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Abstract

Uncertainty principles such as Heisenberg’s provide limits on the time-frequency concentration of a signal, and constitute an
important theoretical tool for designing and evaluating linear signal transforms. Generalizations of such principles to the graph
setting can inform dictionary design for graph signals, lead to algorithms for reconstructing missing information from graph
signals via sparse representations, and yield new graph analysis tools. While previous work has focused on generalizing notions
of spreads of a graph signal in the vertex and graph spectral domains, our approach is to generalize the methods of Lieb in order
to develop uncertainty principles that provide limits on the concentration of the analysis coefficients of any graph signal under
a dictionary transform whose atoms are jointly localized in the vertex and graph spectral domains. One challenge we highlight
is that due to the inhomogeneity of the underlying graph data domain, the local structure in a single small region of the graph
can drastically affect the uncertainty bounds for signals concentrated in different regions of the graph, limiting the information
provided by global uncertainty principles. Accordingly, we suggest a new way to incorporate a notion of locality, and develop
local uncertainty principles that bound the concentration of the analysis coefficients of each atom of a localized graph spectral
filter frame in terms of quantities that depend on the local structure of the graph around the center vertex of the given atom.
Finally, we demonstrate how our proposed local uncertainty measures can improve the random sampling of graph signals.

Index terms— Signal processing on graphs, uncertainty principle, local uncertainty, time-frequency analysis, localization,
concentration bound, non-uniform random sampling

1 Introduction
The major research thrust to date in the emerging area of signal processing on graphs [1, 2] has been to design multiscale
wavelet and vertex-frequency transforms [3]-[24]. Objectives of these transforms are to sparsely represent different classes of
graph signals and/or efficiently reveal relevant structural properties of high-dimensional data on graphs. As we move forward,
it is important to both test these transforms on myriad applications, as well as to develop additional theory to help answer the
question of which transforms are best suited to which types of data.

Uncertainty principles such as the ones presented in [25]-[30] are an important tool in designing and evaluating linear trans-
forms for processing “classical” signals such as audio signals, time series, and images residing on Euclidean domains. It is
desirable that the dictionary atoms are jointly localized in time and frequency, and uncertainty principles characterize the resolu-
tion tradeoff between these two domains. Moreover, while “the uncertainty principle is [often] used to show that certain things are
impossible,” Donoho and Stark [25] present “examples where the generalized uncertainty principle shows something unexpected
is possible; specifically, the recovery of a signal or image despite significant amounts of missing information.” In particular,
uncertainty principles can provide guarantees that if a signal has a sparse decomposition in a dictionary of incoherent atoms, this
is indeed a unique representation that can be recovered via optimization [26, 27]. This idea underlies the recent wave of sparse
signal processing techniques, with applications such as denoising, source separation, inpainting, and compressive sensing. While
there is still limited theory showing that different mathematical classes of graph signals are sparsely represented by the recently
proposed transforms (see [31] for one preliminary work along these lines), there is far more empirical work showing the potential
of these transforms to sparsely represent graph signals in various applications.

Many of the multiscale transforms designed for graph signals attempt to leverage intuition from signal processing techniques
designed for signals on Euclidean data domains by generalizing fundamental operators and transforms to the graph setting (e.g.,
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by checking that they correspond on a ring graph). While some intuition, such as the notion of filtering with a Fourier basis
of functions that oscillate at different rates (see, e.g., [1]) carries over to the graph setting, the irregular structure of the graph
domain often restricts our ability to generalize ideas. One prime example is the lack of a shift-invariant notion of translation of a
graph signal. As shown in [32, 33] and discussed in [23, Section 3.2], the concentration of the Fourier basis functions is another
example where the intuition does not carry over directly. Complex exponentials, the basis functions for the classical Fourier
transform, have global support across the real line. On the other hand, the eigenvectors of the combinatorial or normalized graph
Laplacians, which are most commonly used as the basis functions for a graph Fourier transform, are sometimes localized to small
regions of the graph. Because the incoherence between the Fourier basis functions and the standard normal basis underlies many
uncertainty principles, we demonstrate this issue with a short example.

Motivating Example (Part I: Laplacian eigenvector localization). Let us consider the two manifolds (surfaces) embedded in
R3 and shown in the first row of Figure 1. The first one is a flat square. The second is identical except for the center where
it contains a spike. We sample both of these manifolds uniformly across the x-y plane and create a graph by connecting the 8
nearest neighbors with weights depending on the distance (Wij = e−dij/σ). The energy of each Laplacian eigenvector of the
graph arising from the first manifold is not concentrated on any particular vertex; i.e., maxi,` |u`(i)| << 1, where u` is the
eigenvector associated with eigenvalue λ`. However, the graph arising from the second manifold does have a few eigenvectors,
such as eigenvector 3 shown in the middle row Figure 1, whose energy is highly concentrated on the region of the spike; i.e:
maxi,` |u`(i)| ≈ 1. Yet, the Laplacian eigenvectors of this second graph whose energy resides primarily on the flatter regions of
the manifold, such as eigenvector 17 shown in the bottom row of Figure 1, are not too concentrated on any single vertex. Rather,
they more closely resemble some of the Laplacian eigenvectors of the graph arising from the first manifold.

Below we discuss three different families of uncertainty principles, and their extensions to the graph setting, both in prior
work and in this contribution.

• The first family of uncertainty principles measure the spreading around some reference point, usually the mean position
of the energy contained in the signal. The well-known Heisenberg uncertainty principle [34, 35] belongs to this family. It
views the modulus square of the signal in both the time and Fourier domains as energy probability density functions, and
takes the variance of those energy distributions as measures of the spreading in each domain. The uncertainty principle
states that the product of variances in the time and in the Fourier domains cannot be arbitrarily small. The generalization
of this uncertainty principle to the graph setting is complex since there does not exist a simple formula for the mean value
or the variance of graph signals, in either the vertex or the graph spectral domains. For unweighted graphs, Agaskar and
Lu [36, 37, 38] also view the square modulus of the signal in the vertex domain as an energy probability density function
and use the geodesic graph distance (shortest number of hops) to define the spread of a graph signal around a given center
vertex. For the spread of a signal f in the graph spectral domain, Agaskar and Lu use the normalized variation f>Lf

||f ||22
,

which captures the smoothness of a signal. They then specify uncertainty curves that characterize the tradeoff between the
smoothness of a graph signal and its localization in the vertex domain. This idea is generalized to weighted graphs in [39].
As pointed out in [38], the tradeoff between smoothness and localization in the vertex domain is intuitive as a signal that
is smooth with respect to the graph topology cannot feature values that decay too quickly from the peak value. However,
as shown in Figure 1 (and subsequent examples in Table 1), graph signals can indeed be simultaneously highly localized
or concentrated in both the vertex domain and the graph spectral domain. This discrepancy is because the normalized
variation used as the spectral spread in [38] is one method to measure the spread of the spectral representation around the
eigenvalue 0, rather than around some mean of that signal in the graph spectral domain. In fact, using the notion of spectral
spread presented in [38], the graph signal with the highest spectral spread on a graph G is the graph Laplacian eigenvector
associated with the highest eigenvalue. The graph spectral representation of that signal is a Kronecker delta whose energy
is completely localized at a single eigenvalue. One might argue that its spread should in fact be zero. So, in summary,
while there does exist a tradeoff between the smoothness of a graph signal and its localization around any given center
vertex in the vertex domain, the classical idea that a signal cannot be simultaneously localized in the time and frequency
domains does not always carry over to the graph setting. While certainly an interesting avenue for continued investigation,
we do not discuss uncertainty principles based on spreads in the vertex and graph spectral domains any further in this
paper.
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Manifold 1 Manifold 2

Eigenvector 5
(Manifold 1)

Eigenvector 3
(Manifold 2)

Eigenvector 13
(Manifold 1)

Eigenvector 17
(Manifold 2)

Figure 1: Concentration of graph Laplacian eigenvectors. We discretize two different manifolds by sampling uniformly across the
x-y plane. Due its bumpy central part, the graph arising from manifold 2 has a graph Laplacian eigenvector (shown in the middle
row of the right column) that is highly concentrated in both the vertex and graph spectral domains. However, the eigenvectors
of this graph whose energy primarily resides in the flatter parts of the manifold (such as the one shown in the bottom row of
the right column) are less concentrated, and some closely resemble the Laplacian eigenvectors of the graph arising from the flat
manifold 1 (such as the corresponding eigenvector shown in the bottom row of the left column.

• The second family of uncertainty principles involve the absolute sparsity or concentration of a signal. The key quantities
are typically either support measures counting the number of non-zero elements, or concentration measures, such as `p-
norms. An important distinction is that these sparsity and concentration measures are not localization measures. They
can give the same values for different signals, independent of whether the predominant signal components are clustered
in a small region of the vertex domain or spread across different regions of the graph. An example of a recent work from
the graph signal processing literature that falls into this family is [40], in which Tsitsvero et al. propose an uncertainty
principle that characterizes how jointly concentrated graph signals can be in the vertex and spectral domains. Generalizing
prolate spheroidal wave functions [41], their notion of concentration is based on the percentage of energy of a graph signal
that is concentrated on a given set of vertices in the vertex domain and a given set of frequencies in the graph spectral
domain.

Since we can interpret signals defined on graphs as finite dimensional vectors with well-defined `p-norms, we can also
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apply directly the results of existing uncertainty principles for finite dimensional signals. As one example, the Elad-
Bruckstein uncertainty principle of [27] states that if α and β are the coefficients of a vector f ∈ RN in two different
orthonormal bases, then

||α||0 + ||β||0
2

≥
√
||α||0 · ||β||0 ≥

1

µ
, (1)

where µ is the maximum magnitude of the inner product between any vector in the first basis with any vector in the second
basis. In Section 3.1, we apply (1) to graph signals by taking one basis to be the canonical basis of Kronecker delta
functions in the graph vertex domain and the other to be a Fourier basis of graph Laplacian eigenvectors. We also apply
other such finite dimensional uncertainty principles from [30], [34], and [42] to the graph setting. In Section 3.2, we adapt
the Hausdorff-Young inequality [43, Section IX.4], a classical result for infinite dimensional signals, to the graph setting.
These results typically depend on the mutual coherence between the graph Laplacian eigenvectors and the canonical basis
of deltas. For the special case of shift-invariant graphs with circulant graph Laplacians [44, Section 5.1], such as ring
graphs, these bases are incoherent, and we can attain meaningful uncertainty bounds. However, for less homogeneous
graphs (e.g., a graph with a vertex with a much higher or lower degree than other vertices), the two bases can be more
coherent, leading to weaker bounds. Moreover, as we discuss in Section 2, the bounds are global bounds, so even if
the majority of a graph is for example very homogenous, inhomogeneity in one small area can prevent the result from
informing the behavior of graph signals across the rest of the graph.

