norm regularizer || - || promotes a low-rank solution
since the true Z has rank one. The mixed norm ||Z|3; =

Zil\il |z:]|2 is the sum of the ¢5-norms of the rows of Z, thus
promoting a row-sparse structure in Z. This is aligned with the
sparse assumption on X, since each zero entry in x generates
a whole row of zeros in the outer product Z = xh'. Upon
solving for Z*, we can recover x and h from, e.g., a rank
one decomposition of Z*. Alternative relaxations to the row-
sparsity and rank minimization have been proposed. For instance,
[69] proposes a majorization-minimization procedure that yields
lower-rank solutions compared to the convex relaxation in (23),
whereas [74] provides a handle to control the row-sparsity of
the recovered matrix.

Extensions to multiple input-output pairs (with a common
filter) along with theoretical guarantees when the GSO S is
normal (i.e., SS" = SHS) are investigated in [68]. The related
case of a single graph signal as input to multiple filters (gener-
ating multiple outputs) is studied in [75], thus generalizing the
classical blind multi-channel identification problem in DSP. This
setting is relevant when studying a common stimulus to several

systems (e.g., the same image shown to several patients while
their brain activity is recorded) or the effect of a single stimulus
measured at different points in time (e.g., several snapshots of the
spread of a rumor). The work in [76] addresses blind demixing
when a single observation formed by the sum of multiple outputs
is available, and it is assumed that these outputs are generated
by different sparse inputs diffused through different graph filters.
This setting is relevant when the observations are given by the
superposition of several concurrent processes. For example, we
can model a brain state as the result of the simultaneous reaction
to several stimuli that we want to separate.

VI. OTHER GRAPH FILTERS

Graph convolutional filters implement a polynomial frequency
response. Their descriptive power increases as we grow the filter
order K. However, using higher orders implies handling higher
matrix powers S¥, which introduces numerical instabilities and
in turn leads to poor interpolatory and extrapolatory performance
[62]. While orthogonal polynomials (e.g., Chebyshev polynomi-
als) can alleviate this issue, they still require a high number of
parameters to implement the desired filtering function. Another
limiting aspect of convolutional filtering is that its functions lie
in the graph spectrum, meaning that there may not exist a GCF
that is a sufficiently good approximation to a general operator.

In this section, we look at alternative graph filters to overcome
these issues. We start with the family of filters that implement a
rational response in Sec. VI-A. Then, in Sec. VI-B we discuss
linear filters that go beyond the spectral analogy, a.k.a. node
domain filtering, and in Sec. VI-C we discuss nonlinear graph
filtering forms. Sec. VI-D shows how graph-based regularization
techniques behave as graph filters, and Sec. VI-E discusses
filtering with multiple graph shift operators. Table I provides
a more extensive discussion of the properties in Sec. III-B and
Sec. IV-B, as well as recommendations as to where to use them.

A. Rational Graph Filters

A rational graph filter implements the frequency response

h(\) = <§qu‘1)/<1 +éapv),

which is the ratio of two polynomials of orders () and P that
control the number of zeros and poles, respectively. This form
achieves similar frequency responses as the convolutional filters
but with fewer parameters; because rational functions have better
interpolatory and extrapolatory properties than polynomials and
require a lower order to achieve a similar approximation [62].
However, rational filters have stability issues. A rational graph
filter is stable if the roots of its denominator are different from
the GSO eigenvalues, i.e.,

(24)

P
BN i= 14> apA? #0, VA€ {A1,..., An}. (25)

p=1
If we do not have access to the specific eigenvalues, we can also
impose universal stability by requiring condition (25) to hold for
all potential eigenvalues in the interval [Amin, Amax] [571, [77].
Given a stab}e filter and defining §(\) = ZqQ:o by A7, we can
write (24) as h(A) = §(\)/p(A). Then the filter input-output
relation in the spectral domain has the form ¢; = §(\;)/p(\;)Zs

10

at each graph frequency ;. In the node domain, the rational
filtering matrix has the form

H(S) = (I + ZZ apsp> o (Zi:) bqu> =P(8)Q(S),

(26)
where we define P(S) = I + 25:1 a,SP and Q(S) :=
Z(?:o b,S? with respective frequency responses p(A) and G(\).
When applied to a graph signal x, we get the input-output
relationship in the vertex domain

y =P (S)Q(S)x <= P(S)y = Q(S)x. (27)

Expressions (24) and (27) show the two main challenges of
rational graph filters. First, obtaining the output y from (27)
requires solving a system of equations, which has a cubic order
computational complexity O(N?3), making the filter impractical.!
Second, designing a rational filter is more challenging than
fitting a polynomial filter because of the nonlinear nature of the
problem and the stability issues. In the remainder of this section,
we discuss strategies to approach the latter.

Implementation. To reduce the computational cost of solving
(27), we resort to iterative solvers that are fast and computa-
tionally efficient. If a centralized implementation is targeted,
conjugate gradient approaches that exploit the graph struc-
ture are of interest [66]. They have a computational cost of
O((PT + Q)|&]), where T is the number of iterations. Because
of the fast convergence of the conjugate gradient, we can stop
it in a few tens of iterations. And since a rational function
achieves good approximation with low orders P and (@), we
expect the cost of obtaining the rational filter output to be low
and comparable with that of graph convolutional filters (cf. (3)).
Other works have considered the Jacobi method [27], [78], quasi-
Newton methods [79], or pre-conditioned gradient descent [80]
to speed-up the computation in particular cases or have lighter
per-iteration computation cost.

Instead, if a distributed implementation is needed, the algo-
rithm for solving (27) need also enjoy a local computation. Most
strategies rely on first-order methods based either on ARMA-
like recursions [57], [81], [82] or gradient-descent [77]. When
the graph has a small diameter, the quasi-Newton method in [79]
or the pre-conditioned gradient descent [80] could be a choice
since they can be implemented locally with little effect on the
performance.

Design. There are two streams of rational filter design, both rem-
iniscent of rational fitting and filter design in DSP: optimization-
based approaches and change of variable approaches.

Optimization-based: These methods can be cast as solving the
constrained optimization problem

>\ ~
o max | _ a(\)
minimize A)— =
{ap.bq} /)\rnin ﬁ() p()\)
subject to B(A) # 0, VA € [Amin, Amax] »

2
dX

(28)

where (3 (M) is the desired response. Driven by their success in
DSP [83], simple design approaches such as Prony’s and Shanks’
methods have been extended to the graph setting in [57], [66],
[81], [82]. Such methods focus on the modified error &(\) =

IThe inversion order cost matches that of the eigendecomposition of the shift
operator. Consequently, there is no need to design a rational filter and apply it
in the vertex domain as once we get the GFT of a signal we can implement
exactly any desired spectral response.

BA)B(A) —G(N) and ignore the stability constraint. It has been
consistently observed that these simple approaches offer good
fitting and stable filters. Instead, stability-enforcing solutions are
devised in [84]-[86], which use, respectively, a sum-of-squares,
partial factorization, and constrained weighted least squares.

Change of variable: The above strategies require solving an
optimization problem that may be computationally demanding.
To overcome this, some works extend the techniques that utilize
Chebyshev polynomials to design convolutional filters to the
rational filter design setting, ultimately yielding closed-form
solutions and stable filters. Essentially, these methods: i) map
graph frequencies A\ € [0, Apax] into angular frequencies w €
[0, 7] via the transformation variable w = mA/Amax; 44) design
the filter for w via standagd DSP tgchniques, and; 7i7) generate
the graph counterpart as h(\) = \h(w)|2‘w:7r NI References
[87] and [77] use the Butterworth method for the design, while
[88] considers rational Chebyshev design of the first kind. A
link with the rational filtering design in DSP is also discussed
in [89], while [90] proposes an iterative design via Chebyshev
polynomials (cf. (17)) to approximate the inverse response.
While having closed-form design, these approaches are often
limited to ideal step responses in contrast to the optimization-
based methods, which can be used for any response.

B. Node Domain Filtering

Convolutional and rational filters implement locally an op-
erator that has a spectral response. However, in many cases,
the desired operator or the data input-output mapping is more
complex than a spectral response, which makes these solutions
suboptimal (see also Sec. V). Thus, it is of interest to develop
filters from a node domain perspective and potentially go beyond
the spectral duality. Generally speaking, a graph filter of order
K computes the output [y]; at node 4 as a linear combination
of the input signal localized in the K —hop neighbors N (i, K),

ie.,
[yli = hiilx]i + Z hij[x];,
JEN(4,K)

(29)

where {h;;} are the parameters. These parameters account also
for the graph structure (edge weights) underlying the signal [x];,
seen locally from node 7. Here, we first relate the convolutional
filtering (3) with operation (29) and then discuss extensions to
node varying [8] and edge varying versions [10].

Convolutional filtering. Leveraging locality (Property 5), the
convolutional filter obtains the information from k-hop neighbors
as z(*) = SFx. This can be written as

K
lyli = [H(S)x]; = ho[x]; + Z hi.[2M));
k=1

K
= ho[x]; + > hi[S*x];. (30)
k=1

That is, the same parameter hy is applied to [x]; by each node i €
V, and the same parameters {hy, } weight the k—hop neighboring
signal locally percolated via the GSO, [S*x];.

Node varying filtering. A node varying graph filter applies
node-specific parameters hy; to [x*)]; and each [S*x];; i.e.,

K
[yli = hoilx)i +) _ hii[S*x];. (31)
k=1

11

Collecting the different parameters applied at shift £ into the
vector hy, = [hg1,...,hin] T, we can write such a filter as

K
H(x) =) diag(h;)S"x. (32)
k=0

This increased flexibility allows implementing more general
operators than the convolutional filter, while still maintaining the
local implementation. Results akin to those in Section V-A for
exact and approximate operator matching have also been derived
in [8] for node varying filters. To illustrate the result for exactly
matching an operator B, let us define §; as the NV x 1 canonical
vector with a 1 in position ¢ and 0 elsewhere, and u; = vVTs,,
b, = BT6;, and b; = V "b,. With this notation in place, the
following holds.

Proposition 3 ([8]). If the following conditions hold for all i
1) [b;]; = 0 for those j such that [w;]; =0
2) For all (j1,j2) such that \;; = Xj, , it holds that
[bilj, /[wilj, = [bilj, /[uils,
3) The degree of H(S) is such that K > D, where D denotes
the number of distinct eigenvalues in S

then B can be perfectly implemented using a node varying graph
filter as defined in (32).

A direct comparison of Propositions 1 and 3 reveals the added
expressivity of node varying graph filters since the stringent
requirement of simultaneous diagonalization in Proposition 1 is
replaced by the milder Condition 1 in Proposition 3. Similarly,
data-driven design, modifications to the adaptive methodologies
presented in Section V-B have also been extended to node
varying filters in [91], [92].

Due to the node-specific nature of node varying filters, we can
find frequency representations for every row of H(S) as

K
8, H(S) = [hy];u/ A*V~! = uldiag(h)V~!, (33)
k=0

where h() = Ah(® and hD = [[hgl;, [hy];, ..., [hx];] collects
the filter parameters associated to node ¢. The output at node
¢ is the elementwise product of the input Fourier transform
V~!x and the filter being implemented at 1, diag(h(i)), and
then combined with node-specific weights u, that encode how
strong each frequency is represented by node 1.

Edge varying filtering. We can further improve the filter
flexibility by allowing each node to weight differently the infor-
mation of its different neighbors. Then the diagonal parameter
matrix in (32) becomes a matrix H; with the same support as
the GSO S, leading to the edge varying graph filter:

K
H(x) =) H;S"x = H(S)x, (34)
k=0
where [Hj);; = hy,; is the parameter node ¢ applies to the

signal of neighbor j at iteration k. For k = 0, we have Hy :=
diag(hg) since each node only weights its own signal [10]. By
weighting differently the shifted information of the neighbors,
the edge varying graph filter has an even higher flexibility and
still preserves the local implementation. The latter is because
the original signal values from the neighbors up to k hops away
are still propagated through the graph via the GSO S*x and
only then weighted locally by Hj. It is shown in [10] that filter
(34) can better approximate a defined operator compared with

the convolutional and rational filters. In addition, it also enjoys
a spectral representation, but that requires long derivations and
we refer the reader to [10]. Other forms of edge varying filters
are developed in [10], [93], which use a parametric GSO and a
cascaded form, respectively.

One of the main advantages of node domain filters is their
increased degrees of freedom (DoFs) while preserving linearity
and locality of implementation (Properties 1 and 5). As a result,
both filters have a computational complexity of order O(K|&]),
even though the node varying filter (32) has N (K +1) parameters
and the edge varying filter (34) has N + (N + |€]) K parameters.
The node varying graph filter is also proven Lipschitz stable
(Property 8) in [94].

Since these filters are neither shift invariant nor permutation
equivariant (i.e., Properties 2-3 do not hold), we need to account
for the order in which we cascade them, as well as the node
labeling. The lack of permutation equivariance also implies that
we cannot transfer the learned filters across different graphs.
Another challenge is that there may be too many DoFs (param-
eters) to estimate from limited data. In these instances, we can
regularize the problem to penalize some norm of the parameters
or develop a hybrid filter where edge varying parameters are
applied only for a few representative nodes [27]. But when
operating on a fixed graph and with a reasonable amount of data
or a fixed operator, node domain filters can substantially improve
the performance, especially in a distributed implementation.

C. Nonlinear Graph Filtering

Nonlinear filters have been proposed to overcome the limi-
tations of node domain filters (large DoFs and lack of trans-
ferability across graphs), but still be more flexible than GCFs.
To introduce nonlinear filters, we first focus on the graph
convolutional filter (3) output y; at node ¢. Specifically, we
collect the K —shifted signals at node ¢ in the vector XEK) =

[[x]s, [Sx];, . - ., [SKX]Z-]T and the filter parameters in the set
H = {h = [ho,...,hx]|"}. Then, we can write the filter output
at node ¢ as

= F0) = WX =N @

i.e., it is a multivariate linear regression 1n Xg) with parameters

h that are shared among the nodes. We also see from (31) and
(34) that node varying filtering is a linear variation of (35) but
with different parameters h; for each node. In contrast, nonlinear
graph filters can be built by considering a nonlinear function
f (xl(.K);’H) in (35) with the same parameters H for all nodes.
While the function f(-) can be arbitrary, it has been studied for
two models inspired by traditional signal processing: the Volterra
graph filter [95] and the median graph filter [96], [97].

Volterra filter. The natural generalization of (35) is to consider
a multivariate polynomial regressor in variables ng)

K K
vi = FOe" 1) = poly L, O),
where poly; ~ (-) denotes a multivariate polynomial of
orders Lo, ..., Ly in [x];,[Sx];,. .., [S%x];, respectively, and

the set H collects the respective parameters. For instance, for a
shift order K = 1 and polynomial orders Ly = 2,L; = 3, we

have xgl) = [[x];, [Sx];] " and (36) becomes

Lo=2L1=3

Yi = Z Z hugr, [x]20[Sx]1t and H = {hyy1, }-

lo=0 11=0

(36)

(37

12

Expressed compactly, this filter has the input-output relation

Lo=2L1=3

Y= 3 Y gy [x0 © (S%)°1] and H = {hy,1, }, (38)

lo=0 11=0

where x®% = x®...®x is the element-wise a—th power of x.
Then, a nonlinear graph filter of order K has the form

Lo Ly
y = Z - Z hlo_.AlK [X®l0 ® (SX)Gll O...0 (SKX)QZK]7
lo=0 lx=0
(39)

where set H = {hy,. 1.} collects all the parameters of order
O(K Lax) with Ly = max{Lo,..., Lx}. Because data are
gathered locally, these filters generate the output with the same
order of computational complexity. Such an increased flexibility
allows us to represent more complex nonlinear relationships
in graph input-output data. But, at the same time, multivariate
polynomial regression can overfit the data and may suffer from
ill-conditioning. Differently from the node or edge varying
filter, the nonlinear filter in (39) shares the parameters across
nodes, which allows transferring it across graphs. The Volterra
graph filter is the particular case of (39) with reduced DoFs
(Lo < L1 < ... < Lg) and it has been shown that even if
the input is a bandlimited signal (cf. (8)), the output can have
frequency content in the entire graph spectrum [95].

Median filter. All the above filters rely on signal propagation
over the graph. When a particular node is anomalous and has,
e.g., a large signal value, it will affect all the neighbors and the
filter output. Median graph filters have been proposed as robust
alternatives that can tackle such an issue.

Consider an integer h > 0 and a real scalar z. We define
the replication operation h oz = [z,...,2]" € R". Then, the
median graph filter output at node i can be obtained as

Yi = f(xl(-K); H) :=Med(ho © [x]i;...;hx © [SKx}i), (40)

where the median operation Med(-) sorts its arguments in
ascending order and outputs the middle one [97]. In obtaining
[Sx];, we compute a weighted linear combination of the entries
in x, where the weights are given by the values in the ith row of
S. If a node has a particularly high value, it can be amplified via
the shift operator S and be present in ng) for almost all nodes.
The median operator attenuates such influence. The data-driven
design of the parameters h is discussed in [97]. Cases where the
weights in S can be designed are also studied in [97]. As with the
Volterra filter, the median filter is nonlinear and local; however,
it does not enjoy a spectral equivalence. Alternative expressions
to (40) are also proposed in [96], [97]. They differ in how the
data are gathered at the nodes (either linearly via shifting or
nonlinearly via the median operator) and how these gathered
data are processed (again linearly or via a median operator).
Lastly, we remark that the local median operator in (40) is only
one choice and other nonlinear functions such as max or min
can be used [98], [99].

D. Filtering by Regularization

The graph filters discussed above can be seen as graph-based
parametric functions to model input-output mappings. When the
spectral specifications of this mapping are unclear or when the
amount of data is limited, these parametric filters can be difficult
to design or can easily overfit the data. In these cases, we may

want to implement graph filtering via regularization, leveraging
prior information about particular properties that graph signals
exhibit. For simplicity, we consider graph regularization to de-
noise graph signals, which is crucial in data processing; however,
similar observations extend also to interpolating missing values,
as we shall see in Sec. IX-A.

Consider the task of recovering a graph signal z from a single
noisy obervation x = z + n, with n being additive Gaussian
noise. This can be addressed by solving

argmin f(x,y) +r(y,g), (41)

yERN

where f(x,y) is the fitting-term, typically f(x,y) = ||x — y||2,
and r(y,G) imposes a graph-based prior about the true signal.
Depending on the signal behavior with respect to the underlying
graph, we discuss three regularization techniques: (i) smooth
filtering; (ii) sparsity filtering; and (iii) Wiener filtering.

Smooth filtering. These approaches consider a regularizer that
imposes a low signal variation between adjacent nodes. For
undirected graphs, two popular approaches are the Tikhonov reg-
ularizer and the Sobolev regularizer, while for directed graphs,
the total variation regularizer is commonly applied.

Tikhonov [14], [19]: A smooth signal y over an undirected
graph has a low quadratic form LQ(y) = y'Ly (cf. (5)).
Considering LQ as a regularizer, we obtain

argmin [|x — y|3 +~y ' Ly. (42)
N

yeR
The more we increase vy > 0, the more we prioritise smoothness
on the solution. Problem (42) is a quadratic convex problem and
has the closed-form solution

y*=(I++L) x. (43)

Comparing (43) with (27), we see that the Tikhonov filter is an
order one rational filter with frequency response h(\) = (1 +
4A)~L. This frequency response also helps understanding the
role of parameter ~y; the optimal solution in (43) is a low-pass
graph filter and the higher 7y, the more low-pass the filter.

Sobolev [100]: The Sobolev regularizer increases the flex-
ibility by allowing for a more expressive rational frequency
response. Specifically, it focuses on solving

argmin |[x — y[|3 + 7y " (L + D)%y, (44)
yeRN
with € > 0 and 8 € R,. The closed-form solution is
v = (T+~(L+e)f) 'k, (45)

which corresponds to a rational filter with the frequency response
h(A\) = (1 + v(\ + €)#)~L. Here, the scalar 3 controls the
expressivity order of this function (cf. P in (24)) and ~, € are
the parameters of such a rational response.

Quadratic shift variation [22]: When the graph is directed,
we measure the variability as the change between the signal y
and its shifted version Sy. Thus, we can recover a smooth signal
over a directed graph by solving

argmin [|x — y||3 + lly — Sy|3, (46)
yERN
which has a closed-form solution
vy = (I+7I-5-ST+87S)) 'x. (47)

13

This is again an inverse graph filtering, but it does not admit a
straightforward spectral analogy as (43) and (45). The role of
the regularization parameter -y is discussed from a bias-variance
perspective in [101] and from a graph-kernel perspective in
[102]. Differently, [103] generalizes (43) to the case where each
node has its own regularization parameters (i.e. a vector of
parameters <), yielding a rational node varying filter (cf. (32)).