• The third family of uncertainty principles characterize a single joint representation of time and frequency. The short-
time Fourier transform (STFT) is an example of a time-frequency representation that projects a function f onto a set
of translated and modulated copies of a function g. Usually, g is a function localized in the time-frequency plane, for
example a Gaussian, vanishing away from some known reference point in the joint time and frequency domain. Hence
this transformation reveals local properties in time and frequency of f by separating the time-frequency domain into
regions where the translated and modulated copies of g are localized. This representation obeys an uncertainty principle:
the STFT coefficients cannot be arbitrarily concentrated. This can be shown by estimating the different `p-norms of
this representation (note that the concentration measures of the second family of uncertainty principles are used). For
example, Lieb [45] proves a concentration bound on the ambiguity function (e.g., the STFT coefficients of the STFT
atoms). Lieb’s approach is more general than the Heisenberg uncertainty principle, because it handles the case where the
signal is concentrated around multiple different points (see, e.g., the signal f3 in Figure 2).

In Section 5, we generalize Lieb’s uncertainty principle to the graph setting to provide upper bounds on the concentration of
the transform coefficients of any graph signal under (i) any frame of dictionary atoms, and (ii) a special class of dictionaries
called localized spectral graph filter frames, whose atoms are of the form Tigk, where Ti is a localization operator that
centers on vertex i a pattern described in the graph spectral domain by the kernel ĝk.

While the second family of uncertainty principles above yields global uncertainty principles, we can generalize the third
family to the graph setting in a way that yields local uncertainty principles. In the classical Euclidean setting, the underlying
domain is homogenous, and thus uncertainty principles apply to all signals equally, regardless of where on the real line they are
concentrated. However, in the graph setting, the underlying domain is irregular, and a change in the graph structure in a single
small region of the graph can drastically affect the uncertainty bounds. For instance, the second family of uncertainty principles
all depend on the coherence between the graph Laplacian eigenvectors and the standard normal basis of Kronecker deltas, which
is a global quantity in the sense that it incorporates local behavior from all regions of the graph. To see how this can limit the
usefulness of such global uncertainty principles, we return to the motivating example from above.

Motivating Example (Part II: Global versus local uncertainty principles). In Section 3.1, we show that a direct application of
a result from [30] to the graph setting yields the following uncertainty relationship, which falls into the second family described
above, for any signal f ∈ RN : (

‖f‖2
‖f‖1

)(
‖f̂‖2
‖f̂‖1

)
≤ max

i,`
|u`(i)|. (2)
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Each fraction in the left-hand side of (2) is a measure of concentration that lies in the interval [ 1√
N
, 1] (N is the number of

vertices), and the coherence between the graph Laplacian eigenvectors and the Kronecker deltas on the right-hand side lies in
the same interval. On the graph arising from manifold 1, the coherence is close to 1√

N
, and (2) yields a meaningful uncertainty

principle. However, on the graph arising from manifold 2, the coherence is close to 1 due to the localized eigenvector 3 in
Figure 1, (2) is trivially true for any signal in Rn from the properties of vector norms, and thus the uncertainty principle is not
particularly useful. Nevertheless, far away from the spike, signals should behave similarly on manifold 2 to how they behave
on manifold 1. Part of the issue here is that the uncertainty relationship holds for any graph signal f , even those concentrated
on the spike, which we know can be jointly localized in both the vertex and graph spectral domains. An alternative approach is
to develop a local uncertainty principle that characterizes the uncertainty in different regions of the graph on a separate basis.
Then, if the energy of a given signal is concentrated on a more homogeneous part of the graph, the concentration bounds will be
tighter.

In Section 6, we generalize the approach of Lieb to build a local uncertainty principle that bounds the concentration of the
analysis coefficients of each atom of a localized graph spectral filter frame in terms of quantities that depend on the local structure
of the graph around the center vertex of the given atom. Thus, atoms localized to different regions of the graph feature different
concentration bounds. Such local uncertainty principles also have constructive applications, and we conclude with an example of
non-uniform sampling for graph inpainting, where the varying uncertainty levels across the graph suggest a strategy of sampling
more densely in areas of higher uncertainty. For example, if we were to take M measurements of a smooth signal on manifold 2
in Figure 1, this method would lead to a higher probability of sampling signal values near the spike, and a lower probability of
sampling signal values in the more homogenous flat parts of the manifold, where reconstruction of the missing signal values is
inherently easier.

2 Notation and graph signal concentration
In this section, we introduce some notation and illustrate further how certain intuition from signal processing on Euclidean spaces
does not carry over to the graph setting.

2.1 Notation
Throughout the paper, we consider signals residing on an undirected, connected, and weighted graph G = {V, E ,W}, where V
is a finite set of N vertices (|V| = N ), E is a finite set of edges, and W is the weight or adjacency matrix. The entry Wij of
W represents the weight of an edge connecting vertices i and j. A graph signal f : V → C is a function assigning one value
to each vertex. Such a signal f can be written as a vector of size N with the nth component representing the signal value at
the nth vertex. The generalization of Fourier analysis to the graph setting requires a graph Fourier basis {u`}`∈{0,1,...,N−1}.
The most commonly used graph Fourier bases are the eigenvectors of the combinatorial (or non-normalized) graph Laplacian,
which is defined as L = D−W, where D is the diagonal degree matrix with diagonal entries Dii =

∑N
j=1Wij , and i ∈ V , or

the eigenvectors of the normalized graph Laplacian L̃ = D−
1
2LD− 1

2 . However, the eigenbases (or Jordan eigenbases) of other
matrices such as the adjacency matrix have also been used as graph Fourier bases [46, 2]. All of our results in this paper hold
for any choice of the graph Fourier basis. For concreteness, we use the combinatorial Laplacian, which has a complete set of
orthonormal eigenvectors {u`}`∈{0,1,...,N−1} associated with the real eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ ... ≤ λN−1 = λmax.
The graph Fourier transform f̂ ∈ CN of a function f ∈ CN defined on a graph G is the projection of the signal onto the
orthonormal graph Fourier basis {u`}`=0,1,...,N−1, which we take to be the eigenvectors of the graph Laplacian associated with
G:

f̂(λ`) = 〈f, u`〉 =

N∑
n=1

f(n)u`(n), ` ∈ {0, 1, . . . , N − 1}. (3)

See for example [47] for more details on spectral graph theory, and [1] for more details on signal processing on graphs.
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2.2 Concentration measures
In order to discuss uncertainty principles, we must first introduce some concentration/sparsity measures. Throughout the paper,
we use the terms sparsity and concentration somewhat interchangeably, but we reserve the term spread to describe the spread
of a function around some mean or center point, as discussed in the first family of uncertainty principles in Section 1. The first
concentration measure is the support measure of f , denoted ‖f‖0, which counts the number of non-zero elements of f . The
second concentration measure is the Shannon entropy, which is used often in information theory and physics:

H(f) = −
∑
n

|f(n)|2 ln |f(n)|2,

where the variable n has values in {1, 2, . . . , N} for functions on graphs and in {0, 1, . . . , N − 1} in the graph Fourier represen-
tation. Another class of concentration measures is the `p-norms, with p ∈ [1,∞]. For p 6= 2, the sparsity of f may be measured
using the following quantity:

sp(f) =


‖f‖2
‖f‖p , if 1 ≤ p ≤ 2

‖f‖p
‖f‖2 , if 2 < p ≤ ∞

.

For any vector f ∈ CN and any p ∈ [1,∞], sp(f) ∈
[
N−|

1
p−

1
2 |, 1

]
. If sp(f) is high (close to 1), then f is sparse, and if sp(f)

is low, then f is not concentrated. Figure 2 uses some basic signals to illustrate this notion of concentration, for different values
of p. In addition to sparsity, one can also relate `p-norms to the Shannon entropy via Renyi entropies (see, e.g., [48, 49] for more
details).

p sp(f1) sp(f2) sp(f3) sp(f4)
1.00 0.32 0.46 0.50 1.00
1.33 0.56 0.69 0.71 1.00
2.00 1.00 1.00 1.00 1.00
4.00 0.56 0.75 0.71 1.00
∞ 0.32 0.68 0.50 1.00

Figure 2: The concentration sp(·) of four different example signals (all with 2-norm equal to 1), for various values of p. Note
that the position of the signal coefficients does not matter for this concentration measure. Different values of p lead to different
notions of concentration; for example, f2 is more concentrated than f3 if p = ∞ (it has a larger maximum absolute value), but
less concentrated if p = 1.

2.3 Concentration of the graph Laplacian eigenvectors
The spectrum of the graph Laplacian replaces the frequencies as coordinates in the Fourier domain. For the special case of shift-
invariant graphs with circulant graph Laplacians [44, Section 5.1], the Fourier eigenvectors can still be viewed as pure oscillations.
However, for more general graphs (i.e., all but the most highly structured), the oscillatory behavior of the Fourier eigenvectors
must be interpreted more broadly. For example, [1, Fig. 3] displays the number of zero crossings of each eigenvector; that is,
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for each eigenvector, the number of pairs of connected vertices where the signs of the values of the eigenvector at the connected
vertices are opposite. It is generally the case that the graph Laplacian eigenvectors associated with larger eigenvalues contain
more zero crossings, yielding a notion of frequency to the graph Laplacian eigenvalues. However, despite this broader notion of
frequency, the graph Laplacian eigenvectors are not always globally-supported, pure oscillations like the complex exponentials.
In particular, they can feature sharp peaks, meaning that some of the Fourier basis elements can be much more similar to an
element of the canonical basis of Kronecker deltas on the vertices of the graph. As we will see, uncertainty principles for signals
on graphs are highly affected by this phenomenon.

One way to compare a graph Fourier basis to the canonical basis is to compute the coherence between these two representa-
tions.

Definition 1 (Graph Fourier Coherence µG). Let G be a graph of N vertices. Let {δi}i∈{1,2,...,N} denote the canonical basis of
`2(CN ) of Kronecker deltas and let {u`}`∈{0,1,...,N−1} be the orthonormal basis of eigenvectors of the graph Laplacian of G.
The graph Fourier coherence is defined as:

µG = max
i,`
|〈δi, u`〉| = max

i,`
|u`(i)| = max

`
s∞(u`).

This quantity measures the similarity between the two sets of vectors. If the sets possess a common vector, then µG = 1
(the maximum possible value for µG). If the two sets are maximally incoherent, such as the canonical and Fourier bases in the
standard discrete setting, then µG = 1/

√
N (the minimum possible value).

Because the graph Laplacian matrix encodes the weights of the edges of the graph, the coherence µG clearly depends on
the structure of the underlying graph. It remains an open question exactly how structural properties of weighted graphs such
as the regularity, clustering, modularity, and other spectral properties can be linked to the concentration of the graph Laplacian
eigenvectors. For certain classes of random graphs [50, 51, 52] or large regular graphs [53], the eigenvectors have been shown
to be non-localized, globally oscillating functions (i.e., µG is low). Yet, empirical studies such as [32] show that graph Laplacian
eigenvectors can be highly concentrated (i.e., µG can be close to 1), particularly when the degree of a vertex is much higher or
lower than the degrees of other vertices in the graph. The following example illustrates how µG can be influenced by the graph
structure.

Example 1. In this example, we discuss two classes of graphs that can have graph Fourier coherences. The first, called comet
graphs, are studied in [33, 54]. They are composed of a star with k vertices connected to a center vertex, and a single branch
of length greater than one extending from one neighbor of the center vertex (see Figure 3, top). If we fix the length of the
longer branch (it has length 10 in Figure 3), and increase k, the number of neighbors of the center vertex, the graph Laplacian
eigenvector associated with the largest eigenvalue approaches a Kronecker delta centered at the center vertex of the star. As a
consequence, the coherence between the graph Fourier and the canonical bases approaches 1 as k increases.

The second class are the modified path graphs, which we use several times in this contribution. We start with a standard
path graph of 10 nodes equally spaced (all edge weights are equal to one) and we move the first node out to the left; i.e., we
reduce the weight between the first two nodes (see Figure 3, bottom). The weight is related to the distance by W12 = 1/d(1, 2)
with d(1, 2) being the distance between nodes 1 and 2. When the weight between nodes 1 and 2 decreases, the eigenvector
associated with the largest eigenvalue of the Laplacian becomes more concentrated, which increases the coherence µG . These
two examples of simple families of graphs illustrate that the topology of the graph can impact the graph Fourier coherence, and,
in turn, uncertainty principles that depend on the coherence.

In Figure 4, we display the eigenvector associated with the largest graph Laplacian eigenvalue for a modified path graph of
100 nodes, for several values of the weight W12. Observe that the shape of the eigenvector has a sharp local change at node 1.

Example 1 demonstrates an important point to keep in mind. A small local change in the graph structure can greatly affect
the behavior of one eigenvector, and, in turn, a global quantity such as µG . However, intuitively, a small local change in the graph
should not drastically change the processing of signal values far away, for example in a denoising or inpainting task. For this
reason, in Section 6, we introduce a notion of local uncertainty that depicts how the graph is behaving locally.

Note that not only special classes of graphs or pathological graphs yield highly localized graph Laplacian eigenvectors.
Rather, graphs arising in applications such as sensor or transportation networks, or graphs constructed from sampled manifolds
(such as the graph sampled from manifold 2 in Figure 1) can also have graph Fourier coherences close to 1 (see, e.g., [23, Section
3.2] for further examples).
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Figure 3: Coherence between the graph Fourier basis and the canonical basis for the graphs described in Example 1. Top left:
Comet graphs with k = 6 and k = 12 branches, all of length one except for one of length ten. Top right: Evolution of the graph
Fourier coherence µG with respect to k. Bottom left: Example of a modified path graph with 10 nodes. Bottom right: Evolution
of the coherence of the modified path graph with respect to the distance between nodes 1 and 2. As the degree of the comet’s

center vertex increases or the first node of the modified path is pulled away, the coherence µG tends to the limit value
√

N−1
N .

Figure 4: Eigenvectors associated with the largest graph Laplacian eigenvalue of the modified path graph with 100 nodes, for
different values of W12. As the distance between the first two nodes increases, the eigenvector becomes sharply peaked.

3 Global uncertainty principles relating the concentration of graph signals in two
domains

In this section, we derive basic uncertainty principles using concentration measures and highlight the limitations of those uncer-
tainty principles.
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3.1 Direct applications of uncertainty principles for discrete signals
We start by applying three known uncertainty principles for discrete signals to the graph setting.

Theorem 1. Let f ∈ CN be a nonzero signal defined on a connected, weighted, undirected graph G, let {u`}`=0,1,...,N−1 be a
graph Fourier basis for G, and let µG = maxi,` |〈δi, u`〉|. We have the following four uncertainty principles:

(i) the support uncertainty principle [27]

‖f‖0 + ‖f̂‖0
2

≥
√
‖f‖0‖f̂‖0 ≥

1

µG
, (4)

(ii) the `p-norm uncertainty principle [30]

‖f‖p‖f̂‖p ≥ µ
1− 2

p

G ‖f‖22, p ∈ [1, 2], (5)

(iii) the entropic uncertainty principle [42]
H(f) +H(f̂) ≥ −2 lnµG . (6)

(iv) the ‘local’ uncertainty principle [34] ∑
i∈VS

|f(i)|2 ≤ |VS |‖f‖2∞ ≤ |VS |µ2
G‖f̂‖21 (7)

for any subset VS of the vertices V in the graph G.

The first uncertainty principle is given by a direct application of the Elad-Bruckstein inequality [27]. It states that the sparsity
of a function in one representation limits the sparsity in a second representation. As displayed in (1), the work of [27] holds for
representations in any two bases. As we have seen, if we focus on the canonical basis {δi}i=1,...,N and the graph Fourier basis
{u`}`=0,...,N−1, the coherence µG depends on the graph topology. For the ring graph, µG = 1√

N
, and we recover the result

from the standard discrete case (regular sampling, periodic boundary conditions). However, for graphs where µG is closer to
1, the uncertainty principle (4) is much weaker and therefore less informative. For example, ‖f̂‖0‖f‖0 ≥ 1

µ2
G
≈ 1 is trivially

true of nonzero signals. The same caveat applies to (5) and (6), which follow directly from [30] and [42], respectively, by once
again specifying the canonical and graph Fourier bases. The last inequality (7) is an adaptation [34, Eq. (4.1)] to the graph
setting, using the Hausdorff-Young inequality of Theorem 2 (see next section). It states that the energy of a function in a subset
of the domain is bounded from above by the size of the selected subset and the sparsity of the function in the Fourier domain.
If the subset VS is small and the function is sparse in the graph Fourier domain, this uncertainty principle limits the amount of
energy of f that fits insides of the subset of VS . Because VS can be chosen to be a local region of the domain (the graph vertex
domain in our case), Folland and Sitaram [34] refer to such principles as “local uncertainty inequalities.” However, the term µG
in the uncertainty bound is not local in the sense that it depends on the whole graph structure and not just on the topology of the
subgraph containing vertices in VS .

The following example illustrates the relation between the graph, the concentration of a specific graph signal, and one of
the uncertainty principles from Theorem 1. We return to this example in Section 3.3 to discuss further the limitations of these
uncertainty principles featuring µG .

Example 2. Figure 5 shows the computation of the quantities involved in (5), with p = 1 and different G’s taken to be the
modified path graphs of Example 1, with different distances between the first two vertices. We show the lefthand side of (5) for
two different Kronecker deltas, one centered at vertex 1, and one centered at vertex 10. We have seen in Figure 3 that as the
distance between the first two vertices increases, the coherence increases, and therefore the lower bound on the right-hand side
of (5) decreases. For δ1, the uncertainty quantity on the left-hand side of (5) follows a similar pattern. The intuition behind
this is that as the weight between the first two vertices decreases, a few of the eigenvectors start to have local jumps around the
first vertex (see Figure 4). As a result, we can sparsely represent δ1 as a linear combination of those eigenvectors and ||δ̂1||1 is
reduced. However, since there are not any eigenvectors that are localized around the last vertex in the path graph, we cannot
find a sparse linear combination of the graph Laplacian eigenvectors to represent δ10. Therefore, its uncertainty quantity on the
left-hand side of (5) does not follow the behavior of the lower bound.
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Figure 5: Numerical illustration of the `p-norm uncertainty principle on a sequence of modified path graphs with different mutual
coherences between the canonical basis of deltas and the graph Laplacian eigenvectors. For each modified path graph, the weight
W12 of the edge between the first two vertices is the reciprocal of the distance shown on the horizontal axis. The black crosses
show the lower bound on the right-hand side of (5), with p = 1. The blue and red lines show the corresponding uncertainty
quantity on the left-hand side of (5), for the graph signals δ1 and δ10, respectively.

3.2 The Hausdorff-Young inequalities for signals on graphs
The classical Hausdorff-Young inequality [43, Section IX.4] is a fundamental harmonic analysis result behind the intuition that
a high degree of concentration of a signal in one domain (time or frequency) implies a low degree of concentration in the other
domain. This relation is used in the proofs of the entropy and `p-norm uncertainty principles in the continuous setting. In this
section, as we continue to explore the role of µG and the differences between the Euclidean and graph settings, we extend the
Hausdorff-Young inequality to graph signals.

Theorem 2. Let µG be the coherence between the graph Fourier and canonical bases of a graph G. Let p, q > 0 be such that
1
p + 1

q = 1. For any signal f ∈ CN defined on G and 1 ≤ p ≤ 2, we have

‖f̂‖q ≤ µ
1− 2

q

G ‖f‖p. (8)

Conversely, for 2 ≤ p ≤ ∞, we have

‖f̂‖q ≥ µ
1− 2

q

G ‖f‖p. (9)

The proof of Theorem 2, given in Sec. 8.1, is an extension of the classical proof using the Riesz-Thorin interpolation theorem.
In the classical (infinite dimensional) setting, the inequality only depends on p and q. On a graph, it depends on µG and hence on
the structure of the graph.

Dividing both sides of each inequality in Theorem 2 by ‖f‖2 leads to bounds on the concentrations (or sparsity levels) of a
graph signal and its graph Fourier transform.

Corollary 1. Let p, q > 0 be such that 1
p + 1

q = 1. For any signal f ∈ CN defined on the graph G, we have

sp(f)sq(f̂) ≤ µ|1−
2
q |

G .

Theorem 2 and Corollary 1 assert that concentration or sparsity level of a graph signal in one domain (vertex or graph spectral)
limits the concentration or sparsity level in the other domain. However, once again, if the coherence µG is close to 1, the result
is not particularly informative as sp(f)sq(f̂) is trivially upper bounded by 1. The following numerical experiment illustrates
the quantities involved in the Hausdorff-Young inequalities for graph signals. We again see that as the graph Fourier coherence
increases, signals may be simultaneously concentrated in both the vertex domain and the graph spectral domain.
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Example 3. Continuing with the modified path graphs of Examples 1 and 2, we illustrate the bounds of the Hausdorff-Young
inequalities for graph signals in Figure 6. For this example, we take the signal f to be δ1, a Kronecker delta centered on the first
node of the modified path graph. As a consequence, ‖δ1‖p = 1 for all p, which makes it easier to compare the quantities involved
in the inequalities. For this example, the bounds of Theorem 2 are fairly close to the actual values of ‖δ̂1‖q .