Sparsity filtering. These approaches leverage the prior that
the signal has discontinuities across neighbors or shifts; e.g., a
piecewise smooth signal that has homogeneous values within a
group of nodes but can have arbitrarily large variations between
groups. For undirected graphs, sparsity filtering is implemented
via graph trend filtering (GTF), while for directed graphs it is
implemented via the total variation in (7).

Trend filtering [104]: Let A € RN*I®l be the oriented
incidence matrix of an undirected graph G, whose rows are
indexed by the nodes and columns by the edges. The operation
A Tx computes the pairwise difference between signal values on
each edge; hence, AT can be interpreted as a graph difference
operator. In fact, since L = AAT, the regularizer in (42) can
be written as LQ(y) = y'Ly = ||ATy]2, ie., the squared
f>—norm of the difference vector. Instead, the GTF works with
regularized problems of the form

argmin [|x — y 3 +vl|A Ty, (48)
yERN

which penalizes the absolute difference of the signal variation
in connected nodes. Problem (48) is an order K = 1 GTF and
estimates a signal y whose differences are nonzero only at a

few edges. Higher-order GTFs substitute the indicence matrix
AWM = A in (48) with the higher-order versions K > 1

AN T _ [AAUOT = L, for odd K
ATAE)T = ATL%, for even K

For an odd K, the GTF recovers a signal that has sparse diffused
versions Ly, L2y, while for an even K, it recovers a signal that
has sparse differences of the shifted versions ALy, ATL%y
etc. These sparsity constraints capture discontinuities in the
graph signal and recover piecewise constant signals better than
smooth filtering methods. One of the challenges of the GTF is
that solving problem (48) requires running iterative algorithms.
In addition, the ¢;—norm in (48) may often penalize towards
zero when the signal components are large. To overcome the
latter, the work in [105] proposes a GTF with a non-convex
regularizer.
Total variation [22]: This is the straightforward extension of
(46) that uses the regularizer TV(y); i.e., it solves
argmin [|x —y 3 +v[ly — Syl (49)
yERN
This means that we are penalizing shifted variations that are
substantial only at a few nodes. Similar to the GTF, this is also
a convex problem that can be solved with iterative algorithms.

Wiener filtering. The above regularizers do not consider any
statistical behavior of the true signal. When this signal exhibits
a graph wide sense stationary behavior [3], [106], [107] or when
it is generated by a Gaussian-Markov random field [108], we can
incorporate such a prior to recover the optimal signal in a Wiener
filtering sense.

First, consider a signal from a distribution y ~ D(0, 3,)) with
covariance matrix 3, and let the noise be additive with zero

mean and covariance matrix X,. Given y and n are mutually
independent, the Wiener filter comprises solving

H*= argmin E[H(y +n) —y[3=2,(Z, + £.)™", (50

HERN X N

and setting the solution to y = H*x. When the process y is
defined over a graph and the covariance matrices have the same
eigenvectors as the GSO —i.e., 3, = Vdiag(og()\))VH, ¥, =
Vdiag(c2(X))VH (independent noise) — the Wiener filter in (50)
reduces to a graph Wiener filter H(S) [109]. This graph Wiener
filter has the frequency response

~ ai(N) 1
h(A) = g = 1
Voawram T gm Y

which is a rational filter, and the response at frequency A is con-
trolled by the inverse signal-to-noise (SNR) ratio SNR™*(\) :=
02(X\)/a%(\). Contrasting (51) with the other regularized filters,
we see that the Wiener filter does not imply a constant regular-
ization weight for each frequency A, but rather a frequency-
adaptive regularizer given by the inverse SNR. Similar to the
rational graph filters discussed above, the output of the Wiener
filter can be obtained with conjugate gradient methods; however,
the matrices X, 3,, are typically dense. One way to tackle this
is to approximate ﬁ(A) with polynomial or rational filters and
then implement it via iterative recursions [110], [111].

The main challenge of these filters is to identify a good
regularizer or a combination thereof that represents the data.
Often this may be a challenging task requiring domain expertise,
hence advocating for the easier solution to use more general
graph filters as input-output mappings.

E. Multi-GSO Filters

Unlike classical signal processing where the shift operation
is a time delay, in the graph setting, different choices of the
graph shift operator for the data are often possible, especially
in abstract networks (Sec. II-A). Designing or learning both the
filter coefficients and the GSO is challenging because of the
powers of S appearing in the filter expression (e.g., (3)), and
because of the high DoFs that can cause overfitting. A way to
circumvent these challenges is to build a graph filter operating
on multiple pre-specified GSOs [112]-[115]. Given ¢ GSOs
{Sq}qul, we define a multi-GSO graph filter as

Q K
Hx) =D > haShx = H({S,}2))x, (52)

q=1 k=0

where {hqt} is the parameter applied to the kth signal shift
with respect to the gth GSO. The multiple GSOs now act as
inductive biases about the graph and / or data to aid modeling.
In contrast to e.g., learning the GSOs, this approach reduces
the filter parameters to (K + 1) and the computational cost
to O(QK|E|). In addition, because these filters are linear in the
parameters, their data-driven design reduces to solving a least
squares problem, similar to convolutional filtering.

VII. GRAPH FILTER BANKS AND WAVELETS

In many instances, a single graph filter suffices to smooth data,
identify discontinuities, or classify a signal. However, the outputs
of multiple filters (a filter bank) can also be combined to generate
more nuanced representations of the data. The combined filter
coefficients can serve as feature vectors in machine learning tasks

14

or be leveraged in regularization problems when one has a priori
modeling information that the graph signal of interest belongs to
a class of signals whose filter bank coefficients exhibit specific
structural patterns (e.g., they are sparse).

Throughout this section, unless stated otherwise, we assume
the underlying graph is undirected and the graph shift operator
is Hermitian (including real symmetric).

A. Undecimated Single-Level M-Channel Graph Filter Banks

A single-level graph filter bank without any downsampling
(undecimated) applies M different filters to a signal x and
concatenates the outputs into a single vector of length M N:

o= [H;(S)x; Ha(S)x; ...; Hp(S)x].

An example shown in Fig. 5. When the filters, often called the
analysis filters, are linear, the graph filter bank constitutes a
linear transform from XY (the graph signal) to X ;v (the filtered
signals). Equivalently, we can interpret each of the M N output
coefficients as the inner product between the graph signal x and a
dictionary atom of the form ¢,,,, := H,,(S)d;, where [§;]; =1
if 7 = 4 and O otherwise. Each atom ¢,,,, can be viewed as a
pattern defined through the filter h,,, in the spectral domain and
then centered at vertex ¢ (cf. [30, Fig. 1]).

The most common method to reconstruct the signal from the
output coefficients is through a synthesis filter bank. For an
undecimated single-level M -channel graph filter bank, shown
in Fig. 5, the reconstructed signal is given by

M
Xree = Y Gon(S)H,(S)x, (53)
m=1
where {G,,,(S)} are the synthesis filters.
Parseval frames. The dictionary atoms

{Pimticio . Nome1o. . an form a tight Parseval frame if

M S 1%, @) |2 = |Ix]|3. A sufficient condition for
these atoms to form a tight Parseval frame is that

M
Z [hm(X)]2 =1, foreachi=1,2,...,N;

m=1

(54)

that is, the chosen filters cover the entire spectrum evenly in
the sense that the sums of their squared values are the same at
every eigenvalue. Benefits of designing the filters to meet this
condition include (i) ||x||2 = ||||2; i.e., the filter bank preserves
the energy of the signal, which also helps avoid numerical
instabilities; and (ii) using the same filters for the synthesis filter
bank as the analysis filter bank (i.e., G,,(S) = H,,(S) for all
m) results in perfect reconstruction of the signal, because

M M B
> H,(S)H,(S)x =V [Z [diag(hm)]?] Vvhx = x.

Examples of such tight spectral graph filter frames include those
constructed and investigated in [117]-[120].

As discussed in Sec. V, using polynomial filters circumvents
the need to exactly compute the eigenvectors of S and also
enables local processing. However, [121] shows that it is not
possible to design a filter bank comprised of polynomial filters
that satisfies >, _;[hm(N)]? = 1 for all A € [Amin, Amax] (the
desired condition for a graph-independent tight frame guaran-
tee since the idea is to not compute all of the eigenvalues).
References [121]-[123] explore different methods to design

Analysis Filter Bank

15

Synthesis Filter Bank

signal x _ filtered signal H; (S)x ~ G1(S)H;(S)x
by () &N
2 . a y “ <Y 1 “ A
il — — G
0 # § % 05 " B
B i s
. 1 & 0 &
01234567 01234567
. filtered signal Hz(S)x . G2(S)Hz(S)x
hy(\) 8:(\)
1 1
s — -
C C reconstruction Xyec
05 g 05
i i \
0 0
01234567 01234567
~ filtered signal H3(S)x _ G3(S)H;(S)x
hy(A) &\
1 1
—> — —_— B —
0.5 A 05 &
&)
0
01234567 012345867
- filtered signal Hy(S)x - G4(S)H4(S)x
hy(A) 8:(\)
1 1
— —_— —_—
0.5 0.5
« A
0 0
01234567 01234567
A A

Fig. 5: An undecimated single-level four-channel graph filter bank. The signal is piecewise smooth with respect to the Stanford bunny graph [116]. As a result,
the non-zero coefficients of the bandpass and highpass channels (m = 2, 3,4) cluster around the two discontinuities at the midsection and tail of the bunny. The
synthesis filters {g,, } used here are the same as the analysis filters {h., }, although they do not need to be in general. The filters {h,,} chosen for this example
with the design method of [117] satisfy the tight Parseval frame condition (54), leading to perfect reconstruction.

polynomial filter banks that approximately satisfy the tight
frame condition, while [124] allows the polynomial synthesis
filters {g,,} to be different from the polynomial analysis filters
{ﬁm{}, and outlines a method to design the filters to satisfy
Zf\nzl o (N)Em(A) = 1, guaranteeing perfect reconstruction.

Spectral graph wavelets. A seminal example of undecimated
graph filter banks are spectral graph wavelets, introduced in
[125] and later extended to tight frames [117]-[120]. Analogous
to wavelet filter banks for discrete-time signals (see, e.g., [126]),
choosing the filters to be dilated versions of each other with
wider support in the highpass filters at the upper end of the
spectrum yields atoms that are increasingly (as the filters become
more dilated) localized in the vertex domain. As a result, the
spectral graph wavelet filter bank coefficients are sparse for
signals that are smooth or piecewise smooth with respect to the
underlying graph [125], [127]. This phenomenon is illustrated
in Fig. 5, where the coefficients in the bandpass and highpass
filters (channels m = 2,3,4) are (i) close to 0 except around
the discontinuities in the piecewise smooth signal, and (ii)
increasingly sparse at higher scales (larger m). Spectral graph
wavelets have been applied in community mining [128], mobility
pattern analysis [129], semi-supervised learning [130], 3D action
recognition from depth cameras [131], fMRI data analysis [132],
and network topology analysis [133].

B. Downsampling and Critically-Sampled Graph Filter Banks
Without any downsampling, the M-channel graph filter bank

is a redundant transform. In many applications, this is just fine

and the fact that the output coefficients are sparse for specific

classes of signals can be leveraged in regularization and ma-
chine learning problems. In some applications, it is desirable to
subsample the output coefficients, keeping only those associated
with the vertices in the set V,,, at the mth channel, reducing the
overall storage cost. When 2%21 V| = N, the filter bank is
said to be critically sampled [134]. With a typical synthesis filter
bank comprised of upsampling the output coefficients from each
channel, filtering, and summing, the reconstructed signal is given
by (cf. (53) for the effect of the downsampling and upsampling):

M
Xree = Y Gm(S)My, My, H,,(S)x, (55)
m=1

where My, is a [V,,,| X N selection matrix with [My,], , =1
if vertex 7 is the kth element of V,,, and O otherwise, and M,Im
is the corresponding upsampling operator.

Perfect reconstruction. While [135] investigates how to select
the sampling sets {V,, },,» to minimize the reconstruction error
[|Xrec — x||2 for a fixed choice of filters, a broader question is
whether it is possible to jointly select the filters {H,,(S)}m
and {G,,(S)},, and the sampling sets {V,,},, to recover
the original signal x exactly from the subsampled outputs
{My, H,,,(S)x},,.

Indeed, when the underlying graph has special structural
properties, it is possible to guarantee perfect reconstruction. For
example, when the graph is bipartite and S = L, the spectrum
of normalized Laplacian eigenvalues (contained in [0,2]) is
symmetric around A = 1 and the eigenvectors associated with
eigenvalues A and 2 —)\ are closely related, leading to a spectral
folding effect analogous to aliasing in one-dimensional signal

Analysis Filter Bank

16

Synthesis Filter Bank

signal x

P |
zl:

1

05

0 5, M
e

FO-1

G1(S)M, My, Hy (S)x

M;, My, H, (S)x

My, My, Hy(S)x

G

—_ —
03] 2
. 8¢

Fig. 6: A single-level critically-sampled two-channel generalized graph filter bank for the same signal shown in Fig. 5. This filter bank combines the perfect
reconstruction biorthogonal filters of [136, Ex. 3] with the generalized filter bank approach of [137] for arbitrary graphs. The graph is partitioned into two

approximately equal-sized complementary sets of vertices, V1 and V. Here, S = L, Q =

[L]‘al’vl Liv, v, |’ S = Q'L (not Hermitian in general), and

H;(S) = Vh;(A)V~1 = Vh;(A)VHEQ. Although they look similar in shape, the synthesis filters are not the same as the analysis filters.

processing. Specifically, with M = 2 and the downsampling
sets selected according to the bipartition {V;,Vs}, for each
eigenvalue and m = 1,2, we have

1
Ty (M), My, x) = 5 [TA(x) +Jv, Taa(x)], (56)

where I'y performs an orthogonal projection of a vector onto
the eigenspace associated with eigenvalue A, and Jy =
2M$vam —1In. A key takeaway from (56) is that the portion
of the downsampled and upsampled signal in the eigenspace
associated with A only depends on the portions of the original
signal in the eigenspaces associated with A and 2 — A. Ref.
[138] shows that for this case, the following two conditions are
necessary and sufficient for perfect reconstruction

E1(Mh(N) +B2a(Mha(N) = 2,
gBi(Mhi(2—X) —B(Mh(2-2) = 0.

Leveraging these conditions, [136], [138]-[142] design two-
channel critically-sampled perfect reconstruction graph filter
banks.

Other special types of graph with structural properties that can
be leveraged to generate critically-sampled perfect reconstruction
graph filter banks include shift-invariant graphs that have a cir-
culant graph Laplacian [143]-[145] and M-block cyclic graphs
[146]-[148].

The generalized critically-sampled filter banks of [137] extend
the spectral folding idea from bipartite graphs to arbitrary graphs.
They do this by taking the filtering basis vectors {V;};=12.n~
to be the solutions to the generalized eigenvalue problem

Sv: = \Qvi, (57)

so that V?Q\’fj = 0 for i # j; i.e., the filtering basis is or-
thonormal with respect to the inner product (v;, V;)q := v QV;
instead of the standard dot product. In (57), S is a Hermitian
(including real symmetric) positive semi-definite matrix with off-
diagonal sparsity pattern matching the adjacency matrix (e.g.,
a Laplacian). If, for any partition {Vi,V>} of the vertices,
Sy, 0
0 [S}V%VQ
spectral folding property analogous to the one for bipartite
graphs holds (but this time for arbitrary graphs), leading to
perfect reconstruction. Fig. 6 shows an example of such a
critically-sampled two-channel generalized graph filter bank.

Q is selected to be equal to , then a

Orthogonality and biorthogonality. A critically-sampled filter
bank is said orthogonal if S n_ H,,(S)MY, My, H,,(S) =
I, in which case selecting the synthesis filters to be the same as

the analysis filters leads to perfect reconstruction (cf. (55)), and
is said to be biorthogonal it 37 _| G,y (S)MY, My, H,,(S) =
I, again guaranteeing perfect reconstruction. Refs. [136], [138],
[139], [141], [149]-[151] examine orthogonal, near orthogonal,
and biorthogonal filter designs for critically-sampled filter banks
on bipartite graphs. The primary motivation for using biorthogo-
nal filters with bipartite graphs is that it is impossible to choose
polynomial filters that yield an orthogonal filter bank [139].

C. Alternative Structures for Arbitrary Graphs

A number of alternative structures for perfect signal recon-
struction on arbitrary graphs have also been proposed:

1) graph extensions of lifting transforms [152]-[155], pyramid
transforms [156], and oversampled filter banks [157], [158];

2) subgraph-based filter banks for graph signals [159] where
the downsampling is performed by partitioning the graph
into connected subsets of vertices and representing each
subset by a single supernode;

3) filter banks where the synthesis portion (upsampling and
filtering) is replaced with a different interpolation operator
[160], [161];

4) filter banks where the downsampling is performed in the
graph spectral domain instead of in the vertex domain
[162]-[164];

5) filter banks that first replace the arbitrary underlying graph
by a maximum spanning tree [165], [166];

6) multi-dimensional separable filter banks that first decom-
pose an arbitrary graph into sums of bipartite graphs [138]-
[140];

7) filter banks that first decompose an arbitrary graph into
sums of circulant graphs [143]-[145];

8) filter banks that work with a similarity-transformed adja-
cency matrix [147].

D. Multi-Level Graph Filter Banks

In classical multi-level filter banks for time series data or im-
ages, multiple levels of filtering and downsampling are applied.
For example, in the classical logarithmic wavelet filter bank, at
each level, another filter bank is applied to the downsampled
output of the lowpass channel from the previous level [126].
Numerous works have investigated extensions to multi-level filter
banks, lifting transforms, and pyramids for graph signals (e.g.,
[137], [138], [143], [144], [156], [159], [162]). In classical
time series analysis or image processing, the structure of the
underlying domain enables regular sampling (e.g., every other

time sample) that preserves the notion of frequency entailed by
filtering at each level of the multi-level filter bank. One main
difference and significant challenge in the graph setting is that
— unless the graph is highly symmetric — it is not obvious how
to define a coarser graph at each subsequent level of the filter
bank in a way that maintains a clear correspondence between
the eigenvectors of the shift operator that are used for graph
filtering at one level, and the eigenvectors of the shift operator on
the coarsened graph that are used for filtering the downsampled
signal on that coarsened graph (c.f., [167]-[169]).

E. Data-Adapted Transforms / Dictionary Learning

All of the design elements discussed so far — the graph(s),
filters, and downsampling sets — can be adapted either to the
specific graph signal being analyzed or to an additional set of
representative training signals. For example, [170] presents a
method to learn polynomial filters that yield sparse represen-
tations of the training signals and [171] presents a method to
learn filters that yield a tight frame with each resulting filter
subband capturing the same amount of energy on average across
the training signals. This approach is particularly beneficial when
the energy of a typical signal from the class of interest is con-
centrated on a small region of the spectrum, which the authors
show is the case for brain fMRI data [171]. Meanwhile, [172] is
just one of many examples of constructing the underlying graph
from the signal, in this case for the purpose of image coding.

VIII. GRAPH NEURAL NETWORKS

Graph neural networks (GNNs) are nonlinear layered archi-
tectures, in which each layer comprises a bank of graph filters
(Sec. VII) and an activation function that is (typically) pointwise
and nonlinear [4], [23], [173]. This nonlinear nature allow us to
capture more complex relationships than the linear graph filters,
and their compositional form allows for a sequential extraction
of features, typically enhancing representational capabilities over
simpler nonlinear graph filters.

The basic building block of GNNs is the graph perceptron,
which is a straightforward extension of graph filters [23].

Graph perceptron. A graph perceptron is a nonlinear
mapping comprising a linear graph filter H(x) nested into
an activation function (a pointwise nonlinear function)
oc:R—>R,ie.,
y =o(H(x)) (58)
(o

(Bdda)-

where o (x) signifies [o(x)]; =

Graph perceptrons can be built using any of the filters reported
in Table I and the activation function can take different forms
e.g., o(x) = ReLU(z) = max{0,z} or hyperbolic tangent
o(x) = tanh(z). If we let H(x) be a convolutional filter of
the form H(x) = h1Sx, the graph perceptron becomes the usual
expression of GCNs given by x; = o(h;Sxg), where hy is the
learnable coefficient. Extension to multi-featured graph signals
comes in (62). Cascading graph perceptrons gives rise to a graph
neural network (GNN) [23]. Formally, a GNN ¢ : XV — XV
comprising L layers is given by

®(x) = xz, where x; = o(He(x¢-1)), £=1,...,L (59)

with xo = x. That is, the input to the GNN is a graph signal that
is processed by a graph perceptron to form the output of layer
¢=1,1ie., x; = o(Hi(xq)). Signal x; is the input of the next

17

z

x1 =o0(z1)

T Layer 1

2
Z2:H2(X1) =2 XQ—O'(ZQ)
T Layer 2
x>
le
v
z3 = Ha(x2) %3 x3 = o(z3)
T Layer 3
X3 l lx;; = d(x)
v
§ = NN(xa) 5

Readout

Fig. 7: Schematic for a GNN with 3 layers. The input x is processed by a graph
filter Hy and then an activation function o. The output of this block — a graph
perceptron — is fed into another graph perceptron corresponding to layer 2. The
output of the GNN is the output of the third, cascaded graph perceptron. Each
layer has a different filter whose coefficients are learned from data. If required
for the problem, the output of the last layer of the GNN, in this case ®(x) = x3
can be fed into a readout layer to finally compute the target value y. Depending
on the nature of this readout layer, the distributed nature of the GNN may be
violated. See paragraph on ‘Readout Layer’ for more details.

layer and it is processed by another graph perceptron to output
x2 = 0(H2(x1)). This procedure is repeated for all layers, and
the GNN output is that of the last layer, xr; see Fig. 7.