(a) (b)

Figure 6: Illustration of the bounds of the Hausdorff-Young inequalities for graph signals on the modified path graphs with
f = δ1. (a) The quantities in (8) and (9) for q = 1, 43 , 4, and∞. (b) The quantities in Corollary 1 for the same values of q.

Sharpness of the graph Hausdorff-Young inequalities. For p = q = 2, (8) and (9) becomes equalities. Moreover, for p = 1
or p =∞, there is always at least one signal for which the inequalities (8) and (9) become equalities, respectively. Let i1 and `1
satisfy µG = maxi,` |u`(i)| = |u`1(i1)|. For p = 1, let f = δi1 . Then ||f ||1 = 1, and ||f̂ ||∞ = max` |〈δi1 , u`〉| = µG , and thus
(8) is tight. For p =∞, let f = u`1 . Then ||f ||∞ = µG , ||f̂ ||1 = ||û`1 ||1 = 1, and thus (9) is tight. The red curve and its bound
in Figure 6 show the tight case for p = 1 and q =∞.

3.3 Limitations of global concentration-based uncertainty principles in the graph setting
The motivation for this section was twofold. First, we wanted to derive the uncertainty principles for graph signals analogous
to some of those that are so fundamental for signal processing on Euclidean domains. However, we also want to highlight the
limitations of this approach (the second family of uncertainty principles described in Section 1) in the graph setting. The graph
Fourier coherence is a global parameter that depends on the topology of the entire graph. Hence, it may be greatly influenced
by a small localized changes in the graph structure. For example, in the modified path graph examples above, a change in a
single edge weight leads to an increased coherence, and in turn significantly weakens the uncertainty principles characterizing
the concentrations of the graph signal in the vertex and spectral domains. Such examples call into question the ability of such
global uncertainty principles for graph signals to accurately describe phenomena in inhomogeneous graphs. This is the primary
motivation for our investigation into local uncertainty principles in Section 6. However, before getting there, we consider global
uncertainty principles from the third family of uncertainty principles described in Section 1 that bound the concentration of the
analysis coefficients of a graph signal in a time-frequency transform domain.

4 Graph signal processing operators and dictionaries
As mentioned in Section 1, uncertainty principles can inform dictionary design. In the next section, we present uncertainty
principles characterizing the concentration of the analysis coefficients of graph signals in different transform domains. We focus
on three different classes of dictionaries for graph signal analysis: (i) frames, (ii) localized spectral graph filter frames, and (iii)
graph Gabor filter bank frames, where localized spectral graph filter frames are a subclass of frames, and graph Gabor filter bank
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frames are a subclass of localized spectral graph filter frames. In this section, we define these different classes of dictionaries,
and highlight some of their mathematical properties. Note that our notation uses dictionary atoms that are double indexed by i
and k, but these could be combined into a single index j for the most general case.

Definition 2 (Frame). A dictionary D = {gi,k} is a frame if there exist constants A and B called the lower and upper frame
bounds such that for all f ∈ CN :

A‖f‖22 ≤
∑
i,k

|〈f, gi,k〉|2 ≤ B‖f‖22.

If A = B, the frame is said to be a tight frame.

For more properties of frames, see, e.g., [55, 56, 57]. Most of the recently proposed dictionaries for graph signals are either
orthogonal bases (e.g., [6, 15, 20]) , which are a subset of tight frames, or overcomplete frames (e.g., [13, 23, 22]).

In order to define localized spectral graph filter frames, we need to first recall one way to generalize the translation operator
to the graph setting.

Definition 3 (Generalized localization/translation operator on graphs [13, 23]). We localize (or translate) a kernel ĝ to center
vertex i ∈ {1, 2, . . . , N} by applying the localization operator Ti, whose action is defined as

Tig(n) =
√
N

N−1∑
`=0

ĝ(λ`)u`(i)u`(n).

Note that this generalized localization operator is a kernelized operator. It does not translate an arbitrary signal defined in the
vertex domain to different regions of the graph, but rather localizes a pattern defined in the graph spectral domain to be centered
at different regions of the graph. The smoothness of the kernel ĝ(·) to be localized can be used to bound the localization of the
translated kernel around a center vertex i; i.e., if a smooth kernel ĝ(·) is localized to center vertex i, then the magnitude of Tig(n)
decays as the distance between i and n increases [13, Section 5.2], [23, Section 4.4]. Except for special cases such as when G
is a circulant graph with µG = 1√

N
and the Laplacian eigenvectors are the DFT basis, the generalized localization operator of

Definition 3 is not isometric. Rather, we have

Lemma 1 ([23], Lemma 1). For any g ∈ CN ,

|ĝ(0)| ≤ ||Tig||2 ≤
√
Nνi||ĝ||2 ≤

√
NµG ||ĝ||2, (10)

which yields the following upper bound on the operator norm of Ti:

||Ti||op = sup
g∈CN

||Tig||2
||ĝ||2

≤
√
Nνi ≤

√
NµG ,

where νi = max` |u`(i)|.

It is interesting to note that although the norm is not preserved when a kernel is localized on an arbitrary graph, it is preserved
on average when translated to separately to every vertex on the graph:

1

N

N∑
i=1

‖Tig‖22 =

N∑
i=1

N−1∑
`=0

|ĝ(λ`)ū`(i)|2 =

N−1∑
`=0

|ĝ(λ`)|2
N∑
i=1

|ū`(i)|2 = ‖ĝ‖22. (11)

The following example presents more precise insights on the interplay between the localization operator, the graph structure,
and the concentration of localized functions.

Example 4. Figure 7 illustrates the effect of the graph structure on the norms of localized functions. We take the kernel to be
localized to be a heat kernel of the form ĝ(λ`) = e−τλ` , for some constant τ > 0. We localize the kernel ĝ to be centered at
each vertex i of the graph with the operator Ti, and we compute and plot their `2-norms ‖Tig‖2. The figure shows that when
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Figure 7: The heat kernel ĝ(λ`) = e−10
λ`
λmax (upper left), and the norms of the localized heat kernels, {||Tig||2}i=1,2,...,N , on

various graphs. For each graph and each center node i, the color of vertex i is proportional to the value of ‖Tig‖2. Within each
graph, nodes i that are relatively less connected to their neighborhood seem to yield a larger norm ‖Tig‖2.

a center node i and its surrounding vertices are relatively weakly connected, the `2-norm of the localized heat kernel is large,
and when the nodes are relatively well connected, the norm is smaller. Therefore, the norm of the localized heat kernel may
be seen as a measure of vertex centrality.1 Moreover, in the case of the heat kernel, we can relate the `2-norm of Tig to its
concentration s1(T1g). Localized heat kernels are comprised entirely of nonnegative components; i.e., Tig(n) ≥ 0 for all i and
n. This property comes from (i) the fact that Tig(n) = (ĝ(L))in (see [13]), and (ii) the non-trivial property that the entries of
ĝ(L) are always nonnegative for the heat kernel [58]. Since Tig(n) ≥ 0 for all i and n, we have

‖Tig‖1 =

N∑
n=1

Tig(n) =
√
Nĝ(0) =

√
N, (12)

where the second equality follows from [23, Corollary 1]. Thus, recalling that a large value for s1(Tig) means that Tig is
concentrated, we can combine (10) and (12) to derive an upper bound on the concentration of Tig:

s1(Tig) =
||Tig||2
||Tig||1

=
||Tig||2√

N
≤ νi||ĝ||2.

Thus, ||Tig||2 serves as a measure of concentration, and according to the numerical experiments of Figure 7, localized heat
kernels centered on the relatively well-connected regions of a graph tend to be less concentrated than the ones centered on
relatively less well-connected areas. Intuitively, the values of the localized heat kernels can be linked to the diffusion of a unit
of energy from the center vertex to surrounding vertices over a fixed time. In the well-connected regions of the graph, energy
diffuses faster, making the localized heat kernels less concentrated.

The main class of dictionaries for graph signals that we consider is localized spectral graph filter frames.

1In fact, the square norm of the localized heat kernel at vertex i is, up to constants, the average diffusion distance from i to all other vertices. It is therefore a
genuine measure of centrality.
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Definition 4 (Localized spectral graph filter frame). Let g = {ĝ0(·), ĝ1(·), . . . , ĝK−1(·)} be a sequence of kernels (or filters),
where each ĝk : σ(L) → C is a function defined on the graph Laplacian spectrum σ(L) of a graph G. Define the quantity
G(λ) :=

∑K−1
k=0 |ĝk(λ`)|2. Then Dg = {gi,k} = {Tigk} is a localized spectral graph filter dictionary, and it forms a frame if

G(λ) > 0 for all λ ∈ σ(L).

In practice, each filter ĝk(·) is often defined as a continuous function over the interval [0, λmax] and then applied to the
discrete set of eigenvalues in σ(L). The following lemma characterizes the frame bounds for a localized spectral graph filter
frame.

Lemma 2 ([22], Lemma 1). Let Dg = {gi,k} = {Tigk} be a localized spectral graph filter frame of atoms on a graph G
generated from the sequence of filters g = {ĝ0(·), ĝ1(·), . . . , ĝK−1(·)}. The lower and upper frame bounds for Dg are given by
A = N ·minλ∈σ(L)G(λ) and B = N ·maxλ∈σ(L)G(λ), respectively. If G(λ) is constant over σ(L), then Dg is a tight frame.

Examples of localized spectral graph filter frames include the spectral graph wavelets of [13], the Meyer-like tight graph
wavelet frames of [59, 16], the spectrum-adapted wavelets and vertex-frequency frames of [22], and the learned parametric
dictionaries of [60]. The dictionaries constructions in [13, 22] choose the filters so that their energies are localized in different
spectral bands. Different choices of filters lead to different tilings of the vertex-frequency space, and can for example lead to
wavelet-like frames or vertex-frequency frames (analogous to classical windowed Fourier frames). The frame condition that
G(λ) > 0 for all λ ∈ σ(L) ensures that these filters cover the entire spectrum, so that no band of information is lost during
analysis and reconstruction.

In this paper, in order to generalize classical windowed Fourier frames, we often use a localized graph spectral filter bank
where the kernels are uniform translates, which we refer to as a graph Gabor filter bank.

Definition 5 (Graph Gabor filter bank). When theK kernels used to generate the localized graph spectral filter frame are uniform
translates of each other, we refer to the resulting dictionary as a graph Gabor filter bank or a graph Gabor filter frame. If we
use the warping technique of [22] on these uniform translates, we refer to the resulting dictionary as a spectrum-adapted graph
Gabor filter frame.

Graph Gabor filter banks are generalizations of the short time Fourier transform. When ĝ is smooth, the atoms are localized
in the vertex domain. In this contribution, for all graph Gabor filter frames, we use the following mother window: ĝ(t) =
sin
(
0.5π cos(π(t− 0.5))2

)
, for t ∈ [−0.5, 0.5] and 0 elsewhere. A few desirable properties of this choice of window are (a) it is

perfectly localized in the spectral domain in [−0.5, 0.5], (b) it is smooth enough to be approximated by a low order polynomial,
and (c) the frame formed by uniform translates (with an even overlap) is tight.

Definition 6 (Analysis operator). The analysis operator of a dictionary D = {gi,k} to a signal f ∈ CN is given by

ADf(i, k) = 〈f, gi,k〉.

When D = {gi,k} = {Tigk} is a localized spectral graph filter frame, we denote it with Ag. In all cases, we view AD as a
function from CN to C|D|, and thus we use ||ADf ||p (or ||Agf ||p) to denote a vector norm of the analysis coefficients.

5 Global uncertainty principles bounding the concentration of the analysis coeffi-
cients of a graph signal in a transform domain

5.1 Discrete version of Lieb’s uncertainty principle
Lieb’s uncertainty principle in the continuous one-dimensional setting [45] states that the cross-ambiguity function of a signal
cannot be too concentrated in the time-frequency plane. In the following, we transpose these statements to the discrete periodic
setting, and then generalize them to frames and signals on graphs. The following discrete version of Lieb’s uncertainty principle
is partially presented in [61, Proposition 2].
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Theorem 3. Define the discrete Fourier transform (DFT) as

f̂ [k] =
1√
N

N−1∑
n=0

f [n] exp

(
−i2πkn
N

)
,

and the discrete windowed Fourier transform (or discrete cross-ambiguity function) as (see, e.g., [35, Section 4.2.3])

ADDWFT
f [u, k] =

N−1∑
n=0

f [n]g[n− u] exp

(
−i2πkn
N

)
.

For two discrete signals of period N , we have for 2 ≤ p <∞

‖ADDWFT
f‖p =

(
N∑
u=1

N−1∑
k=0

|ADDWFT
f [u, k]|p

) 1
p

≤ N
1
p ‖f‖2‖g‖2, (13)

and for 1 ≤ p ≤ 2

‖ADDWFT
f‖p =

(
N∑
u=1

N−1∑
k=0

|ADDWFT
f [u, k]|p

) 1
p

≥ N
1
p ‖f‖2‖g‖2. (14)

These inequalities are proven in Section 8.2.2 of the Appendix. Note that the minimizers of this uncertainty principle are the
so-called "picket fence" signals, trains of regularly spaced diracs.

5.2 Generalization of Lieb’s uncertainty principle to frames
Theorem 4. Let D = {gi,k} be a frame of atoms in CN , with lower and upper frame bounds A and B, respectively. For any
signal f ∈ CN and any p ≥ 2, we have

‖ADf‖p ≤ B
1
p

(
max
i,k
‖gi,k‖2

)1− 2
p

‖f‖2. (15)

For any signal f ∈ CN and any 1 ≤ p ≤ 2, we have

‖ADf‖p ≥ A
1
p

(
max
i,k
‖gi,k‖2

)1− 2
p

‖f‖2. (16)

Combining (15) and (16), for any p ∈ [1,∞], we have

sp(ADf) ≤ Bmin{ 1
2 ,

1
p}

Amax{ 1
2 ,

1
p}

(
max
i,k
‖gi,k‖2

)|1− 2
p |
. (17)

When D is a tight frame with frame bound A, (17) reduces to

sp(ADf) ≤ A−|
1
2−

1
p |
(

max
i,k
‖gi,k‖2

)|1− 2
p |
.

A proof is included in Section 8.2.1 of the Appendix. The proof of Theorem 3 in Section 8.2.2 of the Appendix also demon-
strates that this uncertainty principle is indeed a generalization of the discrete periodic variant of Lieb’s uncertainty principle.
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5.3 Lieb’s uncertainty principle for localized spectral graph filter frames
Lemma 1 implies that maxi,k ||Tigk||2 ≤

√
NµG maxk ‖ĝk‖2. Therefore the following is a corollary to Theorem 4 for the case

of localized spectral graph filter frames.

Theorem 5. Let Dg = {gi,k} = {Tigk} be a localized spectral graph filter frame of atoms on a graph G generated from the
sequence of filters g = {ĝ0(·), ĝ1(·), . . . , ĝK−1(·)}. For any signal f ∈ CN on G and for any p ∈ [1,∞], we have

sp(Agf) ≤ Bmin{ 1
2 ,

1
p}

Amax{ 1
2 ,

1
p}

(
max
i,k
‖gi,k‖2

)|1− 2
p |
≤ Bmin{ 1

2 ,
1
p}

Amax{ 1
2 ,

1
p}

(√
NµG max

k
‖ĝk‖2

)|1− 2
p |
, (18)

where A = minλ∈σ(L)G(λ) is the lower frame bound and B = maxλ∈σ(L)G(λ) is the upper frame bound. When D is a tight
frame with frame bound A, (18) reduces to

sp(Agf) ≤ A−|
1
2−

1
p |
(

max
i,k
‖gi,k‖2

)|1− 2
p |
≤ A−|

1
2−

1
p |
(√

NµG max
k
‖ĝk‖2

)|1− 2
p |
. (19)

The bounds depend on the frame bounds A and B, which are fixed with the design of the filter bank. However, in the
tight frame case, we can choose the filters in a manner such that the bound A does not depend on the graph structure. For
example, if the ĝk are defined continuously on the interval [0, λmax] and

∑M−1
k=0 |ĝk(λ)|2 is equal to a constant for all λ, A is not

affected by a change in the values of the Laplacian eigenvalues, e.g., from a change in the graph structure. The second quantity,
maxi,k ‖gi,k‖2, reveals the influence of the graph. The maximum `2-norm of the atoms depends on the filter design, but also, as
discussed previously in Section 4, on the graph topology. However, the bound is not local as it depends on the maximum ‖gi,k‖2
over all localizations i and filters k, which takes into account the entire graph structure.

The second bounds in (18) and (19) also suggest how the filters can be designed so as to improve the uncertainty bound. The
quantity ‖ĝk‖2 =

(∑
` |ĝk(λ`)|2

)
depends on the distribution of the eigenvalues λ`, and, as consequence, on the graph structure.

However, the distribution of the eigenvalues can be taken into account when designing the filters in order to reduce or cancel this
dependency [22].

In the following example, we compute the first uncertainty bound in (19) for different types of graphs and filters. It provides
some insight on the influence of the graph topology and filter bank design on the uncertainty bound.

Example 5. We use the techniques of [22] to construct four tight localized spectral graph filter frames for each of eight different
graphs. Figure 8 shows an examples of the four sets of filters for a 64 node sensor network. For each graph, two of the sets of
filters (b and d in Figure 8) are adapted via warping to the distribution of the graph Laplacian eigenvalues so that each filter
contains an appropriate number of eigenvalues (roughly equal in the case of translates and roughly logarithmic in the case of
wavelets). The warping avoids filters containing zero or very few eigenvalues at which the filter has a nonzero value. These tight
frames are designed such that A = N , and thus Theorem 5 yields

s∞(Agf) =
‖Agf‖∞
‖Agf‖2

≤ N− 1
2 max

i,k
‖Tigk‖2 ≤ µG max

k
||ĝk||2.

Table 1 displays the values of the first concentration bound maxi,k ‖Tigk‖2 for each graph and frame pair. The uncertainty bound
is largest when the graph is far from a regular lattice (ring or path). As expected, the worst cases are for highly inhomogeneous
graphs like the comet graph or a modified path graph with one isolated vertex. The choice of the filter bank may also decrease
or increase the bound, depending on the graph.

The uncertainty principle in Theorem 5 bounds the concentration of the graph Gabor transform coefficients. In the next
example, we examine these coefficients for a series of signals with different vertex and spectral domain localization properties.

Example 6 (Concentration of the graph Gabor coefficients for signals with varying vertex and spectral domain concentrations.).
In Figure 9, we analyze a series of signals on a random sensor network of 100 vertices. Each signal is created by localizing a

kernel ĥτ (λ) = e
− λ2

λ2max
τ2

to be centered at vertex 1 (circled in black). To generate the four different signals, we vary the value
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Graph Gabor
Filter Frame

λ

(a)

Spectrum-Adapted
Graph Gabor
Filter Frame

λ

(b)

Log-Warped
Tight Graph

Wavelet Frame

λ

(c)

Spectrum-Adapted
Tight Graph

Wavelet Frame

λ

(d)

Figure 8: Four different filter bank designs of [22], shown for a random sensor network with 64 nodes. Each colored curve is a
filter defined continuously on [0, λmax], and each filter bank has 16 such filters. They are designed such that G(λ) = 1 for all λ
(black line), and thus all four designs yield tight localized spectral graph filter frames. The frame bounds here are A = B = N .

Graph Gabor Spectrum-Adapted Log-Warped Spectrum-Adapted
Graph µG (Uniform Translates) Graph Gabor Wavelets Wavelets
Ring 0.12 0.33 0.28 0.44 0.45

Random sensor network 0.90 0.70 0.69 0.68 0.69
Random regular 0.43 0.41 0.40 0.57 0.53

Erdos Renyi 0.93 0.68 0.68 0.68 0.67
Comet 0.98 0.70 0.70 0.70 0.70
Path 0.18 0.45 0.38 0.51 0.51

Modified path: W12 = 0.1 0.48 0.69 0.66 0.57 0.58
Modified path: W12 = 0.01 0.70 0.71 0.68 0.70 0.65

Table 1: Numerical values of the uncertainty bound maxi,k ‖Tigk‖2 of Example 5 for various graphs of 64 nodes.

of the parameter τ in the heat kernel. We plot the four localized kernels in the graph spectral and vertex domains in the first
two columns, respectively. The more we “compress” ĥ in the graph spectral domain (i.e. we reduce its spectral spreading by
increasing τ ), the less concentrated the localized atom becomes in the vertex domain. The joint vertex-frequency representation
|AgT1hτ (i, k)| of each signal is shown in the third column, which illustrates the trade-off between concentration in the vertex and
the spectral domains. The concentration of these graph Gabor transform coefficients is the quantity bounded by the uncertainty
principle presented in Theorem 5. In the last row of the Figure 9, τ = ∞ which leads to a Kronecker delta for the kernel and a
constant on the vertex domain. On the contrary, when the kernel is constant, with τ = 0 (top row), the energy of the graph Gabor
coefficients stays concentrated around one vertex but spreads along all frequencies.