The graph filters incorporate the topology of the data structure,
and these filters are dependent on the parameters at each layer.
Grouping all filter parameters in the set H, we estimate H
in a data-driven fashion from a training set 7 = {xl}lg1 by
minimizing a task-dependent cost function J : RV — R:

Ir%’i[n Z J(P(x7)).

x; €T

(60)

In general, it is assumed the samples in 7 are independent,
identically distributed, and thus (60) becomes an empirical
risk minimization problem [174]. For a supervised learning
setting, we have output samples y; for the training data 7 =
{(xz,yz)}lzz‘1 and thus the objective function in (60) becomes
J(®(x;),y:). For semi-supervised learning — e.g., node classi-
fication, where we have 7 = {x,y} with inputs x typically
available for all nodes and output y available only at a subset
of nodes — the i.i.d. assumption on the samples does not hold.
The objective is not necessarily to find the filter parameters
that minimize J(-), but rather to take gradient descent steps that
would improve the generalization performance on unseen data;
see [2, Ch. 8] for more details on training neural networks.
GNNs have taken over as a very powerful and promising tool
in machine learning, with notable applications in recommender
systems [175], drug discovery [176], biology [177], [178], and
time of arrival prediction [179].

Choosing the form of filters H, determines the overall GNN
characteristics [27]. In the following, we discuss the convo-
lutional filters (Sec. VIII-A) and the non-convolutional filters
(Sec. VIII-B). We close with a brief overview of other uses of
graph filters in GNN-style architectures (Sec. VIII-C).

Multiple features. The representation power of the GNN in (59)
can be increased by utilizing a bank of filters (see Sec. VII)

instead of a single filter [27]. To see this, consider that the
input graph srgnal X = Xo gets processed by F) different
graph filters {H } s creating a set of F; output graph signals
XlF L= {xi,.. x1 11 after applying the activation function to
each of them, i.e. x{ = O’(H{()). At the next layer, we have
a set of F} input graph signals, instead of just a single one.
If we want to use a bank of filters again, the most general
linear operation would be to use a distinct bank for each of
the input graph signals. That is, if we want F, ou ?ut graph
signals, we need Fy filters {HA' ... HI2"} = {HI/} 2 for
each input graph signal f € {1,. Fl} Dorng SO creates a set
of FyFy graph signals, each one obtarned as x2f = O'(Hgf (x))
To prevent the number of signals from growing exponentrally,
summary is created by adding up the signals resulting from each
of the gth filters, i.e. x5 = Z Fo1 x1 In this way, we can think
of the layer as taking F} input signals, and giving F, output
signals. Repeating this for every layer, we can think of taking
Fy_1 input signals, and giving F} output signals, which leads to
a generic description of GNNs as follows

Fpq
O(AT) = xf* where x{ =o(SHY(x],)), 6D

f=1
for g = 1,...,Fy at every layer { = 1,...,L, and where
X[= {x},...,x,*} is the set of F, features at layer /.

The resulting filter bank can be interpreted as an undecimated,
analysis filter bank (Sec. VII), where the filter coefficients are
learned from data instead of being designed. Understanding each
layer as a learnable filter bank may allow us to impose certain
characteristics, such as Parseval tight frames (cf. (54)), during
design or training. The values of {F;} and L are hyperparame-
ters, and are often used as a proxy for representational capability
(see [2, Ch. 5] for the relationship between capacity, width, and
generalization).

Readout layer. The GNN output ®(X¥) = X f L (cf. (61)) at
each vertex is a vector of dimension F7. Thus, the dimensions
of the GNN output may not match the dimensions of the
target output y. A readout layer is therefore used to match the
dimensions and decode the GNN encoded embeddings into the
final output, see [2, Ch. 9]. Depending on whether we use the
GNN for centralized or distributed processing, the readout layer
has different forms. In a centralized processing, all node features
are usually concatenated into a vector of size NFL XgnN =
[(xE)T,..., (x5)T]T and then mapped to the output dimension
as per e.g., the linear transform u = ®xgNn, Where the matrix
of parameters ® matches the output dimensions. Instead, in
distributed processing,” the readout layer must also be local. One
conventional case is to consider a readout layer o eratrng on a
single node. That is, let vector x; = [[x1];, .- [XL Ji]T € Rfz
be the vector of GNN output features at node i and suppose
the target output is a real scalar Then, the readout layer at
node i is of the form u; = o X, Where vector 8 € RIL s
common for all nodes. The readout layers can also be nonlinear
multi-layer perceptron layers. In either case, they are trainable
parameters and are used to minimize cost (60) or alternative
objective functions.

Pooling. Pooling is included in regular CNNs to construct
regional summaries of information. This mainly serves two
objectives: (i) control the computational cost by trading spatial

2GNNs are distributed architectures if the graph filters are distributable.

18

information with feature information (i.e., reducing the size
of the images while increasing the number of features); (ii)
aggregate global information in the deeper CNN layers. Pooling
approaches have also been developed for GNNs and can be
interleaved with the graph perceptron layers [180]. These also
follow two different lines: (i) use some sort of multiscale
hierarchical clustering algorithm [181], creating ever smaller
graph supports at each layer; or (ii) use graph sampling methods
[182] that leave the graph topology unaltered. The former is
typically of more interest in abstract networks where the graph
supports can be manipulated. The latter is typically of more
interest for physical networks and distributed processing where
we want to use the original topology to process signals in deeper
layers. However, in many applications such as those involving
physical graphs (robotic, sensor, or power grid networks), nodes
have computational power and thus the cost of computing the
GNN output is naturally distributed among these nodes. In these
cases, pooling is less crucial and may not be needed.

A. Graph Convolutional Neural Networks

The most popular GNN architectures are those that use a GCF
at each layer; i.e., substitute H, in (59) with (3). This leads to
graph convolutional neural networks (GCNN) [181]-[183]. The
GCNN can be compactly written as [26]

K
®(X) = X, where X, = 0(2 SkXE—lHKk')a

(62)

where X, € RV*F¢ collects the F, graph signal features x
obtained at the output of layer ¢, and Hy;, € RF¢*Fe-1 contains
the kth filter parameters of the FyFy_q filters involved in (61);

[Hgk]gf = hék for f = 1 Fg 1 and g = 1 F.
The multiplications S* on the left of X_1 shift the dlfferent
signals locally over the graph up to k& hops away, whereas the
multiplications on the right carry out a linear combination of
values contained in the same node via the filter bank coefficients,
and as such, can be arbitrary (which is the case when Hyy, is
learned from data).

This structure, coupled with the pointwise nature of the
activation function, makes the GCNN a local architecture that
respects Properties 3-6 and Property 8 of the graph convolutional
filter [56]. GCNNSs are also Lipschitz continuous to changes in
the underlying graph support (cf. (14)), albeit with a slightly
modified constant. They can, however, process information lo-
cated in large GSO eigenvalues in a stable manner, a feat that
cannot be achieved by linear graph convolutions (see [56]). This
makes GCNNs better suited for problems in which information
located at large GSO eigenvalues is important.

Implementations. While it is perfectly feasible to implement
GCNNs via (62), different (sub-)implementations, often derived
from a different stating point, have become popular. These
include:

1) GCNNs with orthogonal polynomials such as Chebyshev
[181], [184], Berstein [185], and Jacobi [186].

2) The GCN of [187] uses in (62) S = D~'/2(I4+ A)D~1/2,
K = 1 and, more crucially, Hyy = 0 for all ¢. This
forces all the learned filters to be low-pass filters leading to
the oversmoothing problem so thoroughly discussed in the
GCNN literature [188], [189].

3) A Simplifying Graph Convolutional (SGC) Network [190]
further exacerbates this problem by setting Hy,, = 0 for all
k < K for some order K.

4) A Graph Isomorphism Network (GIN) [191] can be ob-
tained from (62) by setting S to be the binary adjacency
matrix, K = 1, and Hy = (1 + ¢/)Hy for some
pre-defined ey. GINs further propose to use K = 0 for
some intermediate layers to mimic a node-based multi-layer
perceptron (MLP).

5) GraphSAGE [192] with a linear ‘aggregate’ function is
obtained from (62) by setting /' = 1 and then normalizing
feature-wise the resulting graph signal. While GraphSAGE
does not suffer from oversmoothing, forcing K = 1
precludes sharp transitions.

6) A Jumping Knowledge Network (JKNet) [193] with a
summation aggregation can be seen as computing the
GCNN operation (62) where residual connections are used
to account for multi-hop neighbors.

The design of GNN architectures is evolving at a fast pace
and thus many newer architectures become readily available each
month. While we have only mentioned the most popular ones,
we would like to encourage readers to identify whether these
new architectures are convolutional in nature, and thus fit the
description in (62), as the ones above, or they are essentially non-
convolutional and may be equivalently described by leveraging
other filter structures as we discuss in the next section.

B. Non-convolutional GNNs

In principle, we can build a different GNN architecture by
exchanging the filters in (61) with any of the types discussed in
Sec. VI. These GNNs will exploit different aspects of the data
structure, closely following the properties that the chosen graph
filters themselves exhibit.

Rational graph filters (Sec. VI-A) lead to GNNs that are
convolutional in practice, but capable of achieving much sharper
frequency transitions with fewer learnable parameters. Cay-
leynets [78] and ARMANets [27] are two such examples.

Node-varying graph filters (32) lead to non-convolutional
GNNs [94] as a means of learning frequency content creation
(refer to [56] for a thorough discussion on the effects of having
new frequencies at the otuput). Edge-varying graph filters (34)
also lead to non-convolutional GNNs [27], with graph attention
transformers (GATs, [194]) and natural graph convolutions [195]
being two of the most popular exponents. The edge varying
filter has been used here to propose a broad family of GNN
solutions as a way to show benefits and limitations of the
different architectures and how they trade parameter sharing with
permutation equivariance. In fact, neither the node varying nor
the edge varying GNNs are permutation equivariant architec-
tures. This is particularly useful in applications where nodes
are distinguishable. For example, in power grids, some nodes
represent generators while others represent consumers, and thus
it may be useful that they learn different behaviors.

C. Other Uses of Filtering in GNNs

Graph filters also play other key roles in GNNs. For instance,
graph wavelets (Sec. VII) can be used in lieu of filters in (61) to
avoid training procedures (cf. (60)) and to gain interpretability.
The resulting architectures are known as graph scattering trans-
forms [196], [197] and have been used successfully in biological
applications [198] and 3D point clouds [199], where data is
scarce or the training process is computationally intensive.

Nonlinear graph filters, such as max or median filters (40),
can be used as local activation functions (instead of pointwise

19

ones). They preserve permutation equivariance (Property 3),
while achieving a higher expressive power. Using these filters
also implies that the activation functions are learnable [98], [99].

IX. APPLICATIONS IN SIGNAL PROCESSING

Graph filters have found widespread use in several signal pro-
cessing application areas. These include the standard problems of
graph signal reconstruction from partial and noisy observations
(Sec. IX-A), anomaly detection over networks (Sec. IX-B),
and network topology inference (Sec. IX-C). Graph filters are
also key components of many recently developed graph-based
image processing methods (Sec. IX-D). Lastly, due to their
local implementation, graph filters have been used for distributed
signal processing tasks (Sec. IX-E).

A. Signal Reconstruction

This task consists of reconstructing graph signals from one
or more noisy (and possibly partial) observations. Filtering by
regularization [Sec. VI-D] has been extensively used for this
task, and different regularizers have been developed to match
signal priors in different settings. A second strategy is to fit
the observed signals with a graph filter and use this filter to
reconstruct the missing values. This strategy is first discussed
in [21] and subsequently extended to the various graph filters
discussed in Sec. VI. These techniques are applied in sensor
networks [32] and speech enhancement [200], among others. A
third strategy to reconstruct graph signals is to represent them as
sparse linear combinations of atoms of an overcomplete graph-
based dictionary [170]; that is, write a signal as x = Dgs, where
Dg € RV*NS is the graph-based dictionary and s € RVS is a
sparse vector. Graph filters are used to define the atoms of the
dictionary, as Dg = [Hy(S), ..., Hg(S)], where each H(S) is
a graph convolutional filter [170]. The advantage over graph-
agnostic dictionaries is that the filter order dictates both the
atoms’ vertex locality and the number of trainable parameters.
Differently, [201]-[203] learn dictionaries where the columns
in Dg behave as smooth graph signals. Using the Tikhonov
regularizer, this boils down to solving versions of

]5nir)1(Y — DgX||% + vitrace(D LDg) + votrace(X ' L.X)
g

S.t. ||X1H0 <TVi, (63)

where L and L. are Laplacians of two graphs capturing the
manifold structure of the dictionary atoms Dg and of the data
X, respectively. The constraint (63) imposes a maximum sparsity
T on each column x; of X and 71,2 > 0 control the respective
trade-offs. Further, [204] augments problem (63) with graph
wavelets to learn multi-scale atoms that facilitate scalability to
large graphs. Finally, [205] considers quantization effects on the
learned atoms when such dictionaries are used for distributed
signal processing tasks.

B. Anomaly Detection

Many graph signals — including, e.g., voltage measurements
in power grids [34] or brain imaging recordings in healthy
patients [206] — exhibit bandlimited (cf. (8)) and/or low-pass
behavior [5], [31]. When an anomaly occurs, these signals
contain unexpected components in their high-pass spectrum. We
can leverage graph filters to localize such components associated,
e.g., with corrupted signals [34] or non-healthy patients [206].

The idea is to design a graph filter H(S) and form a hypothesis
test on the filtered signal y = H(S)x of the form

Ho: f(y) <~
Hy: fly) >~

where f(y) is a transformation of the filtered output (e.g., f(y) =
lyl]2) and + is a threshold; that is, the filtered signal shows
different characteristics under the null hypothesis Hy and the
alternative hypothesis #;.

The work in [22] considers such a setting to detect anomalous
sensors. The input signal is filtered with a high-pass convolu-
tional filter and the signal is classified as anomalous if one or
more GFT coefficients exceed a threshold. References [207]-
[209] consider nonlinear filters (Sec. VI-C) to reconstruct the
data under normal behavior, and the low-pass signal components
are used to detect and localize anomalous sensors. This idea
is extended in [210] to identify a cluster of abnormal nodes.
The work in [211] proposes an unsupervised setting for the
scenario when we do not have knowledge of how normal and/or
anomalous graph signals behave. Under the assumption that
normal data are more frequent than abnormal ones, the authors
use two complementary ideal step graph filters — one low-
pass and one high-pass — with the same cut-off frequency, and
optimize the cut-off frequency to minimize the cluster size.

In the context of brain imaging, [206] uses similar principles
to detect early stage Alzheimer’s disease. Two band-pass filters
are built (one per type of patient) to localize signal components
not belonging to that class. Subsequently, an energy-based
Neyman-Pearson detector is derived from the filtered outputs.
Reference [212] generalizes this to the setting where information
about the alternative hypothesis 7{; is unavailable, leading to a
Neyman-Pearson detector only with respect to hypothesis H.

(64)

C. Network Topology Inference

Often the graph G is unavailable and, accordingly, network
topology inference from a set of (graph signal) measurements
is a prominent yet challenging problem. Early foundational
contributions can be traced back to the statistical literature of
graphical model selection [213], [214]. Recently, the fresh signal
representation perspectives offered by GSP through graph filters
have sparked renewed interest [41]. At its core, network topology
inference assumes some relation between the set of observed
graph signals X = [x1,X2,...,X;,] and the GSO S to be
recovered. This relation can be modeled as each x; being the
output of a graph (convolutional) filter defined on the unknown
S. Intuitively, this means that the observations x; were generated
through (linear) local interactions in the unknown graph, so that
the topologocal information of S is contained in X.

Different assumptions on the filter type generating X lead to
different formulations of the topology inference problem. We
can state a generic version of this inverse problem as

min f(X, H(S)) +r(S), (65)
where the fitting loss f(-) quantifies how well X can be modeled
as the output of a filter H(S), the regularizer r(-) promotes
desirable properties on S such as sparsity, and the feasibility
set S encodes the type of GSO that we are looking for (e.g.,
Laplacian or adjacency matrix).

Smoothness. A first type of (convolutional) graph filter con-
sidered in the literature is the low-pass graph filter. This is a
reasonable modeling assumption in averaging dynamics such

20

as opinion formation. This model leads to signals x; being
slow varying, which when S is the graph Laplacian implies
smoothness of x; on the unknown graph (cf. (5)). Two early
proponents of this model are [215] and [216]. Although their
regularizers r(S) are different, in both cases the fitting term is
f(X,S) = Tr(X TLX) so that it penalizes graphs not leading to
a smooth representation of the observed signals.

Stationarity. Another approach is to not assume any specific
form (low-pass, band-pass, high-pass) for the graph filter gen-
erating X [217]. Under certain statistical assumptions on the
inputs to the filter, this setting leads to the signals x; being graph
stationary on the unknown S [3], [106], [107]; (cf. Sec. VI-D,
Wiener filter). In short, this implies that the covariance matrix
3, of the observed signals shares the eigenvectors with S,
or, equivalently and more practically, that 3, and S com-
mute. Ref. [217] uses a two-step procedure to first estimate
the eigenvectors of S and then restate (65), where only the
eigenvalues of S are unknown. In contrast, the commutativity
property can be imposed through a fitting term of the form
f(X,8) = [|2,S — S¥,||r, where 3, is an estimate of the
covariance matrix [218]. Other assumptions on the filter include
modeling the signal as the superposition of several heat-diffusion
filters [219], [220], or as a consensus-like process [221], [222].

D. Image Processing

Graph-based image processing complements conventional im-
age processing approaches with new insights and techniques for
tasks such as image reconstruction and filtering [223], [224].
Images have a natural grid structure that can be represented as a
graph, where each node is a pixel, an edge connects two pixels,
and the graph signal is the pixel intensity. The edge weights can
be set via the Gaussian kernels as

i — xi — x5)°
wij = eXP(If 2]HQ)CXP(— (02])>, (66)
l

x

where f; is the location (feature) of pixel ¢, x; its intensity, and
oy, 0, are two parameters. Such edge weighs are a combination
of the geometric distance (pixels’ locations) and photometric
distance (signal intensities x;), where a larger distance implies
a smaller weight. Graph-based image processing works mainly
with undirected graphs and low-pass filtering since connected
pixel nodes have a stronger edge weight if they are close
(either geometrically or photometrically). Graph filters are used
for image reconstruction (e.g., denoising, debluring) and edge-
preserving filtering (i.e., preserve edges appearing in an image,
not graph edges).

Image reconstruction. This task consists of reconstructing an
image signal x from a degraded version, which can be noisy,
blurred, or have missing pixels. These are all ill-posed inverse
problems and regularization is typically used. In the GSP lan-
guage, this is a graph signal reconstruction task and regularized
filtering [Sec. VI-D] is often used to impose low-pass behavior.
The Tikhonov regularized filter (42) is leveraged for image
denoising in [225]. Reference [226] explores the connection with
manifold regularization and provides an explanation why low-
pass filtering is particularly useful for denoising depth images.
Reference [227] uses a form of the total variation regularizer
(46) to denoise the image. Reference [228] approaches the
problem from a Wiener filtering perspective (50)-(51). Since
regularized filters are particular forms of rational graph filtering,
[229] proposes a non-parametric rational filter to denoise the

image. Finally, [16] considers a smoothing graph filter of the
form H(S) = e "% =312 %(—L)k (ak.a. the heat kernel)
to perform low-pass graph filtering. This can be seen as a
convolutional filter of order K — oo with frequency response
h(\) = e=?*, which for v > 0 acts as a low-pass filter.

Edge-preserving filtering. Some conventional image filters that
preserve image edges can also be interpreted from a GSP
perspctive. Ref. [55], [230] study the bilateral image filter and
show that it is an order K = 1 low-pass GCF (compare to (66))
that smooths the image. To boost smoothing, [231] develops the
trilateral filter, which has a rational graph frequency response,
explaining its improved performance. GCFs are also used for
guided image filtering in [232], [233].

Simple forms of GCFs are also used for smoothing and edge
enhancement with low computational cost. A convolutional filter
of small order (e.g., two) is used to smooth the image, and a
successive filter of the form H(L) = I+ h;L is used to sharpen
the edges [234], [235]. Ref. [236] uses GCFs to efficiently
implement the sparse low-pass discrete cosine transform in the
vertex domain. Lastly, median graph filters (40) are used in [237]
to detect ships in image data.

E. Distributed Signal Processing

Because of their local implementation (Property 5), graph
filters are readily distributable, where the graph captures both
the signal structure and the distributed communication pattern.
For example, we may want to denoise sensor measurements (the
graph signal) over a network where each node can exchange
information only locally. The research on distributed graph
filtering has evolved in three main directions: (i) using graph
filters to approximate a desired operation and apply it in a
distributed fashion; (ii) analyzing the filtering performance when
facing distributed communication challenges such as interfer-
ence, asynchronous implementation, and quantization; and, (iii)
estimating the filter parameters distributively.

Distributed tasks. Using graph filters for distributed processing
implies first matching a desired operator [Sec. V-A] and then
deploying the filter. Here, we first discuss distributed average
consensus and then other general operators.

1) Consensus: Distributed average consensus is a cornerstone
method underpinning myriad distributed estimation and detec-
tion tasks [238]. Given a graph G = (V,) representing con-
nectivities £ between different agents V, we want the agents to
estimate the average value of their signals x by only exchanging
information with their local neighbors. Let Z := 1/N Zf:;l Zn
be the true average, y := Zz1 the vector of averages, and
B := {117 the consensus operator. Then y = Bx. Graph
convolutional filters can be used to reach exact and finite-time
consensus as long as we design appropriately their coefficients,
as stated by the following proposition.

Proposition 4 (Finite-time consensus [239]). Average consensus
can be computed exactly in finite-time by a graph convolutional
filter of appropriate order if the Laplacian eigenvalue A\ = 0 is
of multiplicity one, i.e., the graph is connected.

Since the constant vector v; = 1/v/N1 is an eigenvector of
the Laplacian (i.e., L1 = 0), we can find the filter coefficients
to achieve the frequency response

ﬁ()\n):{ 1 forA\,=0(n=1)

0 forA\,>0(n=2,...,N) "~ ©7)

21

References [239], [240] provide closed-form solutions for {hy},
whereas [241] discusses theoretical limits on the minimum filter
order for which consensus can be achieved.

Exact finite-time consensus can be challenging due to numer-
ical issues related to computing close-by eigenvalues. Approxi-
mate consensus is analyzed in [239] for the convolutional filter
(cf. (3)), in [8] for the node varying filter (32), and in [10] for the
edge varying filter (34). The common observation is that filters
with higher orders approximate better the consensus operator;
however, instabilities during the design phase arise and more
advanced design strategies are needed [93]. When the underlying
graph comes from a random distribution, reaching consensus via
graph filtering can be improved by accounting for the distribution
of the eigenvalues [58].

Recent literature also discusses the links between consensus
via graph filtering and control theory. Specifically, [242] dis-
cusses both finite-time and asymptotic consensus, and derives
conditions when they can be achieved even over uncertain
graphs. References [243], [244] focus on graph filters of order
two to accelerate consensus. By linking the eigenvalues of the
respective graph Laplacian with the graph properties, [243]
provides optimal filter design for finite-time consensus and char-
acterizes the convergence rate. On the other hand, [244] shows
that for some graphs it is impossible to accelerate consensus.
Finite-time consensus over directed graphs is discussed in [245],
[246], where, as for the undirected case, the multiplicity of the
eigenvalues influences the number of steps. Reference [246]
discusses asymptotic consensus for unknown directed graphs,
and [247] considers finite-time consensus over random graphs.
Lastly, [248] focuses on group consensus via graph filtering,
i.e., that nodes within a group achieve average consensus, but
different groups can have different values.

2) General operator: In Sec. V-A, we discussed filter design
strategies to match any general operator B via graph convolu-
tional filters. Exploiting the filter locality, it is then possible to
implement B (or an approximation) distributively over the graph.
Distributed operator matching via graph filters is investigated
for the convolutional filter in [9], [240], [249], rational filter
in [57], [250], node varying filter in [8], edge varying in [10],
[93], and for other modifications of these filters in [250]. The
common theme is to approximate B with a low filter order, so
as to limit the communication costs. Reference [251] details this
challenge and designs the minimum order convolutional filter to
either match or approximate the operator.

Distributed challenges. In distributed graph filtering, we must
also account for the communication challenges, including:

1) Interference: In distributed processing, the communication
edge weights S may differ from the nominal ones S used to
design the filter. Property 8 characterizes the impact of small
differences in the GSO on the output of graph convolutional
filters, which are Lipschitz. However, it focuses on small relative
perturbations, while we often encounter larger perturbations
such as link losses. The effect of link losses on graph filters
is discussed in [252], [253]. The following result generalizes
Property 8 to this stochastic setting.

Proposition 5 ([253]). If the edges in the graph realization
S C S are preserved independently with a probability p and
the filter is Lipschitz (Property 8) with constant C, the expected
squared deviation of the filter output is bounded as

E[|[H(S)x — H(S)x|3] < aNC?(1 - p)|xll3 + O((1 - p)*),
(68)

where « is either 2 or the maximal node degree, depending of
the choice of shift operator.

Similar results are developed in [254, Proposition 1] for
convolutional filters and in [252, Thm. 3] for distributed rational
filters. Ref. [255] considers the setting where the link preserva-
tion probabilities are different for each edge, and characterizes
the statistical output of both convolutional and node varying
filters [255, Proposition 1]. The authors then consider such a
statistical deviation to design robust filters and propose a cross-
layer protocol to run graph filters over an asymmetric wireless
sensor network. Robust data-driven learning of graph filters in
stochastic settings is also investigated for GNNs: [254] shows
that by learning the parameters on a perturbed graph, we can
achieve robust transference; and [256] proposes a constraint-
learning framework where the parameters are optimized in the
expectation while bounding the output variance.

2) Asynchronous implementation: Another challenge in dis-
tributed filtering is that nodes cannot always communicate in
a synchronous manner. Asynchronous communication enables
scalability [257], as it avoids the need for global synchronization;
however, in general, it compromises the guarantee that the
filter output converges. The work in [258] provides sufficient
conditions for an asynchronous implementation to converge to
the designed output in a mean-squared error sense. Similar
results are derived for filter banks in [259] and for the edge
varying filter in [260].

3) Signal quantization: In a distributed setting, we may also
need to account for the low communication capacity between
sensors. In these cases, the exchanged signal shifts x(*) = Skx
need to be quantized prior to transmission. The quantized signal
can be written as x®) = x(®*) 4 n((]k), where nék) is the
quantization error. In turn, the quantized filter output becomes

K K k—1
Yo=Y heS*x+ Y hp Yy 8F"ng:=H(S)x + &g, (69)
k=0 k=1 xk=0

where is g4 the accumulated quantization error. This quantization
error distorts the filter output and needs to be accounted for
during the filter design phase. If 5(\) is the desired frequency
response and MSEq (h) is the mean squared quantization error,
the robust filter design problem looks like

K

minimize / Z hi AR — B(N)
b M=o

subject to MSEg(h) <«

2

d/\, (70)

where 7y controls the distortion and needs to be set in accordance
with the quantization step size [261], [262]. Ref. [263] further
discusses optimal quantization schemes and links them with the
graph topology, while [262] discusses robust quantization in the
presence of link losses. Ref. [205] further discusses the impact of
quantization errors when learning localized dictionaries (cf. (63))
via graph filters, while [264] discusses a joint design of signal
sampling and recovery under quantization.

Filter estimation. The above works consider filters that are de-
signed centrally and implemented distributively. A recent stream
of works consider the task of estimating the filter coefficients
distributively when data is available. Formally, consider a series
of input-output pairs {x®),y(*)}, where for each ¢, model (21)
holds. We can reformulate the latter as

y® =Z®n 4O, (71)

22

where Z®) = [x(® Sx(®) . . SKx(®)] Under standard sta-
tistical assumptions, we can find the filter parameters h that
minimize E|y*) — Z(®h||2 by using classical centralized linear
regression techniques [91]. More interestingly, we can decom-
pose this objective among the N nodes as

N
h* = arg minZE|y£t) — ZZ(-t)Th|2, (72)
h s

where zgt)T is the i-th row of Z(*). The reformulation in (72)
leads to a decentralized solution. In particular, diffusion strate-
gies are attractive since they are scalable, robust, and enable
continuous learning and adaptation. A distributed adapt-then-
combine diffusion least mean squares (LMS) algorithm takes
the following form at every node %

¢§t+1) _ hgt) + MiZ(-t) (ygt) _ Zz('t)Thz('t)) ’ (73a)

K2

h§t+1) _ Ciiwgﬂrl) + Z Cji¢§t+1),
JEN;

(73b)

where p; > 0 is a local step size and {c;;} are non-negative
combination parameters satisfying ¢;; = 0 if j ¢ AN, and
Zjvzl ¢ji = 1 [91]. In the adaptation step (73a), each node

1 updates its local parameter estimate hf;t) to an auxiliary

intermediate vector 1/:§t+1). In the combination step (73b), node
1 aggregates its own intermediate vector 1/J§t+1) and those from
its neighbors to update its estimate hZ(-tH). We run T iterations
of this diffusion algorithm to estimate the filter parameters at

: (t) }
each node. Assuming that vectors z;,”’ are drawn from a zero
mean random process that is white over the temporal dimension
t, the following result holds.

Proposition 6 ([91]). For any initial condition, the iterative
algorithm in (73) converges asymptotically in the mean towards
the optimal vector h* (i.e., the expected value of the error goes
to zero) if the step sizes p; are small enough.

Several extensions of this basic formulation have been pro-
posed. First, a state space formulation is discussed in [265],
which allows also to find the minimum filter order. Second,
model (21) assumes instantaneous diffusion, where node 7 pro-
cesses ygt) at each time instant ¢ by collecting samples of x(*)
that are up to K hops away. Since this limits the practical
implementation, [91] also considers a modified model where
the successive shifts in the filter are applied to different time
samples of the input. Third, the convergence rate of LMS is
notoriously slow. To alleviate this problem, (i) [91] presents
a modified adaptation step (73a) based on Newton’s method
where Hessian information is considered but at an increased (per
iteration) computational cost; and (ii) [92] considers recursive
least squares adaptive estimators. Lastly, [266] extends these
techniques to nonlinear filters, and [267] discusses the distributed
parameter estimation of GNNs.

X. APPLICATIONS IN MACHINE LEARNING

In machine learning, graph filters act as a parameterized map-
ping between input-output data pairs and use the graph structure
as an inductive bias. Particular properties of interest include the
limited number of parameters, permutation equivariance, and the
linear computation cost. Hence, graph filters have been useful
in the standard tasks of semi-supervised learning on graphs

[Sec. X-A] and unsupervised learning, especially in clustering-
like algorithms [Sec. X-B]. Graph filters have also been used
for graph-based matrix completion [Sec. X-C] and Gaussian
processes [Sec. X-D]. Lastly, we review some applications in
computer graphics and computer vision [Sec. X-E].

A. Semi-Supervised Learning

Semi-supervised learning on graphs classifies unlabelled
nodes given labels on some other nodes. Graph filters can be
used to weigh and propagate the label information of multi-hop
neighbors to the unknown nodes. Mathematically, consider the
label matrix X € RV*Y such that row n represents the label
of node n among the C' classes, i.e., entry [X],. =1 if node n
belongs to class ¢ € [C] and zero otherwise. We consider that
only M < N nodes are labeled, treat each column of X as a
graph signal, and infer the labels as

Y = H(S)X, (74)

where the unlabeled node m is assigned to class ¢ for which
entry [Y]m. is highest. The filter parameters are estimated as

minimize [|[M(H(S)X - X) [+ (%, Y), (75
where M = diag(m) and m € {0,1}" is a masking matrix to
compute the error only on the labeled nodes. Instead, r(#,Y) is
a regularizer on the filter parameters H (e.g., norm two) or on the
output Y (e.g., smooth label variation, cf. (5)). Refs. [21], [268]
consider the convolutional filter (3) for binary and multi-class
classification of blog networks and indirect bridge monitoring,
respectively. Ref. [109] considers the Wiener graph filter (51)
and shows improvement upon conventional label propagation
algorithms. To further improve the expressivity of the mapping,
[269] uses a bank of filters with multiple GSOs (cf. (52)), where
each GSO represents a different similarity graph built from
node features. Finally, [270] considers a bank of convolutional
filters, where each filter is fitted to a particular class. Then, the
unlabelled nodes are assigned to the class with the highest filter
output. These works, however, solve the classification problem
via regression-like cost functions (e.g., Frobeius norm || - | in
(78)) which may lead to a suboptimal performance despite the
efficient and convex implementation properties. GNNs are also a
valid alternative, given their state-of-the-art performance in this
task [187], [271]

B. Unsupervised Learning

The canonical task in unsupervised learning on graphs consists
of grouping nodes in the absence of labels into different clusters
such that nodes are tightly connected within clusters and loosely
connected between them. In this context, graph filters have been
used to tackle the scalability issues of different variants of spec-
tral clustering, a conventional unsupervised learning technique.
Graph filters have also been used as a signal model to detect
clusters in networks when no topology information is available.

Spectral clustering. This is a family of algorithms that compute
spectral embeddings of data points based on the eigenvectors
of a graph Laplacian matrix; Alg. 1 shows the steps of a
spectral clustering algorithm [39]. The spectral embeddings (step
4) are built from the k eigenvectors associated with the lower
variation on the graph (cf. (6)); hence, behaving as an ideal
low-pass graph filter. This step and the k-means clustering in
step 7 are the computational bottlenecks of spectral clustering

23

Algorithm 1 Spectral clustering blueprint.

1: Input: A set of N d—dimensional data points fj,...
and the number of clusters k;

2: Build an undirected similarity sparse graph G (cf. (1)) with
each node a data point (e.g., a K nearest neighbor graph of
N nodes);

3: Set S =L € R¥*Y to be a graph Laplacian of G;

4: Take the k eigenvectors U € RV*F of L associated with
the k lowest eigenvalues (smoothest, cf. (6)); _

5: Normalize Uy row-wise (unit norm) to have U €

6: Treat each node n as a data point ian]f and define its feature
vector f,, € R* as the nth row of Uy,

f,=0]4,,

7fN

RNXk;

(76)

where &,, € RY is a Dirac vector with [§,,],, = 1 if m =n
and zero otherwise;

7: Obtain the % clusters_via k—means with the Euclidean
distance dy,,, = ||, — £]|2-

and limit its scalability. Thus, approximate solutions are often
preferred to trade accuracy with scalability [272]. The scalability
of spectral clustering is enhanced via graph filtering in [273]. The
ideal graph filter is approximated via convolutional (cf. (19)) or
rational [88] Chebyshev fitting; k-means is run only on a sam-
pled number of nodes; and the cluster labels on the remaining
nodes are obtained by solving a smooth regularized problem (cf.
(42)). The filtering operations adopted in compressive spectral
clustering are also implemented via the power method in [274]
and via an asynchronous implementation in [275].

Blind community detection. As discussed in Section IX-C,
graph filters can serve as generative models for nodal observa-
tions, inspiring a range of network inference methods. Inferring
the entire graph structure is often only the first step of a
longer pipeline where the ultimate goal is to obtain interpretable
information from graph signals. To this end, a feature that is
often sought in network science is the community structure that
offers a coarse description of graphs. For this task, applying
conventional methods necessitates a two-step procedure com-
prising graph learning and community detection. An alternative
line of work, called blind community detection, recovers the
communities directly from the observed signals bypassing the
intermediate network inference step [276]. More precisely, under
the assumption that the observed signals x are obtained by
passing white noise through a low-pass filter, it follows that
the leading eigenvectors of the covariance 3, coincide with
the k lowest eigenvalues of L (see step 4 in Algorithm 1);
see [276] for theoretical guarantees. Once this information is
attained, the same steps as spectral clustering can be followed
to reveal the community structure. The benefit of this direct
approach stems from the fact that fewer observations are needed
to recover the coarse community features compared to the
detailed graph structure. Blind recovery of network features has
been extended to community detection in dynamic graphs [277],
node centrality estimation [278], [279], and topology change-
point detection [280]-[282].

C. Matrix Completion and Collaborative Filtering

Matrix completion comprises filling the missing entries of
a partially observed matrix. While its staple application is in
recommender systems [283] it is also used in bioinformatics

[284], signal processing [285], and chemistry [286], to name
a few. Graphs have been used to capture the structural side
information among the rows and columns of this matrix and
the entries are treated as signals over these graphs. Then, graph
filters have been used to interpolate the missing values in a form
akin to the signal reconstruction task seen in Sec. IX-A.

Specifically, consider matrix R € Rf*® capturing interac-
tions between RC' entities, e.g., R users interacting with C
items in a recommender system. We observe only a portion
of R, which we represent with the masked version M ® R
where M € {0,1}7*¢ is the masking matrix with [M];; = 1 if
[R];; is observed and zero otherwise. Then, the canonical matrix
completion problem consists of solving

mini)znize IM® (X —R)||% +r(X) (77)

which looks for a matrix X € REXY that is close to R on
the observed entries while at the same time having a particular
structure, e.g., low rank via the nuclear norm r(X) := || X]|.
Such solutions suffer when an entire row/column of R is not
observed or when the low-rank structure in R does not hold. In
these cases, one can exploit side information, including, e.g., user
features (age, gender, geolocation) for R or social interaction
within them; or item features (category, co-purchase) for C'. Such
side information can be used to build two graphs Sp € RF*F
and S¢ € RE*C and treat each row r” and column r. of R as
signals on these graphs, respectively. If the side information is
unavailable, the graph can be built based on a similarity distance
by using the available values in R [287].

Regularized filtering. Under the assumption that connected
entities have similar preferences (e.g., similar users tend to
like similar products, or co-purchased products tend to be
liked similarly), regularized filtering (Sec. VI-D) is used to
smooth the available values into the adjacent nodes by imposing
r(X) = Tr(XTSgX) + Tr(XScX ") as a regularizer in (77),
with Sp and S being some Laplacian form [288]-[291]. Such
regularizers impose a low-pass filtering behavior on the two
graphs.

Collaborative filtering. The above graph-based regularizer may
be suboptimal because the low-pass filtering leads to interpolated
values that are similar in strongly connected nodes. While this
issue could be tackled by choosing a different graph regularizer,
going down this path often leads to a trial and error process
of choosing regularizer kernels. Another approach is to learn
the parameters of a graph convolutional filter, in order to
gather multi-hop neighbor information. The filter parameters are
designed as

minimize g
H

(r,e)eT

2

‘[H(SR)X’“]C —[Rlye| +r(H), (78)

which fits to the available interactions while regularizing them
(e.g., norm two). Reference [43] shows that a learned graph
convolutional filter in this setting behaves as bandstop, in which
the low-pass component smoothes the available values while
the high-pass component improves diversity. Furthermore, the
vanilla nearest neighbor collaborative filter is the particular case
of an order one graph convolutional filter. Ref. [292] uses a filter
bank of convolutional filters to balance recommendation accu-
racy with diversity, while [293] follows a graph convolutional
approach over an item-item graph with the shift operator being a
random walk Laplacian. Differently, [294], [295] treat matrix R

24

as the interactions of a bipartite graph and build a convolutional
filter on this graph. Reference [296] discusses further the details
of these techniques with regularizer filtering for recommender
systems. Extensions to GNNs could be found in [287].

D. Supervised Learning with Gaussian Processes

Consider the common scenario where we are given input-
output data pairs {x,,,y,}, with each input x,, € R¥ and each
output y,, € RV, We wish to learn a model of the form

Yn = f(Xn) + €n, (79)

where {&,,} are white Gaussian noise vectors and f : RX — RV
is an unknown, multi-output function. In Gaussian process (GP)
regression [297], [298], f(x,) is modeled to be distributed as a
GP

f(xn) ~ GP(m(xp), K(Xn,Xm)),

which is a distribution over functions characterized by a mean
function m(x) = E[f(x)] (i.e., the weighted average of the
evaluations at x of all functions in the distribution) and a
covariance kernel function

K(xp, Xm) =E [(f(xn) — m(xn)) (f(xm) - m(xm))]

that models the dependence between function values at two
inputs x,, and X,,.