6 Local uncertainty principles for signals on graphs
In the previous section, we defined a global bound for the concentration of the localized spectral graph filter frame analysis
coefficients. In the classical setting, such a global bound is also local in the sense that each part of the domain has the same
structure, due to the regularity of the underlying domain. However, this is not the case for the graph setting where the domain
is irregular. Example 1 shows that a “bad” structure (a weakly connected node) in a small region of the graph reduces the
uncertainty bound even if the rest of the graph is well behaved. Functions localized near the weakly connected node can be
highly concentrated in both the vertex and frequency domains, whereas functions localized away from it are barely impacted.
Importantly, the worst case determines the global uncertainty bound. As another example, suppose one has two graphs G1 and
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τ = 0

τ = 4

τ = 10

τ =∞

Figure 9: Graph Gabor transform of four different signals fτ = T1hτ , with each row corresponding to a signal with a different
value of the parameter τ . Each of the signals is a kernel localized to vertex 1, with the kernel to be localized equal to ĥτ (λ) =

e
− λ2

λ2max
τ2

. The underlying graph is a random sensor network of 100 vertices. First column: the kernel hτ (λ) is shown in red and
the localized kernel f̂τ is shown in blue, both in the graph spectral domain. Second column: the signal fτ in the vertex domain
(the center vertex 1 is circled). Third column: |AgT1hτ (i, k)|, the absolute value of the Gabor transform coefficients for each
vertex i and each of the 20 frequency bands k. Fourth column: since it is hard to see where on the graph the transform coefficients
are concentrated when the nodes are placed on a line in the third column, we display the value

∑19
k=0 |AgT1hτ (i, k)| on each

vertex i in the network. This figure illustrates the tradeoff between the vertex and the frequency concentration.

G2 with two different structures, each of them having a different uncertainty bound. The uncertainty bound for the graph G that
is the union of these two disconnected graphs is the minimum of the uncertainty bounds of the two disconnected graphs, which
is suboptimal for one of the two graphs.

In this section, we ask the following questions. Where does this worse case happen? Can we find a local principle that
more accurately characterizes the uncertainty in other parts of the graph? In order to answer this question, we investigate the
concentration of the analysis coefficients of the frame atoms, which are localized signals in the vertex domain. This technique is
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used in the classical continuous case by Lieb [45], who defines the (cross-) ambiguity function, the STFT of a short-time Fourier
atom. The result is a joint time-frequency uncertainty principle that does not depend on the localization in time or in frequency
of the analyzed atom.

Thus, we start by generalizing to the graph setting the definition of ambiguity (or cross-ambiguity) functions from time-
frequency analysis of one-dimensional signals.

Definition 7 (Ambiguity function). The ambiguity function of a localized spectral frame D = {gi,k} = {Tigk} is defined as:

Ag(i0, k0, i, k) = AgTi0gk0(i, k) = 〈Ti0gk0 , Tigk〉

When the kernels {ĝk}k=0,1,...,M−1 are appropriately warped uniform translates, the operator Ag becomes a generalization
of the short time Fourier transform. Additionally, the ambiguity function assesses the degree of coherence (linearly dependence)
between the atoms Ti0gk0 and Tigk. In the following, we use this ambiguity function to probe locally the structure of the graph,
and derive local uncertainty principles.

6.1 Local uncertainty principle
In order to probe the local uncertainty of a graph, we take a set of localized kernels in the graph spectral domain and center them
at different local regions of the graph in the vertex domain. The atoms resulting from this construction are jointly localized in
both the vertex and graph spectral domains, where "localized" means that the values of the function are zero or close to zero away
from some reference point. By ensuring that the atoms are localized or have support within a small region of the graph, we focus
on the properties of the graph in that region. In order to get a local uncertainty principle, we apply the frame operator to these
localized atoms, and analyze the concentration of the resulting coefficients. In doing so, we develop an uncertainty principle
relating these concentrations to the local graph structure.

To prepare for the theorem, we first state a lemma that gives a hint to how the scalar product of two localized functions
depends on the graph structure and properties. In the following, we multiply two kernels ĝ and ĥ in the graph spectral domain.
For notation, we represent the product of these two kernels in vertex domain as g · h.

Lemma 3. For two kernels ĝ, ĥ and two nodes i, j, the localization operator satisfies

< Tig, Tjh > =
√
NTi(g · h)(j) (20)

and (∑
i

|< Tig, Tjh >|p
) 1
p

=
√
N‖Tj(g · h)‖p. (21)

Equation (20) shows more clearly the conditions on the kernels and nodes under which the scalar product is small. Let us take
two examples. First, suppose ĝ and ĥ have a compact support on the spectrum and do not overlap (kernels localized in different
places), then ĝ · ĥ is zero everywhere on the spectrum, and therefore the scalar product on the left-hand side of (20) is also equal
to zero. Second, assume i and j are distant from each other. Then |Ti(g · h)(j)| is small if ĝ and ĥ) are reasonably smooth. In
other words, the two atoms Tig and Tjh must be localized both in the same area of graph in the vertex domain and the same
spectral region in order for the scalar product to be large. This localization depends on the atoms, but also on the graph structure.

Proof of Lemma 3.

< Tig, Tjh > = < T̂ig, T̂jh >= N

N−1∑
`=0

ĝ(λ`)u`(i)
¯̂
h(λ`)ū`(j)

= N

N−1∑
`=0

(
ĝ · ĥ

)
(λ`)u`(i)ū`(j) =

√
NTi(g · h)(j).

19



Moreover, a direct computation shows(∑
i

|< Tig, Tjh >|p
) 1
p

=

(∑
i

∣∣∣√NTj(g · h)(i)
∣∣∣p) 1

p

= N
1
2 ‖Tj(g · h)‖p.

The following theorem provides inequalities giving a local uncertainty principle. The local bound depends of the localization
of the atom Ti0gk0 both in the graph and spectral domains. The center vertex i0 and kernel ĝk0 can be chosen to be any vertex
and kernel; however, the locality property of the uncertainty principle appears when Ti0gk0 is concentrated around node i0
in the vertex domain and around a small portion of the spectrum in the graph spectral domain. Once again, we measure the
concentration with `p-norms.

Theorem 6 (Local uncertainty). Let {Tig}{i∈[1,N ],k∈[0,M−1]} be a localized spectral graph filter frame with lower frame bound
A and upper frame bound B. For any i0 ∈ [1, N ], k0 ∈ [0,M − 1] such that ‖Ti0gk0‖2 > 0, the quantity

‖AgTi0gk0‖p =

(
M∑
k=1

N∑
i=1

|< Tigk, Ti0gk0 >|
p

) 1
p

=
√
N

(
M∑
k=1

‖Ti0(gk0 · gk)‖pp

) 1
p

(22)

satisfies for p ∈ [1,∞]

sp (AgTi0gk0) ≤
Bmin{ 1

p ,1−
1
p}‖Tĩi0,k0 gk̃i0,k0 ‖

|1− 2
p |

2

A
1
2

≤
Bmin{ 1

p ,1−
1
p}
(√

Nνĩi0,k0
‖gk̃i0,k0‖2

)|1− 2
p |

A
1
2

, (23)

where νi is defined in Lemma 1, k̃i0,k0 = arg maxk ‖Ti0(gk0 · gk)‖∞, and ĩi0,k0 = arg maxi

∣∣∣Ti0(gk0 · gk̃i0,k0 )(i)
∣∣∣.

The bound in (23) is local, because we get a different bound for each i0, k0 pair. For each such pair, the bound depends on
the quantities ĩi0,k0 , k̃i0,k0 , which are maximizers over a set of all vertices and kernels, respectively; however, as we discuss in
Example 7 below, ĩi0,k0 is typically close to i0, and k̃i0,k0 is typically close to k0. For this reason, this bound typically depends
only on local quantities.

Proof of Theorem 6. For notational brevity in this proof, we omit the indices i0, k0 for the quantities ĩ and k̃. First, note that

‖AgTi0gk0‖∞ = max
k

√
N‖Ti0(gk0 · gk)‖∞ ≤ ‖Tĩgk̃‖2‖Ti0gk0‖2,

where k̃i0,k0 = arg maxk ‖Ti0(gk0 · gk)‖∞ and ĩi0,k0 = arg mini
∣∣Ti0(gk0 · gk̃)(i)

∣∣. Let us then interpolate the two following
expressions:

‖AgTi0gk0‖2 ≤ B
1
2 ‖Ti0gk0‖2 (24)

and ‖AgTi0gk0‖∞ ≤ ‖Tĩgk̃‖2‖Ti0gk0‖2. (25)

We use the Riesz-Thorin Theorem (Theorem 8) with p1 = q1 = p2 = 2, q2 = ∞, Mp = B
1
2 and Mq = ‖Tĩgk̃‖2. Note that

Ag is a bounded operator from the Hilbert space spanned by Ti0gk0 (isomorphic to a one-dimensional Hilbert space) to the one
spanned by {Ti0gk0}i,k. We take t = 2

r2
and find r1 = 2, leading to

‖AgTi0gk0‖r2 ≤ B
1
r2 ‖Tĩgk̃‖

1− 2
r2

2 ‖Ti0gk0‖2.
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Since Ag is a frame, we also have ‖AgTi0gk0‖2 ≥ A
1
2 ‖Ti0gk0‖2, which yields:

‖AgTi0gk0‖2
||AgTi0gk0‖p

≥ A
1
2

B
1
p ‖Tĩgk̃‖

1− 2
p

2

.

Finally, thanks to Hölder’s inequality, we have for p ≤ 2 and 1
p + 1

q = 1

‖AgTi0gk0‖2
‖AgTi0gk0‖p

≤ ‖AgTi0gk0‖q
‖AgTi0gk0‖2

≤
B

1
q ‖Tĩgk̃‖

1− 2
p

2

A
1
2

≤
B1− 1

p ‖Tĩgk̃‖
2
p−1
2

A
1
2

≤
B1− 1

p

(√
Nνĩ‖gk̃‖2

) 2
p−1

A
1
2

.

The next corollary shows that in many cases, the local uncertainty inequality (23) is sharp (becomes an equality). To obtain
this, we require that the frame Ag is tight and |〈Tigk, Ti0gk0〉| is maximized when k = k0 and i = i0.

Corollary 2. Under the assumptions of Theorem 6 and, assuming additionally

1. Ag is a tight frame with frame-bound A,

2. k0 = arg maxk ‖Ti0(gk · gk0)‖∞, and

3. i0 = arg maxj |Ti0g2k0(j)|,

we have

s∞ (AgTi0gk0) =
‖AgTi0gk0‖∞
‖AgTi0gk0‖2

=
‖Ti0gk0‖2

A
1
2

. (26)

Proof. The proof follows directly from the two following equalities. For the denominators, since the frame is tight, we have:

‖AgTi0gk0‖2 = A
1
2 ‖Ti0gk0‖2.