When the outputs y,, € RY are graph signals, an alternative
model to (79) is

(80)

Yn = H(S)f(xn) + €n, (81)

where again f(x,) is assumed to be a Gaussian process
with covariance kernel K(x,,,X,,). Consequently, the covari-
ance matrix between the respective outputs is Cov(y,,ym) =
K (%, X)H(S)H(S) T [299], [300].

The advantage of incorporating the graph filters into the
regression model (81) is that we can now impose particular
signal behavior properties. We mention three examples. First,
[299] considers H(S) to be a low-pass rational filter of order one
(43), so that the model (81) outputs graph signals that are smooth
with respect to the underlying graph. Second, [301] generalizes
the Matérn kernel to the graph setting, yielding a graph filter
of the form H(S) = (%—%‘IN +S)?, where o, 3 > 0 and S
is some form of the Laplacian. Third, to further enhance the
kernel flexibility, [300] considers a graph convolutional filter,
where the parameters are estimated from the data to ensure a
valid kernel. Because of the multi-hop locality of graph filters,
such a parametric approach weighs accordingly the information
of multi-hop neighbors and has shown a better performance
compared with regularized-filtering kernels.

E. Computer Graphics and Computer Vision

In computer graphics and in computer vision — including
subdomains such as virtual reality, geographic information sys-
tems, and autonomous driving — two types of sensing data have
become increasingly prevalent [302]-[305]. First, using light
detection and ranging (LiDAR) sensing, the external surfaces
of objects are often represented with 3D point clouds and their
physical coordinates (and possibly color information). Second,
using depth cameras such as Microsoft Kinect, depth maps can
be associated with the pixels of 2D images. For both types of
data, graph filters have proved useful in common tasks such

as object classification [306], object tracking [307]-[309], mo-
tion estimation and forecasting [310], [311], facial recognition
[312], visual localization [313], segmentation [314], [315], pose
estimation [316], [317], pose transfer [318], compression [310],
[319], registration [319], surface smoothing [11], [12], [319],
[320], edge detection [321], inpainting [322], deblurring [323],
and color denoising [324]. We highlight a few examples.

Surface smoothing. In one of the earliest examples of using the
eigenvectors of a discrete Laplacian to perform graph filtering
(1995), Taubin [11], [12] smooths polyhedral surfaces (also
called surface fairing) by (i) creating a graph by connecting each
pair of vertices that share a face in the polyhedral surface, and (ii)
updating the vertex locations by applying a lowpass polynomial
filter of the random walk Laplacian L, to each vector of
coordinates; e.g., Xupdated = H(Liw)X, Yupdaed = H(Lw)y, and
Zypdated = H(Lrw>z-

Point cloud compression. To compress a single 3D point cloud
in a manner that enhances application-dependent features such
as edges, key points, or flatness, [319] suggests to resample the
point cloud with a resampling distribution that is proportional
to the norms of filtered attributes. That is, the probability of
resampling vertex 7 is proportional to ||8, H(S)X||2, where X
is an N x K matrix of attributes, with the ith row corresponding
to the selected attributes (e.g., 3D coordinates, RGB colors,
textures) of the ith vertex. For example, when X is just the N x 3
matrix of the coordinates, S = L,,, and H(S) is a highpass
graph filter, this resampling strategy leads to choosing relatively
more points along the contours (e.g., corner points, edges, end
points) of the 3D point cloud. The result can be beneficial for
contour-based registration to align point clouds.

Given a sequence of 3D point clouds, [310] (i) uses graph
wavelet coefficients as feature vectors to compute point-to-point
correspondences between a sparse set of points from point clouds
at each successive time; (ii) uses those sparse point-to-point
correspondences to estimate motion over time; (iii) interpolates
the motion to get a complete point-to-point correspondence
mapping over the sequence of point clouds; and, (iv) leverages
that motion map to compress and efficiently code the entire
sequence of point clouds.

Object tracking. This problem consists of identifying an object
in a sequence of images, and following its movement through
time. This can typically be done by graph matching of the object
through the sequence of images. An alternative approach [307],
is to consider the object of interest as a grid graph and designing
a graph filter tailored to identifying the object (see Sec. V).
In particular, [307] learns a graph convolutional filter via least-
squares (see Sec. VII). Subsequently, [308] considers popular
solutions in the space of spatio-temporal Siamese networks,
and suggests to replace these networks by graph convolutional
networks (see Sec. VIII).

A more challenging problem is that of multi-object tracking,
where many different objects have to be tracked simultaneously.
The typical approach consists of first learning discriminative
features for each object, and then tracking the temporal evolution
of those features. In [309], a feature extraction mechanism based
on GNNs is proposed. The main idea is to exploit the relationship
between the objects to learn features that are more discrimina-
tive, and thus, easier to distinguish during tracking. This can
be achieved by learning graph filters (either by themselves, or
included within a GNN) to highlight high-frequency features —
that is, the ones that are more different across the elements of
the graph (see Sec. VII).

25

XI. WHERE TO START

Despite the extensive analysis of the different filtering forms,
we purposely did not address in detail questions about when
to use a particular filter type or when to choose filter banks
or GNNs. While Secs. VI, VII, VIII and Table I discuss the
advantages and limitations for each method, we believe there
is no single recipe about what solution to use when, and this
depends largely on the task at hand. That said, our general
recommendation is to start simple, checking if the task can
be accomplished with a single graph filter before moving to
a filter bank, and seeing if the filter bank provides sufficient
representations before proceeding to graph neural networks.
Within the class of single filters, we recommend to start with
the convolutional form (specifically a polynomial filter), and
consider the more involved node or edge varying filters when
a non-spectral operator is provided or a low (distributed) com-
putation cost is a priority. Within the class of filter banks, the
least complicated starting place is probably a single-level tight
frame filter bank like the one shown in Fig. 5, as it avoids
many extra choices about which vertices to downsample or how
to reconnect the downsampled vertices in a coarser graph. We
recommend moving to nonlinear filters, filter banks, or GNNs
when interested in learning a nonlinear mapping from data.
However, the expressive power of the latter (filter order, number
of features, and layers) does not have to be too large, as widely
suggested by the literature in computer science.

For hands-on practitioners, entry points from a GSP perspec-
tive are the toolboxes [325], [326], whereas from a machine
learning perspective (especially GNNs), we suggest PyTorch
Geometric [327] and the toolbox available at https://github.com/
alelab-upenn/graph-neural-networks, which contains several of
the filtering solutions discussed in this overview.

XII. A LOOK AHEAD

We have identified the following main promising directions
regarding fundamental research on graph filters.

1) The computation cost of graph filters is at best linear in
the number of edges in the graph. While this may allow
scalability to tens of thousands of nodes, it becomes a
challenge for web-scale graphs containing billions of nodes
and edges. In these cases, sparsifying techniques on the
filter implementation are needed but at the same time the
implications of these solutions into the output become more
challenging to address.

2) Some recent works have shown that for particular classes
of graphs we can exploit the graph frequency density
distribution to improve the filter design. However, it is
still unaddressed how to use properties of particular graph
families to aid learning and to understand better how the
statistical topological properties affect the filter frequency
response.

3) We focused on the role of graph filters over static and
idealistic graphs. However, real networks are dynamic,
noisy, and the respective signals are also time varying.
Therefore, one of the biggest challenges is to extend graph
filters to this dynamic setting in a principled manner by
accounting for the variability in the graph signals and in
the number of nodes and edges [328]-[330].

4) In several nonlinear tasks (e.g., classification) graph filters
are often designed via suboptimal losses to prioritize convex

26

TABLE I: Summary of the different graph filtering forms and their properties (P). ”?” means that property has not been proven to hold or not.

Filter / Properties | PI

P2 P3 P4 P5 P6 P7 Pg

Discussion & Recommendation

Convolutional 3) | v

v Vv vV vV vV v/

Extends naturally from the conventional convolutional filters in DSP and respects also the convolution
theorem in (11). May require high-orders K and suffers numerical instabilities for large powers S¥.
Recommendation is to use them as the baseline solution but often with a normalized GSO.

Rational (27) v v v v v Vv vV v

Requires lower orders to approximate a given frequency response. Design is more challenging
and requires solving a non-convex constrained problem (cf. (28)). Obtaining the output implies
approximating an inverse problem via iterative methods (cf. (26)). Recommendation is to use them
when the design could be centralized and the implementation distributed to reduce the communication
cost of higher-oder convolutional filters.

Node var. (32) v X X X v v v V

Can approximate a broader family of operators than convolutional/rational while maintaining local
implementation. It is not permutation equivariant thus cannot be transferred across graphs. Hence,
recommendation is to consider them for approximating a desired operator over a fixed graph.

Edge var. (34) v XX X v v 7?7 7?

Increases further the DoFs w.r.t. the node varying filter while maintaining the Iocal implementation.
The design problem to fit it into a defined operator is a least squares problem but with higher
dimensions compared with the node varying and convolutional filter. As the node varying filter, it
cannot be transferred across graphs and the high DoFs need to be reduced when used in a data-
driven fashion (regularize design problem or share parameters). Recommendation is to consider for
approximating complex tasks on a fixed graph or when a large amount of data is available.

Volterra (39) X X 7T v v v 77?7

It is more flexible than the convolutional filter but shares parameters among nodes and enjoys a local
implementation. Spectral design is more challenging. It is more appropriate for data fitting compared
with the node and edge varying filters because of the low number of parameters and permutation
equivariance. It can be a good alternative to the convolutional filtering when the spectral interpretation
is not needed and to the node domain filters when parameters are estimated from data. Can still run
into overfitting and numerical instabilities, thus, orthogonal polynomials are recommended.

Median (40) X X v v v v 77

Allows tackling outliers in graph signals propagation via a median operation of locally shifted inputs.
Enjoys a local implementation and parameter sharing but the design is feasible only in a data driven
fashion. Its application domain is more restricted than the convolutional filter but for denoising in
anomalous signals it can be a viable tool.

Tikhonov (43) v v vV vV vV v

observed signals.

Particular form of rational filtering of order one for undirected graphs. Typically used to smooth the

Sobolev (45)

Particular form of rational filtering which can achieve arbitrary order for undirected graphs. It
generalizes the Tikhonov filter to smooth observed signals.

Quadratic shift | v v v v X Vv 7 7| Inverse smooth filtering on directed graphs. Differently from the undirected counterpart it penalizes

variation (47) sharp shifted signal transitions and obtaining a local implementation with iterative solvers is
challenging.

Trend filtering | X X 7 v 7 7 7 7| Performs sparse filtering on undirected graphs by penalizing sharp transitions that happen only at

(48) a few nodes. It is more appropriate to use where the signal has similar values in group of nodes
but arbitrary values in different groups. Proving what properties this type of filter satisfies is more
challenging because it lacks a closed-form solution.

Total variation | X X 7 v 7 7 7 7| Performs sparse filtering on directed graphs by penalizing sharp shifts at a few nodes. It complements

(49) the smoothness total variation counterpart (47). As for the graph trend filter, it lacks a closed-form
solution and can be solved only with iterative methods.

Wiener filring | vV v v X X X X 7 | Performs optimal statistical filtering for stationary graph signals. In the vanilla form, it is a rational

(51) filter that does not respect the graph sparsity, hence, many of the properties do not hold. But if we

approximate its frequency response either with polynomial or rational filters, we could implement
an approximation where all the properties hold.

Multi-GSO (52) v X Vv v v v T 7

Performs convolutional filtering over multiple GSOs to represent input-output relations. It inherits
several properties of the convolutional form but has a higher descriptive power. Yet, differently from
node domain and nonlinear filters, it has less chances to overfit the data. The challenge remains to
build multiple GSOs that can aid the problem at hand.

5)

6)

and mathematically tractable solutions. Further improve-
ment can be achieved by using non-convex losses and
iterative algorithms to find the filter parameters.

Federated learning tackles the problem of training a model
when the data and/or the parameters are located on several
different machines [331]. The central tenet of federated
learning involves exchanging messages among these ma-
chines in order to train models, while satisfying security,
privacy, and communication constraints. This exchange of
messages can be interpreted as the implementation of one or
more graph filters, and thus, graph filtering has the potential
to be a useful framework for analyzing and synthesizing
federated learning methods.

Regarding applications, graph filters and respective exten-
sions have potential in power and water networks [34],
[332], Internet of Things [32], and finance [333].

Finally, we remark that graphs represent only pairwise re-
lationships between data points but complex networks and
data may often be better represented by higher-order network
structures [334] such as multi-relational graphs [335], cell or
simplicial complexes [336]-[339], and hypergraphs [340]-[342].
Developing and analysing filters in these settings is an interest-

ing avenue with large potential in both signal processing and
machine learning.

(1]
(2]
[3]

[4]

(3]

(6]

(71
(8]

[9]

REFERENCES

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing,
3rd ed. Upper Saddle River, NJ: Pearson, 2010.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, ser. Adaptive
Comput. Mach. Learning. Cambridge, MA: The MIT Press, 2016.

A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Stationary graph
processes and spectral estimation,” IEEE Trans. Signal Process., vol. 65,
no. 22, pp. 5911-5926, 2017.

M. M. Bronstein, J. Bruna, T. Cohen, and P. Velickovic,
“Geometric deep learning: Grids, groups, graphs, geodesics,
and gauges,” arXiv:2104.13478v2, 2022. [Online]. Available:

http://arxiv.org/abs/2104.13478

A. Ortega, P. Frossard, J. Kovacevi¢, J. M. F. Moura, and P. Van-
dergheynst, “Graph signal processing: Overview, challenges and appli-
cations,” Proc. IEEE, vol. 106, no. 5, pp. 808-828, 2018.

X. Dong, D. Thanou, L. Toni, M. Bronstein, and P. Frossard, “Graph
signal processing for machine learning: A review and new perspectives,”
IEEE Signal Process. Mag., vol. 37, no. 6, pp. 117-127, 2020.

F. R. K. Chung, Spectral Graph Theory, ser. Regional Conf. Ser. Math.
Providence, RI: Amer. Math. Soc., 1997, no. 92.

S. Segarra, A. G. Marques, and A. Ribeiro, “Optimal graph-filter design
and applications to distributed linear networks operators,” IEEE Trans.
Signal Process., vol. 65, no. 15, pp. 41174131, 2017.

D. I Shuman, P. Vandergheynst, D. Kressner, and P. Frossard, “Distributed
signal processing via Chebyshev polynomial approximation,” IEEE Trans.
Signal Inform. Process. Networks, vol. 4, no. 4, pp. 736-751, 2018.

[10]

[11]
[12]
[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

M. Coutino, E. Isufi, and G. Leus, “Advances in distributed graph
filtering,” IEEE Trans. Signal Process., vol. 67, no. 9, pp. 2320-2333,
2019.

G. Taubin, “A signal processing approach to fair surface design,” in ACM
Conf. Comput. Graph. Interactive Techn., 1995, pp. 351-358.

G. Taubin, T. Zhang, and G. Golub, “Optimal surface smoothing as filter
design,” in Eur. Conf. Comput. Vision, 1996, pp. 283-292.

A. J. Smola and R. Kondor, “Kernels and regularization on graphs,” in
Conf. Comput. Learning Theory, 2003, pp. 144-158.

D. Zhou and B. Scholkopf, “A regularization framework for learning from
graph data,” in Int. Conf. Mach. Learning, 2004.

S. Bougleux, A. Elmoataz, and M. Melkemi, “Discrete regularization on
weighted graphs for image and mesh filtering,” in Int. Conf. Scale Space
Variational Methods Comput. Vision, vol. 4485, 2007, pp. 128-139.

F. Zhang and E. R. Hancock, “Graph spectral image smoothing using the
heat kernel,” Pattern Recognition, vol. 41, no. 11, pp. 3328-3342, 2008.
M. Crovella and E. Kolaczyk, “Graph wavelets for spatial traffic analysis,”
in Joint Conf. IEEE Comput. Commun. Soc., 2003, pp. 1848-1857.

R. R. Coifman and M. Maggioni, “Diffusion wavelets,” Appl. Comput.
Harmonic Anal., vol. 21, no. 1, pp. 53-94, 2006.

D. I Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,” IEEE
Signal Process. Mag., vol. 30, no. 3, pp. 83-98, 2013.

M. Piischel and J. M. F. Moura, “Algebraic signal processing: Foundation
and 1-D time,” IEEE Trans. Signal Process., vol. 56, no. 8, pp. 3572—
3585, 2008.

A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs,” IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644-1656,
2013.

A. Sandyhaila and J. M. F. Moura, “Discrete signal processing on graphs:
Frequency analysis,” IEEE Trans. Signal Process., vol. 62, no. 12, pp.
3042-3054, 2014.

F. Gama, E. Isufi, G. Leus, and A. Ribeiro, “Graphs, convolutions, and
neural networks: From graph filters to graph neural networks,” IEEE
Signal Process. Mag., vol. 37, no. 6, pp. 128-138, 2020.

Y. Ma, X. Liu, T. Zhao, Y. Liu, J. Tang, and N. Shah, “A unified view
on graph neural networks as graph signal denoising,” in ACM Int. Conf.
Inf. Knowl. Manag., 2021, pp. 1202-1211.

M. Zhu, X. Wang, C. Shi, H. Ji, and P. Cui, “Interpreting and unifying
graph neural networks with an optimization framework,” in ACM Web
Conf., 2021, pp. 1215-1226.

L. Ruiz, F. Gama, and A. Ribeiro, “Graph neural networks: Architectures,
stability and transferability,” Proc. IEEE, vol. 109, no. 5, pp. 660-682,
2021.

E. Isufi, F. Gama, and A. Ribeiro, “EdgeNets: Edge varying graph neural
networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 11, pp.
3862-3877, 2021.

A. Ortega, Introduction to Graph Signal Processing.
Cambridge University Press, 2022.

N. Tremblay, P. Gongalves, and P. Borgnat, “Design of graph filters and
filterbanks,” in Cooperative and Graph Signal Processing: Principles and
Applications. Academic Press, 2018, ch. 11, pp. 299-324.

D. I Shuman, “Localized spectral graph filter frames: A unifying frame-
work, survey of design considerations, and numerical comparison,” I[EEE
Signal Process. Mag., vol. 37, no. 6, pp. 43-63, 2020.

R. Ramakrishna, H.-T. Wai, and A. Scaglione, “A user guide to low-pass
graph signal processing and its applications: Tools and applications,” [EEE
Signal Process. Mag., vol. 37, no. 6, pp. 74-85, 2020.

1. Jabtoniski, “Graph signal processing in applications to sensor networks,
smart grids, and smart cities,” IEEE Sensors J., vol. 17, no. 23, pp. 7659—
7666, 2017.

F. Gama, Q. Li, E. Tolstaya, A. Prorok, and A. Ribeiro, “Synthesizing
decentralized controllers with graph neural networks and imitation learn-
ing,” IEEE Trans. Signal Process., vol. 70, pp. 1932-1946, 2022.

R. Ramakrishna and A. Scaglione, “Grid-graph signal processing (grid-
GSP): A graph signal processing framework for the power grid,” IEEE
Trans. Signal Process., vol. 69, pp. 2725-2739, 2021.

M. Eisen and A. Ribeiro, “Optimal wireless resource allocation with
random edge graph neural networks,” IEEE Trans. Signal Process.,
vol. 68, pp. 2977-2991, 2020.

A. Chowdhury, G. Verma, C. Rao, A. Swami, and S. Segarra, “Unfolding
WMMSE using graph neural networks for efficient power allocation,”
IEEE Trans. Wireless Commun., vol. 20, no. 9, pp. 6004-6017, 2021.
A. Candelieri, D. Conti, and F. Archetti, “A graph based analysis of leak
localization in urban water networks,” Procedia Eng., vol. 70, pp. 228-
237, 2014.

R. K. Jain, J. M. Moura, and C. E. Kontokosta, “Big data + big cities:
Graph signals of urban air pollution,” IEEE Signal Process. Mag., vol. 31,
no. 5, pp. 130-136, 2014.

U. Von Luxburg, “A tutorial on spectral clustering,” Stat. Comput., vol. 17,
no. 4, pp. 395416, 2007.

G. B. Giannakis, Y. Shen, and G. V. Karanikolas, “Topology identification
and learning over graphs: Accounting for nonlinearities and dynamics,”

Proc. IEEE, vol. 106, no. 5 p& 787-807, 2018. . .
G. Mateos, S. Segarra, A. G. arques, and A. Ribeiro, “Connecting the

dots: Identifying network structure via graph signal processing,” IEEE
Signal Process. Mag., vol. 36, no. 3, pp. 1643, 2019.

Cambridge, UK:

[42]
[43]
[44]
[45]

[46]

[47]

[48]

[49]
[50]
[51]
[52]
[53]

[54]

[55]

[56]
[57]

[58]

[59]

[60]

[61]

[62]
[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

27

X. Dong, D. Thanou, M. Rabbat, and P. Frossard, “Learning graphs from
data: A signal representation perspective,” IEEE Signal Process. Mag.,
vol. 36, no. 3, pp. 44-63, 2019.