For the numerators, we have

‖AgTi0gk0‖∞ = max
i,k
|〈Tigk, Ti0gk0〉|

=
√
N max

i,k
|Ti0(gk · gk0)(i)| (27)

=
√
N max

k
‖Ti0(gk · gk0)‖∞

=
√
N‖Ti0g2k0‖∞ (28)

=
√
N |Ti0g2k0(i0)| (29)

= 〈Ti0gk0 , Ti0gk0〉 (30)
= ‖Ti0gk0‖22,

where (27) and (30) follow from (20), (28) follows from the second hypothesis, and (29) follows from the third hypothesis.
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Corollary 3. Under the assumptions of Theorem 6, we have

s∞(AgTi0gk0) =
‖AgTi0gk0‖∞
‖AgTi0gk0‖2

≥ ‖Ti0gk0‖2
B

1
2

, (31)

which is a lower bound on the concentration measure.

Proof. We have

‖AgTi0gk0‖∞ = max
i,k
|〈Tigk, Ti0gk0〉| ≥ |〈Ti0gk0 , Ti0gk0〉| = ‖Ti0gk0‖22. (32)

Additionally, because {Tigk}i=1,2,...,N ;k=0,1,...,M−1 is a frame, we have

‖AgTi0gk0‖2 ≤ B
1
2 ‖Ti0gk0‖2. (33)

Combining (32) and (33) yields the desired inequality in (31).

Together, Theorem 6 and Corollary 3 yield lower and upper bounds on the local sparsity levels s∞(AgTi0gk0):

‖Tĩgk̃‖2
A

1
2

≥ s∞(AgTi0gk0) =
‖AgTi0gk0‖∞
‖AgTi0gk0‖2

≥ ‖Ti0gk0‖2
B

1
2

.

6.2 Illustrative examples
In order to better understand this local uncertainty principle, we illustrate it with some examples.

Example 7 (Local uncertainty on a sensor network). Let us concentrate on the case where p =∞. Theorem 6 tells us that

‖AgTi0gk0‖∞
‖AgTi0gk0‖2

≤
‖Tĩi0,k0 gk̃i0,k0 ‖2

A
1
2

≤

(√
Nνĩi0,k0

‖gk̃i0,k0 ‖2
)

A
1
2

, (34)

meaning that the concentration of AgTi0gk0 is limited by 1
‖Tĩgk̃i0,k0

‖2 . One question is to what extent this quantity is local or

reflects the local behavior of the graph. As a general illustration for this discussion, we present in Fig. 10 quantities related to
the local uncertainty of a random sensor network of 100 nodes evaluated for two different values of k (one in each column) and
all nodes i.
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Graph Gabor filter bank

First filter k0 = 0 (blue) Second Filter k0 = 1 (orange)

Local sparsity level:

s∞(AgTi0gk0) =
‖AgTi0gk0‖∞
‖AgTi0gk0‖2

Upper bound on local sparsity from
Theorem 6:

‖Tĩi0,k0 gk̃i0,k0‖2
A

1
2

Maximimizing filter index:

k̃k0,i0

Hop distance between ĩk0,i0 and i0

Lower bound on the local sparsity
from Corollary 3:

‖Ti0gk0‖2
B

1
2

Relative error between s∞(AgTi0gk0)

and B−
1
2 ‖Ti0gk0‖2:

s∞(AgTi0gk0)−B− 1
2 ‖Ti0gk0‖2

s∞(AgTi0gk0)

Figure 10: Illustration of Theorem 6 and related variables ĩ and k̃ for a random sensor graph of 100 nodes. Top figure: the 8
uniformly translated kernels {ĝk}k (in 8 different colors) defined on the spectrum and giving a tight frame. Each row corresponds
to quantities related to the local uncertainty principle. The first column concerns the kernel (filter) in blue on the top figure, the
second is associated with the orange one. On a sensor graph, the local uncertainty level (inversely proportional to the local
sparsity level plotted here) is far from constant from one node to another or from one frequency band to another.
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The first row (not counting the top figure) shows the local sparsity levels of AgTi0gk0 in terms of the `∞-norm (left hand
side of (34)) at each node of the graph. The second row shows the values of the upper bound on local sparsity for each
node of the graph (middle term of (34)). The values of both rows are strikingly close. Note that for this type of graph, local
sparsity/concentration is lowest where the nodes are well connected.

We focus now on the values of k̃ and ĩ as they are crucial in Theorem 6. We also give insights that explain when a tight bound
is obtained, as stated in Corollary 2. There is not a simple way to determine the value of k̃, because it depends not only on the
node i0 and the filters ĝk, but also on the graph Fourier basis. However, the definition k̃ = arg maxk ‖Ti0(gk · gk0)‖∞ implies
that the two kernels ĝk̃ and ĝk0 have to overlap “as much as possible” in the graph Fourier domain in order to maximize the
infinity-norm. In the case of a Gabor filter bank like the one presented in the first line of Fig. 10, k0 = k̃ for most of the nodes.
This happens because the filters ĝk and ĝk0 do not overlap much if k 6= k0, i.e when

‖ĝk0
2‖22 =

∑
`

(
ĝk0

2
(λ`)

)2
»
∑
`

(ĝk0(λ`)ĝk(λ`))
2

= ‖ĝk · ĝk0‖22.

In fact, in the case of Fig. 10, k̃ is bounded between k0 − 1 and k0 + 1 because there is no overlap with the other filters. In
Fig. 10, we plot k̃(i) for k0 = 0 and k0 = 1. For the first filter, we have k̃i0,k0 = k0 for all vertices i0. The second filter follows
the same rule except for two nodes. The isolated node on the north east is less connected to the rest and there is a Laplacian
eigenvector well localized on it. As a consequence, the localization on the graph is affected in a counter-intuitive manner.

Let us now concentrate on the second important variable: ĩ. Under the assumption that the kernels ĝk are smooth, the energy
of localized atoms Ti0gk reside inside a ball centered at i0 [23]. Thus, the node j maximizing |Ti0(gk0gk̃)(j)| cannot be far
from the node i0. Let us define the hop distance hG(i, j) as the length of the shortest path2 between nodes i and j. If the kernels
ĝk are polynomial functions of order K, the localization operator Ti0 concentrates all of the energy of Ti0gk inside a K-radius
ball centered in i0. Since the resulting kernel ĝk0 ĝk̃ is a polynomial of order 2K, ĩ will be at a distance of at most of 2K hops
from the node i0. In general, ĩ is close to i0. In fact, the distance hG(i, ĩ) is related to the smoothness of the kernel ĝk0 ĝk̃ [23].
To illustrate this effect, we present in Fig. 11 the average and maximum hop distance hG(i, ĩ). In this example, we control the
concentration of a kernel ĝ with a dilation parameter a: ĝa(x) = ĝ(ax). Increasing a compresses the kernel in the Fourier
domain and increases the spread of the localized atoms in the vertex domain. Note that even for high spectral compression, the
hop distance hG(i, ĩ) remains low. Additionally, we also compute the mean relative error between ‖Tig2‖∞ and |Tig2(i)|. This
quantity asserts how well ‖Tig‖22 estimates ‖Tig2‖∞.3 Returning to Fig. 10, the fourth row shows the hop distance between i0
and ĩ. It never exceed 3 for both the first and the second filter, which is a good sign of locality.

In practice we can not always determine the values of k̃ and ĩ, but as we have seen, the quantity B−
1
2 ‖Tigk0‖2 may still be

a good estimate of the local sparsity level. Row 5 of Fig. 10 shows these estimates, and the last row shows the relative error
between these estimates and the actual local sparsity levels. We observe that for the first kernel, the estimate gives a sufficiently
rough approximation of the local sparsity levels. For the second kernel, the approximation error is low for most of the nodes, but
not all.

In the next example, we compare the local and global uncertainty principles on a modified path graph.

Example 8. On a 64 node modified path graph (see Example 1 for details), we compute the graph Gabor transform of the signals
f1 = T1g0 and f2 = T64g0. In Figure 12, we show the evolution of the graph Gabor transforms of the two signals with respect to
the distance d = 1/W12 from the first to the second vertex in the graph. As the first node is pulled away, a localized eigenvector
appears centered on the isolated vertex. Because of this, as this distance increases, the signal f1 becomes concentrated in both
the vertex and graph spectral domains, leading to graph Gabor transform coefficients that are highly concentrated (see the top
right plot in Fig. 12). However, since the graph modification is local, it does not drastically affect the graph Gabor transform
coefficients of the signal f2 (middle row of Fig. 12), whose energy is concentrated on the far end of the path graph.

2A path in a graph is a tuple of vertices (v1, v2, ..., vp) with the property that [vi, vi+p] ∈ E for 1 ≤ i ≤ p− 1. Two nodes vi, vj are connected by a path
if there is exist such tuple with v1 = vi and vp = vj . The length of a path is defined as the cardinality of the path tuple minus one.

3From Lemma 3, when ‖Tig
2‖∞ = |Tig

2(i)|, then ‖Tig
2‖∞ = ‖Tig‖22.
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a meani
‖Tig‖∞−|Tig(i)|

‖Tig‖∞ in % meani hG (̃i, i) maxi hG (̃i, i)

Heat kernel
0.1 0 0 0
0.2 0 0 0
0.5 2.01 0.28 1
1 5.87 0.89 2
2 7.45 1.39 3
5 8.59 2.04 4

10 2.63 2.08 4
Wavelet kernel

0.1 0 0 0
0.2 0 0 0
0.5 9.03 0.62 1
1 10.99 1.07 2
2 17.69 1.67 3
5 29.67 2.07 4

10 33.45 2.48 6

Figure 11: Localization experiment using the sensor graph of Fig. 10. The heat kernel is defined as ĝ(ax) = e−
10·ax
λmax and the

wavelet kernel ĝ(ax) =
√

40 · ax · e−
40·ax
λmax . For a smooth kernel ĝ, the hop distance hG between i and ĩ = arg maxj |Tig(j)| is

small.

In Figure 13, we plot the evolution of the uncertainty bounds as well as the concentration of the Gabor transform coefficients
of f1 and f2. The global uncertainty bound from Theorem 5 tells us that

s1(Agf) ≤ max
i,k
||Tigk||2, for any signal f.

The local uncertainty bound from Theorem 6 tells us that

s1(AgTi0gk0) ≤ ||Tĩi0,k0 gk̃i0,k0 ||2, for all i0 and k0.

Thus, we can view the global uncertainty bound as an upper bound on all of the local uncertainty bounds. In fact the bumps in
the global uncertainty bound in Figure 13 correspond to the local bound with i0 = 1 and different frequency bands k0. We plot
the local bounds for i0 = 1 and k0 = 0 and k0 = 2.