W. Huang, A. G. Marques, and A. R. Ribeiro, “Rating prediction via
graph signal processing,” IEEE Trans. Signal Process., vol. 66, no. 19,
pp. 50665081, 2018.

O. Sporns, Networks of the Brain. MIT Press, 2016.

M. O. Jackson, Social and Economic Networks. Princeton University
Press, 2010.

W. Huang, L. Goldsberry, N. F. Wymbs, S. T. Grafton, D. S. Bassett,
and A. Ribeiro, “Graph frequency analysis of brain signals,” IEEE J. Sel.
Topics Signal Process., vol. 10, no. 7, pp. 1189-1203, 2016.

L. Xing and L. Sela, “Graph neural networks for state estimation in
water distribution systems: Application of supervised and semisupervised
learning,” J. Water Resour. Plan. Manag., vol. 148, no. 5, p. 04022018,
2022.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Trans. Neural
Netw. Learn. Syst, vol. 32, no. 1, pp. 4-24, 2020.

L. Li and T. Zhou, “Link prediction in complex networks: A survey,”
Phys. A: Stat. Mech. Appl., vol. 390, no. 6, pp. 1150-1170, 2011.

S. Mallat, “Group invariant scattering,” Commun. Pure, Appl. Math.,
vol. 65, no. 10, pp. 1331-1398, 2012.

A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems,
2nd ed., ser. Prentice Hall Signal Process. Prentice Hall, 1997.

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing,
3rd ed. Pearson, 2010.

S. Sardellitti, S. Barbarossa, and P. Di Lorenzo, “On the graph Fourier
transform for directed graphs,” IEEE J. Sel. Topics Signal Process.,
vol. 11, no. 6, pp. 796-811, 2017.

R. Shafipour, A. Khodabakhsh, G. Mateos, and E. Nikolova, “A directed
graph Fourier transform with spread frequency components,” IEEE Trans.
Signal Process., vol. 67, no. 4, pp. 946-960, 2018.

B. Girault, A. Ortega, and S. S. Narayanan, “Irregularity-aware graph
fourier transforms,” IEEE Transactions on Signal Processing, vol. 66,
no. 21, pp. 5746-5761, 2018.

F. Gama, J. Bruna, and A. Ribeiro, “Stability properties of graph neural
networks,” IEEE Trans. Signal Process., vol. 68, pp. 5680-5695, 2020.
E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Autoregressive moving
average graph filtering,” IEEE Trans. Signal Process., vol. 65, no. 2, pp.
274-288, 2016.

S. Kruzick and J. M. E. Moura, “Optimal filter design for signal processing
on random graphs: Accelerated consensus,” IEEE Trans. Signal Process.,
vol. 66, no. 5, pp. 1258-1272, 2018.

V. L. Druskin and L. A. Knizhnerman, “Two polynomial methods of
calculating functions of symmetric matrices,” USSR Comput. Math. Math.
Phys., vol. 29, no. 6, pp. 112-121, 1989.

C.-C. Tseng and S.-L. Lee, “Minimax design of graph filter using
Chebyshev polynomial approximation,” [EEE Trans. Circuits Syst. II:
Express Br., vol. 68, no. 5, pp. 1630-1634, 2021.

D. Pakiyarajah and C. U. Edussooriya, “Minimax design of
computationally-efficient FIR graph filters using semidefinite
programming,” IEEE Trans. Circuits Syst. II: Express Br., 2022.

L. N. Trefethen, Approximation Theory and Approximation Practice,
Extended Edition. SIAM, 2019.

M. Coutino, S. P. Chepuri, T. Maehara, and G. Leus, “Fast spectral
approximation of structured graphs with applications to graph filtering,”
Algorithms, vol. 13, no. 9, p. 214, 2020.

T. Fan, D. I Shuman, S. Ubaru, and Y. Saad, “Spectrum-adapted polyno-
mial approximation for matrix functions with applications in graph signal
processing,” Algorithms, vol. 13, no. 11, p. 295, 2020.

S. Kruzick and J. M. F. Moura, “Graph signal processing: Filter design
and spectral statistics,” in IEEE Int. Workshop Comput. Advances Multi-
Sensor Adaptive Process., 2017, pp. 1-5.

J. Liu, E. Isufi, and G. Leus, “Filter design for autoregressive moving
average graph filters,” IEEE Trans. Signal Inform. Process. Networks,
vol. 5, no. 1, pp. 47-60, 2018.

A. Sakiyama, T. Namiki, and Y. Tanaka, “Design of polynomial approxi-
mated filters for signals on directed graphs,” in IEEE Global Conf. Signal
and Inform. Process., 2017, pp. 633-637.

S. Segarra, G. Mateos, A. G. Marques, and A. Ribeiro, “Blind identifi-
cation of graph filters,” IEEE Trans. Signal Process., vol. 65, no. 5, pp.
1146-1159, 2017.

D. Ramirez, A. G. Marques, and S. Segarra, “Graph-signal reconstruction
and blind deconvolution for structured inputs,” Signal Process., vol. 188,
p. 108180, 2021.

A. Natali, M. Coutino, and G. Leus, “Topology-aware joint graph filter
and edge weight identification for network processes,” in IEEE Int.
Workshop Mach. Learning Signal Process., 2020, pp. 1-6.

S. Rey, V. M. Tenorio, and A. G. Marques, “Robust graph filter iden-
tification and graph denoising from signal observations,” arXiv preprint
arXiv:2210.08488, 2022.

S. Rey and A. G. Marques, “Robust graph-filter identification with graph
denoising regularization,” in IEEE Int. Conf. Acoust., Speech and Signal
Process., 2021, pp. 5300-5304.

[73]

[74]
[75]

[76]
[771

[78]

[79]

[80]

[81]

[82]

[83]
[84]
[85]

[86]

[87]

[88]
[89]
[90]

[91]

[92]

[93]

[94]

[95]

[96]

[971

[98]

[99]

[100]

[101]

[102]

[103]

A. Ahmed, B. Recht, and J. Romberg, “Blind deconvolution using convex
programming,” IEEE Trans. Inf. Theory, vol. 60, no. 3, pp. 1711-1732,
2014.

K. Iwata, K. Yamada, and Y. Tanaka, “Graph blind deconvolution with
sparseness constraint,” arXiv preprint arXiv:2010.14002, 2020.

Y. Zhu, F J. I. Garcia, A. G. Marques, and S. Segarra, “Estimating
network processes via blind identification of multiple graph filters,” IEEE
Trans. Signal Process., vol. 68, pp. 3049-3063, 2020.

F. J. Iglesias, S. Segarra, and A. G. Marques, “Blind demixing of diffused
graph signals,” arXiv preprint arXiv:2012.13301, 2020.

X. Shi, H. Feng, M. Zhai, T. Yang, and B. Hu, “Infinite impulse response
graph filters in wireless sensor networks,” IEEE Signal Process. Lett.,
vol. 22, no. &, pp. 1113-1117, 2015.

R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, “Cayleynets: Graph
convolutional neural networks with complex rational spectral filters,”
IEEE Trans. Signal Process., vol. 67, no. 1, pp. 97-109, 2018.

J. Jiang and D. B. Tay, “Decentralised signal processing on graphs via
matrix inverse approximation,” Signal Process., vol. 165, pp. 292-302,
2019.

C. Cheng, N. Emirov, and Q. Sun, “Preconditioned gradient descent
algorithm for inverse filtering on spatially distributed networks,” IEEE
Signal Process. Lett., vol. 27, pp. 1834-1838, 2020.

A. Loukas, A. Simonetto, and G. Leus, “Distributed autoregressive
moving average graph filters,” IEEE Signal Process. Lett., vol. 22, no. 11,
pp. 1931-1935, 2015.

E. Isufi, A. Loukas, and G. Leus, “Autoregressive moving average graph
filters: A stable distributed implementation,” in IEEE Int. Conf. Acoust.,
Speech and Signal Process., 2017, pp. 4119-4123.

M. H. Hayes, Statistical Digital Signal Processing and Modeling.
Wiley & Sons, 2009.

T. Aittomidki and G. Leus, “Graph filter design using sum-of-squares
representation,” in Eur. Signal Process. Conf., 2019, pp. 1-5.

A. Jiang, B. Ni, J. Wan, and H. K. Kwan, “Stable ARMA graph filter
design via partial second-order factorization,” in IEEE Int. Symp. Circuits
Syst., 2019, pp. 1-5.

D. Pakiyarajah and C. U. Edussooriya, “WLS design of ARMA graph
filters using iterative second-order cone programming,” in /EEE Int. Conf.
Acoust., Speech and Signal Process., 2022, pp. 5937-5941.

M. Desbrun, M. Meyer, P. Schroder, and A. H. Barr, “Implicit fairing
of irregular meshes using diffusion and curvature flow,” in ACM Conf.
Comput. Graph. Interactive Techn., 1999, pp. 317-324.

O. Rimleanscaia and E. Isufi, “Rational Chebyshev graph filters,” in
Asilomar Conf. Signals, Systems and Comput., 2020, pp. 736-740.
C.-C. Tseng, “Rational graph filter design using spectral transformation
and IIR digital filter,” in IEEE Region 10 Conf., 2020, pp. 247-250.

C. Cheng, J. Jiang, N. Emirov, and Q. Sun, “Iterative Chebyshev poly-
nomial algorithm for signal denoising on graphs,” in Int. Conf. Samp.
Theory and Appl., 2019, pp. 1-5.

F. Hua, R. Nassif, C. Richard, H. Wang, and A. H. Sayed, “Online
distributed learning over graphs with multitask graph-filter models,” IEEE
Trans. Signal Inform. Process. Networks, vol. 6, pp. 63-77, 2020.

A. Alinaghi, S. Weiss, V. Stankovic, and I. Proudler, “Graph filter
design for distributed network processing: a comparison between adaptive
algorithms,” in 2021 Sensor Signal Processing for Defence Conference
(SSPD), 2021, pp. 1-5.

M. A. Coutino Minguez and G. Leus, “A cascaded structure for general-
ized graph filters,” IEEE Trans. Signal Process., 2021.

F. Gama, B. G. Anderson, and S. Sojoudi, “Node-variant graph filters in
graph neural networks,” in /EEE Data Sci. Learning Workshop, 2022, pp.
1-6.

Z. Xiao, H. Fang, and X. Wang, “Distributed nonlinear polynomial graph
filter and its output graph spectrum: Filter analysis and design,” IEEE
Trans. Signal Process., vol. 69, pp. 1-15, 2021.

S. Segarra, A. G. Marques, G. R. Arce, and A. Ribeiro, “Center-weighted
median graph filters,” in IEEE Global Conf. Signal and Inform. Process.,
2016, pp. 336-340.

S. Segarra, A. G. Marques, G. R. Arce, and A. Ribeiro, “Design of
weighted median graph filters,” in IEEE Int. Workshop Comp. Adv. Multi-
Sensor Adaptive Process., 2017, pp. 1-5.

L. Ruiz, F. Gama, A. G. Marques, and A. Ribeiro, “Invariance-preserving
localized activation functions for graph neural networks,” IEEE Trans.
Signal Process., vol. 68, pp. 127-141, 2019.

B. Iancu, L. Ruiz, A. Ribeiro, and E. Isufi, “Graph-adaptive activation
functions for graph neural networks,” in IEEE Int. Workshop Mach. Learn.
Signal Process., 2020, pp. 1-6.

J. H. Giraldo, A. Mahmood, B. Garcia-Garcia, D. Thanou, and T. Bouw-
mans, ‘“Reconstruction of time-varying graph signals via Sobolev smooth-
ness,” IEEE Trans. Signal Inform. Process. Networks, vol. 8, pp. 201-214,
2022.

P-Y. Chen and S. Liu, “Bias-variance tradeoff of graph Laplacian regu-
larizer,” IEEE Signal Process. Lett., vol. 24, no. 8, pp. 1118-1122, 2017.
D. Romero, M. Ma, and G. B. Giannakis, “Kernel-based reconstruction of
graph signals,” IEEE Trans. Signal Process., vol. 65, no. 3, pp. 764-778,
2016.

M. Yang, M. Coutino, G. Leus, and E. Isufi, “Node-adaptive regularization
for graph signal reconstruction,” IEEE Open J. Signal Process., vol. 2,
pp- 85-98, 2021.

John

[104]
[105]

[106]
[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]
[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]
[129]

[130]

[131]
[132]

[133]

[134]

28

Y.-X. Wang, J. Sharpnack, A. Smola, and R. Tibshirani, “Trend filtering

on graphs,” in Int. Conf. Artificial Intell., Statist., 2015, pp. 1042-1050.

R. Varma, H. Lee, J. Kovacevi¢, and Y. Chi, “Vector-valued graph trend

filtering with non-convex penalties,” IEEE Trans. Signal Inform. Process.

Networks, vol. 6, pp. 48-62, 2019.

B. Girault, “Stationary graph signals using an isometric graph translation,”

in Eur. Signal Process. Conf., 2015, pp. 1516-1520.

N. Perraudin and P. Vandergheynst, “Stationary signal processing on

graphs,” IEEE Trans. Signal Process., vol. 65, no. 13, pp. 3462-3477,

2017.

C. Zhang, D. Floréncio, and P. A. Chou, “Graph signal processing-a

probabilistic framework,” Microsoft Res., Redmond, WA, USA, Tech. Rep.

MSR-TR-2015-31, 2015.

B. Girault, P. Gongalves, E. Fleury, and A. S. Mor, “Semi-supervised

learning for graph to signal mapping: A graph signal Wiener filter

interpretation,” in IEEE Int. Conf. Acoust., Speech and Signal Process.,

2014, pp. 1115-1119.

E. Isufi, P. Di Lorenzo, P. Banelli, and G. Leus, “Distributed Wiener-based

reconstruction of graph signals,” in IEEE Stat. Signal Process. Workshop,

2018, pp. 21-25.

C. Zheng, C. Cheng, and Q. Sun, “Wiener filters on graphs and distributed

polynomial approximation algorithms,” arXiv preprint arXiv:2205.04019,
022.

H. Sevi, G. Rilling, and P. Borgnat, “Harmonic analysis on directed graphs
and applications: From Fourier analysis to wavelets,” Appl. Comput.
Harmon. Anal., vol. 62, pp. 390-440, 2023.

F. Hua, C. Richard, J. Chen, H. Wang, P. Borgnat, and P. Gongalves,
“Learning combination of graph filters for graph signal modeling,” IEEE
Signal Process. Lett., vol. 26, no. 12, pp. 1912-1916, 2019.

J. Fan, C. Tepedelenlioglu, and A. Spanias, “Global optimization of graph
filters with multiple shift matrices,” in Asilomar Conf. Signals, Systems
and Comput., 2019, pp. 2082-2086.

N. Emirov, C. Cheng, J. Jiang, and Q. Sun, “Polynomial graph filters of
multiple shifts and distributed implementation of inverse filtering,” Sampl.
Theory Signal Process. Data Anal., vol. 20, no. 1, pp. 1-39, 2022.
Stanford University Computer Graphics Laboratory, “The Stanford 3D
Scanning Repository,” http://graphics.stanford.edu/data/3Dscanrep/.

D. I Shuman, C. Wiesmeyr, N. Holighaus, and P. Vandergheynst,
“Spectrum-adapted tight graph wavelet and vertex-frequency frames,”
IEEE Trans. Signal Process., vol. 63, no. 16, pp. 4223-4235, 2015.

N. Leonardi and D. Van De Ville, “Tight wavelet frames on multislice
graphs,” IEEE Trans. Signal Process., vol. 61, no. 13, pp. 3357-3367,
2013.

B. Dong, “Sparse representation on graphs by tight wavelet frames and
applications,” Appl. Comput. Harmon. Anal., vol. 42, no. 3, pp. 452479,
2017.

F. Gobel, G. Blanchard, and U. von Luxburg, “Construction of tight
frames on graphs and application to denoising,” in Handbook of Big Data
Analytics. Springer, 2018, pp. 503-522.

D. B. Tay, Y. Tanaka, and A. Sakiyama, “Almost tight spectral graph
wavelets with polynomial filters,” IEEE J. Sel. Topics Signal Process.,
vol. 11, no. 6, pp. 812-824, 2017.

A. Sakiyama, K. Watanabe, and Y. Tanaka, “Spectral graph wavelets
and filter banks with low approximation error,” IEEE Trans. Signal Inf.
Process. Netw., vol. 2, no. 3, pp. 230-245, 2016.

T. Fan, D. I Shuman, S. Ubaru, and Y. Saad, “Spectrum-adapted polyno-
mial approximation for matrix functions with applications in graph signal
processing,” Algorithms, vol. 13, no. 11, 295, pp. 1-22, 2020.

J. Jiang, C. Cheng, and Q. Sun, “Nonsubsampled graph filter banks:
Theory and distributed algorithms,” IEEE Trans. Signal Process., vol. 67,
no. 15, pp. 3938-3953, 2019.

D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on
graphs via spectral graph theory,” Appl. Comput. Harmonic Anal., vol. 30,
no. 2, pp. 129-150, 2011.

G. Strang and T. Nguyen, Wavelets and Filter Banks. SIAM, 1996.

B. Ricaud, D. I Shuman, and P. Vandergheynst, “On the sparsity of wavelet
coefficients for signals on graphs,” in SPIE Wavelets and Sparsity, 2013.
N. Tremblay and P. Borgnat, “Graph wavelets for multiscale community
mining,” IEEE Trans. Signal Process., vol. 62, pp. 5227-5239, 2014.
X. Dong, A. Ortega, P. Frossard, and P. Vandergheynst, “Inference of
mobility patterns via spectral graph wavelets,” in [EEE Int. Conf. Acoust.,
Speech and Signal Process., 2013, pp. 3118-3122.

D. I Shuman, M. J. Faraji, and P. Vandergheynst, “Semi-supervised
learning with spectral graph wavelets,” in Int. Conf. Samp. Theory and
Appl., 2011.

T. Kerola, N. Inoue, and K. Shinoda, “Spectral graph skeletons for 3D
action recognition,” in Asian Conf. Comp. Vision, 2014, pp. 417-432.
H. Behjat, N. Leonardi, L. S6rnmo, and D. Van De Ville, “Anatomically-
adapted graph wavelets for improved group-level fMRI activation map-
ping,” Neurolmage, vol. 123, pp. 185-199, 2015.

C. Donnat, M. Zitnik, D. Hallac, and J. Leskovec, “Learning structural
node embeddings via diffusion wavelets,” in ACM Int. Conf. Knowl.
Discov. Data Min., 2018, pp. 1320-1329.

S. K. Narang and A. Ortega, “Local two-channel critically sampled filter-
banks on graphs,” in IEEE Int. Conf. Image Process., 2010, pp. 333-336.

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]
[150]
[151]

[152]

[153]
[154]

[155]

[156]

[157]
[158]

[159]

[160]

[161]

[162]

[163]

[164]

A. Anis and A. Ortega, “Critical sampling for wavelet filterbanks on
arbitrary graphs,” in IEEE Int. Conf. Acoust., Speech and Signal Process.,
2017, pp. 3889-3893.

D. B. Tay and J. Zhang, “Techniques for constructing biorthogonal
bipartite graph filter banks,” IEEE Trans. Signal Process., vol. 63, no. 21,
pp. 5772-5783, 2015.

E. Pavez, B. Girault, A. Ortega, and P. A. Chou, “Two channel filter banks
on arbitrary graphs with positive semi definite variation operators,” [EEE
Trans. Signal Process., vol. 71, pp. 917-932, 2023.

S. K. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet
filter-banks for graph structured data,” [EEE. Trans. Signal Process.,
vol. 60, no. 6, pp. 2786-2799, 2012.

S. K. Narang and A. Ortega, “Compact support biorthogonal wavelet
filterbanks for arbitrary undirected graphs,” IEEE Trans. Signal Process.,
vol. 61, no. 19, pp. 4673-4685, 2013.

J. Zeng, G. Cheung, and A. Ortega, “Bipartite approximation for graph
wavelet signal decomposition,” IEEE Trans. Signal Process., vol. 65,
no. 20, pp. 5466-5480, 2017.

D. B. Tay and A. Ortega, “Bipartite graph filter banks: Polyphase analysis
and generalization,” IEEE Trans. Signal Process., vol. 65, no. 18, pp.
48334846, 2017.

D. B. Tay, Y. Tanaka, and A. Sakiyama, “Critically sampled graph filter
banks with polynomial filters from regular domain filter banks,” Signal
Process., vol. 131, pp. 66-72, 2017.

V. N. Ekambaram, G. C. Fanti, B. Ayazifar, and K. Ramchandran,
“Circulant structures and graph signal processing,” in IEEE Int. Conf.
Image Process., 2013.

V. N. Ekambaram, G. Fanti, B. Ayazifar, and K. Ramchandran, “Critically-
sampled perfect-reconstruction spline-wavelet filterbanks for graph sig-
nals,” in IEEE Glob. Conf. Signal and Inform. Process., 2013, pp. 475—
478.

M. S. Kotzagiannidis and P. L. Dragotti, “Splines and wavelets on
circulant graphs,” Appl. Comput. Harmon. Anal., vol. 47, no. 2, pp. 481—
515, 2019.

O. Teke and P. P. Vaidyanathan, “Graph filter banks with M-channels,
maximal decimation, and perfect reconstruction,” in /EEE Int. Conf. Acc.,
Speech, and Signal Process., 2016, pp. 4089—4093.

O. Teke and P. P. Vaidyanathan, “Extending classical multirate signal
processing theory to graphs — Part II: M-channel filter banks,” IEEE Trans.
Signal Process., vol. 65, no. 2, pp. 423-437, 2017.

D. B. Tay and A. Ortega, “M-channel graph filter banks: Polyphase
analysis and structures,” IEEE Signal Process. Lett., vol. 26, no. 5, pp.
730-734, 2019.

D. B. Tay and Z. Lin, “Design of near orthogonal graph filter banks,”
IEEE Signal Process. Lett., vol. 22, no. 6, pp. 701-704, 2014.

X. Zhang, “Design of orthogonal graph wavelet filter banks,” in Conf.
IEEE Ind. Electron. Soc., 2016, pp. 889-894.

D. B. Tay, Y. Tanaka, and A. Sakiyama, “Near orthogonal oversampled
graph filter banks,” IEEE Signal Process. Lett., vol. 23, no. 2, pp. 277-
281, 2016.

M. Jansen, G. P. Nason, and B. W. Silverman, “Multiscale methods for
data on graphs and irregular multidimensional situations,” J. R. Stat. Soc.
Ser. B Stat. Methodol., vol. 71, no. 1, pp. 97-125, 2009.

S. K. Narang and A. Ortega, “Lifting based wavelet transforms on graphs,”
in APSIPA ASC, 2009, pp. 441-444.

D. B. Tay, A. Ortega, and A. Anis, “Cascade and lifting structures in the
spectral domain for bipartite graph filter banks,” in APSIPA ASC, 2018,
pp. 1141-1147.

J. Jiang, D. B. Tay, Q. Sun, and S. Ouyang, “Design of nonsubsampled
graph filter banks via lifting schemes,” IEEE Signal Process. Lett., vol. 27,
pp. 441445, 2020.

D. I Shuman, M. Faraji, and P. Vandergheynst, “A multiscale pyramid
transform for graph signals,” IEEE Trans. Signal Process., vol. 64, no. 8,
pp. 2119-2134, 2016.

Y. Tanaka and A. Sakiyama, “M -channel oversampled graph filter banks,”
IEEE Trans. Signal Process., vol. 62, no. 14, pp. 3578-3590, 2014.

A. Sakiyama and Y. Tanaka, “Oversampled graph Laplacian matrix for
graph filter banks,” IEEE Trans. Signal Process., vol. 62, no. 24, pp.
6425-6437, 2014.

N. Tremblay and P. Borgnat, “Subgraph-based filterbanks for graph
signals,” IEEE Trans. Signal Process., vol. 64, no. 15, pp. 3827-3840,
2016.

S. Chen, R. Varma, A. Sandryhaila, and J. Kovacevi¢, “Discrete signal
processing on graphs: Sampling theory,” IEEE Trans. Signal Process.,
vol. 63, no. 24, pp. 6510-6523, 2015.

S. Li, Y. Jin, and D. I Shuman, “Scalable M -channel critically sampled
filter banks for graph signals,” IEEE Trans. Signal Process., vol. 67,
no. 15, pp. 3954-3969, 2019.

A. Sakiyama, K. Watanabe, Y. Tanaka, and A. Ortega, “Two-channel
critically sampled graph filter banks with spectral domain sampling,”
IEEE Trans. Signal Process., vol. 67, no. 6, pp. 1447-1460, 2019.

A. Sakiyama, K. Watanabe, and Y. Tanaka, “M-channel critically sam-
pled spectral graph filter banks with symmetric structure,” IEEE Signal

Process. Lett., vol. 26, no. 5 pr 665-669, 2019.
A. Miraki, H. Saeedl—Sourcf(, . Marchetti, and A. Farhang, “Spectral

domain spline graph filter bank,” IEEE Signal Process. Lett., vol. 28, pp.
469473, 2021.

[165]

[166]

[167]
[168]
[169]
[170]

[171]

[172]
[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]
[193]

29

H. Q. Nguyen and M. N. Do, “Downsampling of signals on graphs via
maximum spanning trees,” [EEE Trans. Signal Process., vol. 63, no. 1,
pp. 182-191, 2014.

X. Zheng, Y. Y. Tang, and J. Zhou, “A framework of adaptive multiscale
wavelet decomposition for signals on undirected graphs,” IEEE Trans.
Signal Process., vol. 67, no. 7, pp. 1696-1711, 2019.

A. Loukas and P. Vandergheynst, “Spectrally approximating large graphs
with smaller graphs,” in Int. Conf. Mach. Learn., 2018, pp. 3237-3246.
A. Loukas, “Graph reduction with spectral and cut guarantees,” J. Mach.
Learn. Res., vol. 20, no. 116, pp. 1-42, 2019.

Y. Jin, A. Loukas, and J. JaJa, “Graph coarsening with preserved spectral
properties,” in Int. Conf. Artificial Intell., Statist., 2020, pp. 4452-4462.
D. Thanou, D. I Shuman, and P. Frossard, “Learning parametric dictionar-
ies for signals on graphs,” IEEE Trans. Signal Process., vol. 62, no. 15,
pp. 3849-3862, 2014.

H. Behjat, U. Richter, D. Van De Ville, and L. Sérnmo, “Signal-adapted
tight frames on graphs,” IEEE Trans. Signal Process., vol. 64, no. 22, pp.
6017-6029, 2016.

S. K. Narang, Y.-H. Chao, and A. Ortega, “Critically sampled graph-based
wavelet transforms for image coding,” in APSIPA ASC, 2013, pp. 1-4.
F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61-80, 2009.

V. N. Vapnik, “Principles of risk minimization for learning theory,” in
Conf. Neural Inform. Process. Syst., 1991, pp. 831-838.

R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in ACM Int. Conf. Knowl. Discov. Data Min., 2018,
pp. 974-983.

J. M. Stokes, K. Yang, K. Swanson, W. Jin, A. Cubillos-Ruiz, N. M.
Donghia, C. R. MacNair, S. French, L. A. Carfrae, Z. Bloom-Ackermann
et al., “A deep learning approach to antibiotic discovery,” Cell, vol. 180,
no. 4, pp. 688-702, 2020.

A. W. Senigr, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green,
C. Qin, A. Zidek, A. W. Nelson, A. Bridgland et al., “Improved protein
structure prediction using potentials from deep learning,” Nature, vol. 577,
no. 7792, pp. 706-710, 2020.

P. Gainza, F. Sverrisson, F. Monti, E. Rodola, D. Boscaini, M. Bronstein,
and B. Correia, “Deciphering interaction fingerprints from protein molec-
ular surfaces using geometric deep learning,” Nature Methods, vol. 17,
no. 2, pp. 184-192, 2020.

A. Derrow-Pinion, J. She, D. Wong, O. Lange, T. Hester, L. Perez,
M. Nunkesser, S. Lee, X. Guo, B. Wiltshire et al., “ETA prediction with
graph neural networks in Google maps,” in ACM Int. Conf. Inf. Knowl.
Manag., 2021, pp. 3767-3776.

M. Cheung, J. Shi, O. Wright, L. Y. Jiang, X. Liu, and J. M. F. Moura,
“Graph signal processing and deep learning: Convolution, pooling, and
topology,” IEEE Signal Process. Mag., vol. 37, no. 6, pp. 139-149, 2020.
M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Conf. Neural
Inform. Process. Syst., 2016, pp. 3844-3858.

F. Gama, A. G. Marques, G. Leus, and A. Ribeiro, “Convolutional Neural
Network Architectures for Signals Supported on Graphs,” IEEE Trans.
Signal Process., vol. 67, no. 4, pp. 1034-1049, 2018.

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks
and deep locally connected networks on graphs,” in Int. Conf. Learning
Representations, 2014, pp. 1-14.

M. He, Z. Wei, and J.-R. Wen, “Convolutional neural networks on graphs
with Chebyshev approximation, revisited,” Adv. Neural Inform. Process.
Syst., vol. 35, pp. 7264-7276, 2022.

M. He, Z. Wei, H. Xu et al., “Bernnet: Learning arbitrary graph spectral
filters via bernstein approximation,” Advances in Neural Information
Processing Systems, vol. 34, pp. 14239-14251, 2021.

X. Wang and M. Zhang, “How powerful are spectral graph neural
networks,” in International Conference on Machine Learning. PMLR,
2022, pp. 23341-23362.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Int. Conf. Learning Representations, 2017,
pp. 1-14.

H. Nt and T. Maehara, “Revisiting graph neural networks: All we have
is low-pass filters,” arXiv preprint arXiv:1905.09550, 2019.

D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and
relieving the over-smoothing problem for graph neural networks from the
topological view,” in AAAI Conf. Artif. Intell., vol. 34, no. 4, 2020, pp.
3438-3445.

F. Wu, T. Zhang, A. H. de Souza Jr, C. Fifty, T. Yu, and K. Q.
Weinberger, “Simplifying graph convolutional networks,” in Int. Conf.
Mach. Learning, vol. 97, 2019, pp. 6861-6871.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” in Int. Conf. Learning Representations, 2019, pp. 1-
17.

W. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning
on large graphs,” in Conf. Neural Inform. Process. Syst., 2017, pp. 1-11.
K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge networks,”
in Int. Conf. Mach. Learning, 2018, pp. 5453-5462.

[194]

[195]
[196]
[197]

[198]
[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]
[213]
[214]
[215]

[216]
[217]

[218]

[219]

[220]

[221]

[222]

[223]
[224]
[225]

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” in Int. Conf. Learning Representations,
2018, pp. 1-12.

D. Pim, T. S. Cohen, and M. Welling, “Natural graph convolutions,” 2021,
US Patent App. 17/239,580.

F. Gama, J. Bruna, and A. Ribeiro, “Stability of graph scattering trans-
forms,” in Conf. Neural Inform. Process. Syst., 2019, pp. 8038-8048.
D. Zou and G. Lerman, “Graph convolutional neural networks via
scattering,” Appl. Comput. Harmonic Anal., vol. 49, no. 3, pp. 1046—
1074, 2020.

F. Gao, G. Wolf, and M. Hirn, “Geometric scattering for graph data
analysis,” in Int. Conf. Mach. Learning, vol. 97, 2019, pp. 2122-2131.
V. N. Joannidis, S. Chen, and G. B. Giannakis, “Efficient and stable
graph scattering transforms via pruning,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 44, no. 3, pp. 1232-1246, 2020.

T. Wang, H. Guo, X. Yan, and Z. Yang, “Speech signal processing on
graphs: The graph frequency analysis and an improved graph Wiener
filtering method,” Speech Commun., vol. 127, pp. 82-91, 2021.

M. Zheng, J. Bu, C. Chen, C. Wang, L. Zhang, G. Qiu, and D. Cai,
“Graph regularized sparse coding for image representation,” IEEE Trans.
Image Process., vol. 20, no. 5, pp. 1327-1336, 2010.

K. N. Ramamurthy, J. J. Thiagarajan, P. Sattigeri, and A. Spanias,
“Learning dictionaries with graph embedding constraints,” in Asilomar
Conf. Signals, Systems and Comput., 2012, pp. 1974-1978.

Y. Yankelevsky and M. Elad, “Dual graph regularized dictionary learning,”
IEEE Trans. Signal Inform. Process. Networks, vol. 2, no. 4, pp. 611-624,
2016.

Y. Yankelevsky and M. Elad, “Finding gems: Multi-scale dictionaries for
high-dimensional graph signals,” IEEE Trans. Signal Process., vol. 67,
no. 7, pp. 1889-1901, 2019.

D. Thanou and P. Frossard, “Learning of robust spectral graph dictionaries
for distributed processing,” EURASIP J. Adv. Signal Process, vol. 2018,
no. 1, pp. 1-17, 2018.

C. Hu, J. Sepulcre, K. A. Johnson, G. E. Fakhri, Y. M. Lu, and Q. Li,
“Matched signal detection on graphs: Theory and application to brain
imaging data classification,” Neurolmage, vol. 125, pp. 587-600, 2016.
Z. Xiao, H. Fang, and X. Wang, “Anomalous IoT sensor data detection:
An efficient approach enabled by nonlinear frequency-domain graph
analysis,” IEEE Internet Things J., vol. 8, no. 5, pp. 3812-3821, 2020.
Z. Xiao, H. Fang, and X. Wang, “Nonlinear polynomial graph filter for
anomalous IoT sensor detection and localization,” IEEE Internet Things
J., vol. 7, no. 6, pp. 4839-4848, 2020.

P. Ferrer-Cid, J. M. Barcelo-Ordinas, and J. Garcia-Vidal, “Volterra graph-
based outlier detection for air pollution sensor networks,” IEEE Trans.
Netw. Sci. Eng., vol. 9, no. 4, pp. 2759-2771, 2022.

R. Francisquini, A. C. Lorena, and M. C. Nascimento, “Community-based
anomaly detection using spectral graph filtering,” Appl. Soft Comput., vol.
118, p. 108489, 2022.

H. E. Egilmez and A. Ortega, “Spectral anomaly detection using graph-
based filtering for wireless sensor networks,” in IEEE Int. Conf. Acoust.,
Speech and Signal Process., 2014, pp. 1085-1089.

E. Isufi, A. S. Mahabir, and G. Leus, “Blind graph topology change
detection,” IEEE Signal Process. Lett., vol. 25, no. 5, pp. 655-659, 2018.
A. P. Dempster, “Covariance selection,” Biometrics, vol. 28, no. 1, pp.
157-175, 1972.

N. Meinshausen and P. Buhlmann, “High-dimensional graphs and variable
selection with the Lasso,” Ann. Stat., vol. 34, pp. 1436-1462, 2006.

X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning
Laplacian matrix in smooth graph signal representations,” IEEE Trans.
Signal Process., vol. 64, no. 23, pp. 6160-6173, 2016.

V. Kalofolias, “How to learn a graph from smooth signals,” in Int. Conf.
Artificial Intell., Statist. J Mach. Learn. Res., 2016, pp. 920-929.

S. Segarra, A. Marques, G. Mateos, and A. Ribeiro, “Network topology
inference from spectral templates,” IEEE Trans. Signal Inform. Process.
Networks, vol. 3, no. 3, pp. 467-483, 2017.

R. Shafipour, S. Segarra, A. G. Marques, and G. Mateos, “Directed
network topology inference via graph filter identification,” in /EEE Data
Sci. Workshop, 2018, pp. 210-214.

D. Thanou, X. Dong, D. Kressner, and P. Frossard, “Learning heat
diffusion graphs,” IEEE Trans. Signal Inform. Process. Networks, vol. 3,
no. 3, pp. 484-499, 2017.

M. Coutino, E. Isufi, T. Maehara, and G. Leus, “State-space network
topology identification from partial observations,” IEEE Trans. Signal
Inform. Process. Networks, vol. 6, pp. 211-225, 2020.

Y. Zhu, M. T. Schaub, A. Jadbabaie, and S. Segarra, “Network inference
from consensus dynamics with unknown parameters,” /[EEE Trans. Signal
Inform. Process. Networks, vol. 6, pp. 300-315, 2020.

H. E. Egilmez, E. Pavez, and A. Ortega, “Graph learning from filtered
signals: Graph system and diffusion kernel identification,” IEEE Trans.
Signal Inform. Process. Networks, vol. 5, no. 2, pp. 360-374, 2019.

O. Lézoray and L. Grady, Image Processing and Analysis with Graphs.
CRC Press Boca Raton, 2012.

G. Cheung, E. Magli, Y. Tanaka, and M. K. Ng, “Graph spectral image

&roce_ssin)” Proc. IEEE, vol. 106, no. S,Gp%v9077930 2018. .
. Liu, D, Zhai, D. Zhao, G. Zhai, an . Gao, “Progresswe image

denoising through hybrid graph Laplacian regularization: A unified frame-
work,” IEEE Trans. Image Process., vol. 23, no. 4, pp. 1491-1503, 2014.

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]

[250]

[251]

[252]

[253]
[254]

30

J. Pang and G. Cheung, “Graph Laplacian regularization for image
denoising: Analysis in the continuous domain,” [EEE Trans. Image
Process., vol. 26, no. 4, pp. 17701785, 2017.

A. Elmoataz, O. Lezoray, and S. Bougleux, “Nonlocal discrete regu-
larization on weighted graphs: A framework for image and manifold
processing,” IEEE Trans. Image Process., vol. 17, no. 7, pp. 1047-1060,
2008.

A. C. Yagan and M. T. Ozgen, “A spectral graph Wiener filter in graph
Fourier domain for improved image denoising,” in IEEE Global Conf.
Signal and Inform. Process., 2016, pp. 450-454.

D. Tian, H. Mansour, A. Knyazev, and A. Vetro, “Chebyshev and
conjugate gradient filters for graph image denoising,” in IEEE Int. Conf.
Multimed. Expo Workshops, 2014, pp. 1-6.

A. Gadde, S. K. Narang, and A. Ortega, “Bilateral filter: Graph spectral
interpretation and extensions,” in IEEE Int. Conf. Image Process., 2013,
pp. 1222-1226.

M. Onuki, S. Ono, M. Yamagishi, and Y. Tanaka, “Graph signal denoising
via trilateral filter on graph spectral domain,” IEEE Trans. Signal Inform.
Process. Networks, vol. 2, no. 2, pp. 137-148, 2016.

A. Knyazev and A. Malyshev, “Accelerated graph-based spectral polyno-
mial filters,” in IEEE Int. Workshop Mach. Learn. Signal Process., 2015,
pp. 1-6.

Q. Huang, R. Li, Z. Jiang, W. Feng, S. Lin, H. Feng, and B. Hu, “Fast
color-guided depth denoising for RGB-D images by graph filtering,” in
Asilomar Conf. Signals, Systems and Comput., 2019, pp. 1811-1815.

H. Sadreazami, A. Asif, and A. Mohammadi, “Data-driven image styl-
ization using graph-based filtering,” in Can. Conf. Electr. Comput. Eng,
2017, pp. 1-4.

H. Sadreazami, A. Asif, and A. Mohammadi, “Data-adaptive color image
denoising and enhancement using graph-based filtering,” in IEEE Int.
Symp. Circuits Syst., 2017, pp. 1-4.

K.-S. Lu, A. Ortega, D. Mukherjee, and Y. Chen, “DCT and DST filtering
with sparse graph operators,” IEEE Trans. Signal Process., 2022.

P. Salembier, S. Liesegang, and C. Lépez-Martinez, “Ship detection in
SAR images based on maxtree representation and graph signal process-
ing,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 5, pp. 2709-2724,
2018.

R. Olfati-Saber and J. S. Shamma, “Consensus filters for sensor networks
and distributed sensor fusion,” in IEEE Conf. Decision Control, 2005, pp.
6698-6703.

A. Sandryhaila, S. Kar, and J. M. Moura, “Finite-time distributed consen-
sus through graph filters,” in IEEE Int. Conf. Acoust., Speech and Signal
Process., 2014, pp. 1080-1084.

S. Safavi and U. A. Khan, “Revisiting finite-time distributed algorithms
via successive nulling of eigenvalues,” IEEE Signal Process. Lett., vol. 22,
no. 1, pp. 54-57, 2014.

M. Coutino, E. Isufi, T. Maehara, and G. Leus, “On the limits of finite-
time distributed consensus through successive local linear operations,” in
Asilomar Conf. Signals, Systems and Comput., 2018, pp. 993-997.
J.-W. Yi, L. Chai, and J. Zhang, “Average consensus by graph filtering:
New approach, explicit convergence rate, and optimal design,” [EEE
Trans. Automat. Control., vol. 65, no. 1, pp. 191-206, 2019.

S. Apers and A. Sarlette, “Accelerating consensus by spectral clustering
and polynomial filters,” IEEE Trans. Control Netw. Syst., vol. 4, no. 3,
pp. 544-554, 2016.

Q. Ran, J.-w. Yi, and L. Chai, “Fast consensus of multi-agent systems by
second-order graph filters,” in Chinese Conf. Control, 2021, pp. 5222—
5227.

T. Charalambous and C. N. Hadjicostis, “Laplacian-based matrix design
for finite-time average consensus in digraphs,” in IEEE Conf. Decision
Control, 2018, pp. 3654-3659.

K. Li, J.-W. Yi, and L. Chai, “Fast consensus of multi-agent systems on
digraphs by graph filtering,” in Chinese Conf. Control Decision, 2021,
pp. 5279-5284.

S. Kruzick and J. F. Moura, “Optimal filter design for consensus on
random directed graphs,” in IEEE Stat. Signal Process. Workshop, 2018,
pp. 16-20.

Q. Ran, J.-W. Yi, L. Chai, Y.-W. Wang, and X. Chen, “Group consensus
of multi-agent systems by graph filtering,” in IEEE Int. Conf. Control
Autom., 2020, pp. 1290-1295.

S. Chen, A. Sandryhaila, J. M. Moura, and J. Kovacevic, “Signal denoising
on graphs via graph filtering,” in IEEE Global Conf. Signal and Inform.
Process., 2014, pp. 872-876.

N. Emirov, C. Cheng, J. Jiang, and Q. Sun, “Polynomial graph filter of
multiple shifts and distributed implementation of inverse filtering,” arXiv
preprint arXiv:2003.11152, 2020.

D. Romero, S. Mollaebrahim, B. Beferull-Lozano, and C. Asensio-Marco,
“Fast graph filters for decentralized subspace projection,” IEEE Trans.
Signal Process., vol. 69, pp. 150-164, 2020.

E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Filtering random graph
processes over random time-varying graphs,” IEEE Trans. Signal Process.,
vol. 65, no. 16, pp. 44064421, 2017.

Z. Gao, E. Isufi, and A. Ribeiro, “Stability of graph convolutional neural
networks to stochastic perturbations,” Signal Process., p. 108216, 2021.
Z. Gao, E. Isufi, and A. Ribeiro, “Stochastic graph neural networks,” IEEE
Trans. Signal Process., vol. 69, pp. 4428-4443, 2021.

[255]

[256]

[257]
[258]

[259]

[260]
[261]
[262]

[263]

[264]

[265]

[266]

[267]

[268]

[269]

[270]

[271]

[272]

[273]
[274]
[275]

[276]

[277]

[278]

[279]

[280]

[281]

[282]

[283]
[284]

L. B. Saad and B. Beferull-Lozano, “Accurate graph filtering in wireless
sensor networks,” IEEE Internet Things J., vol. 7, no. 12, pp. 11431-
11445, 2020.

Z. Gao and E. Isufi, “Learning stochastic graph neural networks with
constrained variance,” IEEE Trans. Signal Process., vol. 71, pp. 358-371,
2023.

G. M. Baudet, “Asynchronous iterative methods for multiprocessors,” J.
ACM, vol. 25, no. 2, pp. 226-244, 1978.

O. Teke and P. P. Vaidyanathan, “IIR filtering on graphs with random
node-asynchronous updates,” IEEE Trans. Signal Process., vol. 68, pp.
3945-3960, 2020.

O. Teke and P. Vaidyanathan, “Node-asynchronous implementation of
filter banks on graphs,” in Asilomar Conf. Signals, Systems and Comput.,
2020, pp. 460-464.

M. Coutino and G. Leus, “Asynchronous distributed edge-variant graph
filters,” in IEEE Data Sci. Workshop, 2019, pp. 115-119.

L. F. Chamon and A. Ribeiro, “Finite-precision effects on graph filters,”
in IEEE Global Conf. Signal and Inform. Process., 2017, pp. 603—607.
L. B. Saad, B. Beferull-Lozano, and E. Isufi, “Quantization analysis and
robust design for distributed graph filters,” IEEE Trans. Signal Process.,
2021.

I. C. M. Nobre and P. Frossard, “Optimized quantization in distributed
graph signal processing,” in IEEE Int. Conf. Acoust., Speech and Signal
Process., 2019, pp. 5376-5380.

P. Li, N. Shlezinger, H. Zhang, B. Wang, and Y. C. Eldar, “Task-based
graph signal compression,” arXiv preprint arXiv:2110.12387, 2021.

K. Ding, J. Wu, and L. Xie, “Minimum-degree distributed graph filter
design,” IEEE Trans. Signal Process., vol. 69, pp. 1083-1096, 2021.

V. R. Elias, V. C. Gogineni, W. A. Martins, and S. Werner, “Adaptive
graph filters in reproducing kernel hilbert spaces: Design and performance
analysis,” IEEE Trans. Signal Inform. Process. Networks, vol. 7, pp. 62—
74, 2020.

S. Scardapane, I. Spinelli, and P. Di Lorenzo, “Distributed training of
graph convolutional networks,” IEEE Trans. Signal Inform. Process.
Networks, vol. 7, pp. 87-100, 2020.

S. Chen, F. Cerda, P. Rizzo, J. Bielak, J. H. Garrett, and J. Kovacevié,
“Semi-supervised multiresolution classification using adaptive graph fil-
tering with application to indirect bridge structural health monitoring,”
IEEE Trans. Signal Process., vol. 62, no. 11, pp. 2879-2893, 2014.

J. Fan, C. Tepedelenlioglu, and A. Spanias, “Graph-based classification
with multiple shift matrices,” IEEE Trans. Signal Inform. Process. Net-
works, 2022.

D. Berberidis, A. N. Nikolakopoulos, and G. B. Giannakis, “Adaptive
diffusions for scalable learning over graphs,” IEEE Trans. Signal Process.,
vol. 67, no. 5, pp. 1307-1321, 2018.

Z. Song, X. Yang, Z. Xu, and I. King, “Graph-based semi-supervised
learning: A comprehensive review,” IEEE Transactions on Neural Net-
works and Learning Systems, 2022.

N. Tremblay and A. Loukas, “Approximating spectral clustering via sam-
pling: A review,” Sampling Techniques for Supervised or Unsupervised
Tasks, pp. 129-183, 2020.

N. Tremblay, G. Puy, R. Gribonval, and P. Vandergheynst, “Compressive
spectral clustering,” in Int. Conf. Mach. Learning, 2016, pp. 1002-1011.
C. Boutsidis, P. Kambadur, and A. Gittens, “Spectral clustering via the
power method-provably,” in Int. Conf. Mach. Learning, 2015, pp. 40-48.
O. Teke and P. P. Vaidyanathan, ‘“Node-asynchronous spectral clustering
on directed graphs,” in IEEE Int. Conf. Acoust., Speech and Signal
Process., 2020, pp. 5325-5329.

H.-T. Wai, S. Segarra, A. E. Ozdaglar, A. Scaglione, and A. Jadbabaie,
“Blind community detection from low-rank excitations of a graph filter,”
IEEE Trans. Signal Process., vol. 68, pp. 436451, 2020.

T. M. Roddenberry, M. T. Schaub, H.-T. Wai, and S. Segarra, “Exact
blind community detection from signals on multiple graphs,” IEEE Trans.
Signal Process., vol. 68, pp. 5016-5030, 2020.

T. M. Roddenberry and S. Segarra, “Blind inference of eigenvector
centrality rankings,” IEEE Trans. Signal Process., vol. 69, pp. 3935-3946,
2021.

Y. He and H.-T. Wai, “Detecting central nodes from low-rank excited
graph signals via structured factor analysis,” IEEE Trans. Signal Process.,
vol. 70, pp. 2416-2430, 2022.

C. Kaushik, T. M. Roddenberry, and S. Segarra, “Network topology
change-point detection from graph signals with prior spectral signatures,”
in IEEE Int. Conf. Acoust., Speech and Signal Process., 2021, pp. 5395—
5399.

S. Shaked and T. Routtenberg, “Identification of edge disconnections
in networks based on graph filter outputs,” IEEE Trans. Signal Inform.
Process. Networks, vol. 7, pp. 578-594, 2021.

B. Marenco, P. Bermolen, M. Fiori, F. Larroca, and G. Mateos, “Online
change point detection for weighted and directed random dot product
graphs,” IEEE Trans. Signal Inform. Process. Networks, vol. 8, pp. 144—
159, 2022.

Z. Chen and S. Wang, “A review on matrix completion for recommender
systems,” Knowl. Inf. Syst., pp. 1-34, 2022.

N. Natarajan and I. S. Dhillon, “Inductive matrix completion for pre-
dicting gene—disease associations,” Bioinformatics, vol. 30, no. 12, pp.
160-168, 2014.

[285]

[286]

[287]

[288]

[289]

[290]
[291]

[292]

[293]

[294]

[295]

[296]

[297]

[298]
[299]

[300]

[301]

[302]

[303]

[304]

[305]

[306]

[307]

[308]

[309]

[310]

[311]

[312]

[313]
[314]

31

Z. Weng and X. Wang, “Low-rank matrix completion for array signal
processing,” in IEEE Int. Conf. Acoust., Speech and Signal Process., 2012,
pp. 2697-2700.

S.-g. Lee and H.-g. Seol, “A survey on the matrix completion problem,”
Trends in Mathematics, vol. 4, no. 1, pp. 38-43, 2001.

C. Gao, Y. Zheng, N. Li, Y. Li, Y. Qin, J. Piao, Y. Quan, J. Chang, D. Jin,
X. He, and Y. Li, “A survey of graph neural networks for recommender
systems: Challenges, methods, and directions,” ACM Trans. Rec. Syst.,
vol. 1, no. 1, pp. 1-51, 2023.

Q. Gu, J. Zhou, and C. Ding, “Collaborative filtering: Weighted nonneg-
ative matrix factorization incorporating user and item graphs,” in SIAM
Int. Conf. Data Min., 2010, pp. 199-210.

L. Du, X. Li, and Y.-D. Shen, “User graph regularized pairwise matrix
factorization for item recommendation,” in Int. Conf. Adv. Data Min.
Appl., 2011, pp. 372-385.

V. Kalofolias, X. Bresson, M. Bronstein, and P. Vandergheynst, “Matrix
completion on graphs,” arXiv preprint arXiv:1408.1717, 2014.

N. Rao, H.-F. Yu, P. K. Ravikumar, and 1. S. Dhillon, “Collaborative
filtering with graph information: Consistency and scalable methods,” Adv.
Neural Inform. Process. Syst., vol. 28, 2015.

E. Isufi, M. Pocchiari, and A. Hanjalic, “Accuracy-diversity trade-off
in recommender systems via graph convolutions,” Inf. Process. Manag.,
vol. 58, no. 2, p. 102459, 2021.

A. N. Nikolakopoulos, D. Berberidis, G. Karypis, and G. B. Giannakis,
“Personalized diffusions for top-n recommendation,” in ACM Conf. Rec.
Syst., 2019, pp. 260-268.

L. Chen, L. Wu, R. Hong, K. Zhang, and M. Wang, “Revisiting graph
based collaborative filtering: A linear residual graph convolutional net-
work approach,” in AAAI Conf. Artif. Intell., vol. 34, no. 01, 2020, pp.
27-34.

X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, “LightGCN:
Simplifying and powering graph convolution network for recommenda-
tion,” in ACM/SIGIR Conf. Res. Dev. Inf. Retr., 2020, pp. 639-648.

Y. Shen, Y. Wu, Y. Zhang, C. Shan, J. Zhang, B. K. Letaief, and D. Li,
“How powerful is graph convolution for recommendation?” in ACM Int.
Conf. Inf. Knowl. Manag., 2021, pp. 1619-1629.

E. Schulz, M. Speekenbrink, and A. Krause, “A tutorial on Gaussian
process regression: Modelling, exploring, and exploiting functions,” J.
Math. Psychol., vol. 85, pp. 1-16, 2018.

J. Wang, “An intuitive tutorial to Gaussian processes regression,” arXiv
preprint arXiv:2009.10862, 2020.

A. Venkitaraman, S. Chatterjee, and P. Handel, “Gaussian processes over
graphs,” in IEEE Int. Conf. Acoust., Speech and Signal Process., 2020,
pp. 5640-5644.

Y.-C. Zhi, Y. C. Ng, and X. Dong, “Gaussian processes on graphs via
spectral kernel learning,” IEEE Trans. Signal Inf. Process. Netw., vol. 9,
pp. 304-314, 2023.

V. Borovitskiy, I. Azangulov, A. Terenin, P. Mostowsky, M. Deisenroth,
and N. Durrande, “Matérn Gaussian processes on graphs,” in Int. Conf.
Artificial Intell., Statist., 2021, pp. 2593-2601.

F. Lozes, A. Elmoataz, and O. Lézoray, “PDE-based graph signal pro-
cessing for 3-D color point clouds: Opportunities for cultural heritage,”
IEEE Signal Process. Mag., vol. 32, no. 4, pp. 103111, 2015.

S. Chen, B. Liu, C. Feng, C. Vallespi-Gonzalez, and C. Wellington, “3D
point cloud processing and learning for autonomous driving: Impacting
map creation, localization, and perception,” IEEE Signal Process. Mag.,
vol. 38, no. 1, pp. 68-86, 2020.

W. Hu, J. Pang, X. Liu, D. Tian, C.-W. Lin, and A. Vetro, “Graph signal
processing for geometric data and beyond: Theory and applications,” IEEE
Trans. Multimedia, 2021.

L. Jiao, J. Chen, F. Liu, S. Yang, C. You, X. Liu, L. Li, and B. Hou,
“Graph representation learning meets computer vision: A survey,” I[EEE
Trans. Artificial Intell., 2022.

R. Khasanova and P. Frossard, “Graph-based classification of omnidirec-
tional images,” in IEEE Int. Conf. Comput. Vision, 2017, pp. 869-878.
Z. Cui, Y. Cai, W. Zheng, C. Xu, and J. Yang, “Spectral filter tracking,”
IEEE Trans. Image Process., vol. 28, no. 5, pp. 2479-2489, 2018.

J. Gao, T. Zhang, and C. Xu, “Graph convolutional tracking,” in Conf.
Comput. Vision and Pattern Recognition, 2019, pp. 4649-4659.

X. Weng, Y. Wang, Y. Man, and K. M. Kitani, “GNN3DMOT: Graph
neural network for 3D multi-object tracking with 2D-3D multi-feature
learning,” in Conf. Comput. Vision and Pattern Recognition, 2020, pp.
6499-6508.

D. Thanou, P. A. Chou, and P. Frossard, “Graph-based compression of
dynamic 3D point cloud sequences,” IEEE Trans. Image Process., vol. 25,
no. 4, pp. 1765-1778, 2016.

M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and R. Urtasun,
“Learning lane graph representations for motion forecasting,” in Eur. Conf.
Comput. Vision, 2020, pp. 541-556.

Z. Wang, L. Zheng, Y. Li, and S. Wang, “Linkage based face clustering
via graph convolution network,” in Conf. Comput. Vision and Pattern
Recognition, 2019, pp. 1117-1125.

C. Lassance, Y. Latif, R. Garg, V. Gripon, and I. Reid, “Improved visual
localization via graph filtering,” J. Imaging, vol. 7, no. 2, p. 20, 2021.
Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph CNN for learning on point clouds,” ACM
Trans. Graphics, vol. 38, no. 5, pp. 1-12, 2019.

[315]

[316]

[317]

[318]

[319]

[320]

[321]
[322]

[323]

[324]

[325]

[326]

[327]
[328]

J. H. Giraldo, S. Javed, M. Sultana, S. K. Jung, and T. Bouwmans, “The
emerging field of graph signal processing for moving object segmenta-
tion,” in Int. Workshop Frontiers Comput. Vision, 2021, pp. 31-45.

Y. Cai, L. Ge, J. Liu, J. Cai, T.-J. Cham, J. Yuan, and N. M. Thalmann,
“Exploiting spatial-temporal relationships for 3D pose estimation via
graph convolutional networks,” in IEEE Conf. Comput. Vision, 2019, pp.
2272-2281.

H. Choi, G. Moon, and K. M. Lee, “Pose2Mesh: Graph convolutional
network for 3D human pose and mesh recovery from a 2D human pose,”
in Eur. Conf. Comput. Vision, 2020, pp. 769-787.

J. Liu, Y. Zhao, S. Chen, and Y. Zhang, “A 3D mesh-based lifting-and-
projection network for human pose transfer,” IEEE Trans. Multimedia,
2021.

S. Chen, D. Tian, C. Feng, A. Vetro, and J. Kovacevi¢, “Fast resampling of
three-dimensional point clouds via graphs,” IEEE Trans. Signal Process.,
vol. 66, no. 3, pp. 666-681, 2017.

C. Dinesh, G. Cheung, and I. V. Baji¢, “Point cloud denoising via feature
graph Laplacian regularization,” IEEE Trans. Image Process., vol. 29, pp.
4143-4158, 2020.

E. Bayram, “Spectral graph based approach for analysis of 3D LIDAR
point clouds,” Master’s thesis, Middle East Technical University, 2017.
P. Akyazi and P. Frossard, “Graph-based inpainting of disocclusion holes
for zooming in 3D scenes,” in Eur. Signal Process. Conf., 2018, pp. 867—
871.

K. Yamamoto, M. Onuki, and Y. Tanaka, “Deblurring of point cloud
attributes in graph spectral domain,” in Int. Conf. Image Process., 2016,
pp. 1559-1563.

C. Dinesh, G. Cheung, and I. V. Baji¢, “3D point cloud color denoising
using convex graph-signal smoothness priors,” in [EEE Int. Workshop
Multimedia Signal Process., 2019, pp. 1-6.

N. Perraudin, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Van-
dergheynst, and D. K. Hammond, “GSPBOX: A toolbox for signal
processing on graphs,” arXiv preprint arXiv:1408.5781, 2014.

B. Girault, S. S. Narayanan, A. Ortega, P. Gongalves, and E. Fleury,
“Grasp: A matlab toolbox for graph signal processing,” in 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 1EEE, 2017, pp. 6574-6575.

M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” arXiv preprint arXiv:1903.02428, 2019.

E. Isufi, G. Leus, and P. Banelli, “2-dimensional finite impulse response
graph-temporal filters,” in IEEE Global Conf. Signal and Inform. Process.,
2016, pp. 405-409.

[329]

[330]

[331]

[332]

[333]

[334]
[335]

[336]

[337]

[338]
[339]

[340]

[341]

[342]

32

F. Grassi, A. Loukas, N. Perraudin, and B. Ricaud, “A time-vertex signal
processing framework: Scalable processing and meaningful representa-
tions for time-series on graphs,” IEEE Trans. Signal Process., vol. 66,
no. 3, pp. 817-829, 2017.

B. Das and E. Isufi, “Graph filtering over expanding graphs,” in [EEE
Data Sci. Learning Workshop, 2022, pp. 1-8.

T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50-60, 2020.

X. Zhou, S. Liu, W. Xu, K. Xin, Y. Wu, and F. Meng, “Bridging
hydraulics and graph signal processing: A new perspective to estimate
water distribution network pressures,” Water Res., vol. 217, p. 118416,
2022.

J. V. d. M. Cardoso, J. Ying, and D. P. Palomar, “Algorithms for learning
graphs in financial markets,” arXiv preprint arXiv:2012.15410, 2020.

C. Bick, E. Gross, H. A. Harrington, and M. T. Schaub, “What are higher-
order networks?” arXiv preprint arXiv:2104.11329, 2021.

J. S. Stanley, E. C. Chi, and G. Mishne, “Multiway graph signal processing
on tensors: Integrative analysis of irregular geometries,” IEEE Signal
Process. Mag., vol. 37, no. 6, pp. 160-173, 2020.

S. Barbarossa and S. Sardellitti, “Topological signal processing: Making
sense of data building on multiway relations,” IEEE Signal Process. Mag.,
vol. 37, no. 6, pp. 174-183, 2020.

M. T. Schaub, Y. Zhu, J.-B. Seby, T. M. Roddenberry, and S. Segarra,
“Signal processing on higher-order networks: Livin’on the edge... and
beyond,” Signal Process., vol. 187, p. 108149, 2021.

M. Yang, E. Isufi, M. T. Schaub, and G. Leus, “Simplicial convolutional
filters,” arXiv preprint arXiv:2201.11720, 2022.

T. M. Roddenberry, N. Glaze, and S. Segarra, “Principled simplicial
neural networks for trajectory prediction,” in Int. Conf. Mach. Learning,
M. Meila and T. Zhang, Eds., vol. 139, 2021, pp. 9020-9029.

S. Barbarossa and M. Tsitsvero, “An introduction to hypergraph signal
processing,” in IEEE Int. Conf. Acoust., Speech and Signal Process., 2016,
pp. 6425-6429.

S. Zhang, Z. Ding, and S. Cui, “Introducing hypergraph signal processing:
Theoretical foundation and practical applications,” IEEE Internet Things
J., vol. 7, no. 1, pp. 639-660, 2019.

G. Leus, M. Yang, M. Coutino, and E. Isufi, “Topological Volterra filters,”
in IEEE Int. Conf. Acoust., Speech and Signal Process., 2021, pp. 5385—
5399.