6.3 Single kernel analysis
Let us focus on the case where we analyze a single kernel ĝ. Such an analysis is relevant when we model the signal as a linear
combination of different localizations of a single kernel:

f(n) =

N∑
i=1

wiTig(n)

This model has been proposed in different contributions [62, 63, 64], and has also been used as an interpolation model, e.g., in
[65] and [24, Section V.C]. In this case, we could ask the following question. If we measure the signal value at node j, how much
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d = 1 d ≈ 11 d ≈ 17 d = 27 d = 81

f1 = T1g0

f2 = T64g0

f1 = T1g0
Vertex
domain

Figure 12: Graph Gabor transforms of f1 = T1g0 and f2 = T64g0 for 5 different distances between vertices 1 and 2 of the
modified path graph. The distance d = 1/W12 is the inverse of the weight of the edge connecting the first two vertices in the
path. The node 64 is not affected by the change in the graph structure, because its energy is concentrated on the opposite side
of the path graph. The graph Gabor coefficients of f1, however, become highly concentrated as a graph Laplacian eigenvector
becomes localized on vertex 1 as the distance increases. The bottom row shows that as the distance between the first two vertices
increases, the atom T1g0 also converges to a Kronecker delta centered on vertex 1.

Figure 13: Concentration of the graph Gabor coefficients of f1 = T1g0 and f2 = T64g0 with respect to the distance between
the first two vertices in the modified path graph, along with the upper bounds on this concentration from Theorem 5 (global
uncertainty) and Theorem 6 (local uncertainty). Each bump of the global bound corresponds to a local bound of a given spectral
band of node 1. For clarity, we plot only bands ĝ0 and ĝ2 for node 1. For node 64, the local bound is barely affected by the
change in graph structure, and the sparsity levels of the graph Gabor transform coefficients of T64g0 also do not change much.

information do we get about wj? We can answer this by looking at the overlap between the atom Tjg and the other atoms. When
Tjg has a large overlap with the other atoms, the value of f(j) does not tell us much about wj . However, in the case where Tjg
has a very small overlap with the other atoms (an isolated node for example), knowing f(j) gives an excellent approximation for
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the value of wj . The following theorem uses the sparsity level of g(L)Tjg to analyze the overlap between the atom Tjg and the
other atoms.

Theorem 7. For a kernel ĝ, the overlap between the atom localized to center vertex j and the other atoms satisfies

Op(j) =
(
∑
i |< Tig, Tjg >|p)

1
p(∑

i |< Tig, Tjg >|2
) 1

2

=
||g(L)Tjg‖p
||g(L)Tjg‖2

=
‖Tjg2‖p
‖Tjg2‖2

Proof. This result follows directly from the application of (21) in Lemma 3.

6.4 Application: non-uniform sampling
Example 9 (Non-uniform sampling for graph inpainting). In order to motivate Theorem 7 from a practical signal processing
point of view, we use it to optimize the sampling of a signal over a graph. To asses the quality of the sampling, we solve a small
inpainting problem where only a part of a signal is measured and the goal is to reconstruct the entire signal. Assuming that the
signal varies smoothly in the vertex domain, we can formulate the inverse problem as:

argmin
x

xTLx s. t. y = Mx, (35)

where y is the observed signal, M the inpainting masking operator and xTLx the graph Tikhonov regularizer (L being the
Laplacian). In order to generate the original signal, we filter Gaussian noise on the graph with a low pass kernel ĥ. The
frequency content of the resulting signal will be close to the shape of the filter ĥ. For this example, we use the low pass kernel
ĥ(x) = 1

1+ 100
λmax

x
to generate the smooth signal.

For a given number of measurements, the traditional idea is to randomly sample the graph. Under that strategy, the mea-
surements are distributed across the network. Alternatively, we can use our local uncertainty principles to create an adapted
mask. The intuitive idea that nodes with less uncertainty (higher local sparsity values) should be sampled with higher probability
because their value can be inferred less easily from other nodes. Another way to picture this fact is the following. Imagine that
we want to infer a quantity over a random sensor network. In the more densely populated parts of the network, the measurements
are more correlated and redundant. As result, a lower sampling rate is necessary. On the contrary, in the parts where there are
fewer sensors, the information has less redundancy and a higher sampling rate is necessary. The heat kernel ĝ(x) = e−τx is a
convenient choice to probe the local uncertainty of a graph, because ĝ2(x) = e−2τx is also a heat kernel, resulting in a sparsity
level depending only on ‖Tjg2‖2. Indeed we have ‖Tjg2‖1 =

√
N . The local uncertainty bound of Theorem 7 becomes:

O1(j) =
‖Tjg2‖1
‖Tjg2‖2

=

√
N

‖Tjg2‖2
.

Based on this measure, we design a second random sampled mask with a probability proportional to ‖Tig2‖2; that is, the higher
the overlap level at vertex j, the smaller the probability that vertex j is chosen as a sampling point, and vice-versa. For each
sampling ratio, we performed 100 experiments and averaged the results. For each experiment, we also randomly generated
new graphs. The experiment was carried out using open-source code: the UNLocBoX [66] and the GSPBox [67]. Figure 14
presents the result of this experiment for a sensor graph and a community graph. In the sensor graph, we observe that our local
measure of uncertainty varies smoothly on the graph and is higher in the more dense part. Thus, the likelihood of sampling
poorly connected vertices is higher than the likelihood of sampling well connected vertices. In the community graph, we observe
that the uncertainty is highly related to the size of the community. The larger the community, the larger the uncertainty (or,
equivalently, the smaller the local sparsity value). In both cases, the adapted, non-uniform random sampling performs better
than random uniform sampling.

Other works are also starting to use uncertainty principles to develop sampling theory for signals on graphs. In [68], the
cumulative coherence is used to optimize the sampling distribution. This can be seen as sampling proportionally to ‖Tig‖22,
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‖Tig‖2 ∝ sampling distribution
(Sensor network)

(a)

‖Tig‖2 ∝ sampling distribution
(Community graph)

(b)

Reconstruction error
(Sensor network)

(c)

Reconstruction error
(Community graph)

(d)

Smooth signal

(e)

Sample locations
(Uniform sampling)

(f)

Sample locations
(Non-uniform sampling)

(g)

Reconstruction
(Uniform sampling)

(h)

Reconstruction
(Non-uniform sampling)

(i)

Figure 14: Comparison of random uniform sampling and random non-uniform sampling according to a distribution based on the
local sparsity values. Top row: (a)-(b) The random non-uniform sampling distribution is proportional to ‖Tig‖2 (for different
values of i), which is shown here for sensor and community graphs with 300 vertices. (c)-(d) the errors resulting from using
the different sampling methods on each graph, with the reconstruction in (35). Bottom row: an example of a single inpainting
experiment. (e) the smooth signal, (f)-(g) the locations selected randomly according to the uniform and non-uniform sampling
distributions, (h)-(i) the reconstructions resulting from the two different sets of samples.

where ĝ is a specific rectangular kernel, in order to minimize the cumulative coherence of band-limited signals. In [40], Tsitsvero
et al. make a link between uncertainty and sampling to obtain a non-probabilistic sampling method. While non-uniform random
sampling is only an illustrative example in this paper, we are currently working on a separate contribution that uses our uncertainty
theory to optimize sampling.

7 Conclusion
The global uncertainty principles discussed in Section 3 may be less informative when applied to signals residing on inhomoge-
neous graphs, because the structure of a specific area of the graph can affect global quantities such as the coherence µG , which
play a key role in the uncertainty bounds. Our main contribution was to suggest a new way of considering uncertainty by incor-
porating a notion of locality; specifically, we focused on the concentration of the analysis coefficients under a linear transform
whose dictionary atoms are generated by localizing kernels defined in the graph spectral domain to different areas of the graph.
The equivalent physical approach would be to say that the uncertainty on the measurements depends on the medium where the
particle is located. Comparing the first inequality in (23) from the local uncertainty Theorem 6 with the first inequality in (18)
from the global uncertainty Theorem 5, we see that the latter global bound can be viewed as the maximum of the local bounds
over all regions of the graph and all regions of the spectrum.4 This supports our view that the benefit of the global uncertainty

4The leading constants in the middle terms of (18) and (23) are equal for p > 2. When p < 2, there is a constant factor
(

B
A

) 1
2
− 1
p ≥ 1 between the two

bounds. This factor is equal to 1 in the case of a tight frame (A = B).
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principle is restricted to the behavior in the region of the graph with the least favorable structure. The local uncertainty principle,
on the other hand, provides information about each region of the graph separately.

The key quantities {||Tigk||2}i,k appear in both the global and local uncertainty principles. While we know that smoother
kernels ĝk lead to atoms of the form Tigk being more concentrated in the vertex domain, further study of the norms of these
atoms is merited, as they seem to carry some notions of both uncertainty and centrality.

Finally, we showed in Example 9 how this local notion of uncertainty can be used constructively in the context of a sampling
and interpolation experiment. The uncertainty quantities suggest to sample non-uniformly, often with higher weight given to less
connected vertices. We envision future work applying these local uncertainty principles to other signal processing tasks, as well
as extending the notion of local uncertainty to other types of dictionaries for graph signals.
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8 Appendix

8.1 Hausdorff-Young inequalities for graph signals
To prove the Hausdorff-Young inequalities for graph signals, we start by restating the Riesz-Thorin interpolation theorem, which
can be found in [43, Section IX.4]. This theorem is valid for any measure spaces with σ-finite measures, and hence in the finite
dimensional case.

Theorem 8 (Riesz-Thorin). Assume T is a bounded linear operator from `p1 to `p2 and from `q1 to `q2 ; i.e., there exist constants
Mp and Mq such that

‖T f‖p2 ≤Mp‖f‖p1 and ‖T f‖q2 ≤Mq‖f‖q1 .

Then for any t between 0 and 1, T is also a bounded operator from `r1 to `r2 :

‖T f‖r2 ≤Mr‖f‖r1 ,

with
1

r1
=

t

p1
+

1− t
q1

,
1

r2
=

t

p2
+

1− t
q2

,

and
Mr = M t

pM
1−t
q .

We shall also need the following reverse form of the result:

Corollary 4. Assume T is a bounded invertible linear operator from `p1 to `p2 and from `q1 to `q2 , with bounded left-inverse
from `p2 to `p1 and from `q2 to `q1 ; i.e., there exist constants Np and Nq such that

‖T −1g‖p1 ≤ Np‖g‖p2 and ‖T −1g‖q1 ≤ Nq‖g‖q2 , (36)

or, equivalently, there exist constants Mp and Mq such that

‖T f‖p2 ≥Mp‖f‖p1 and ‖T f‖q2 ≥Mq‖f‖q1 . (37)

Then for any t between 0 and 1,

‖T f‖r2 ≥Mr‖f‖r1 , (38)
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with
1

r1
=

t

p1
+

1− t
q1

,
1

r2
=

t

p2
+

1− t
q2

,

and
Mr = M t

pM
1−t
q .

Proof. If T is invertible and has a left-inverse T −1 that satisfies T −1T f = f for all f , then the equivalence of (36) and (37)
follows from taking g = T f , f = T −1g, Mp = N−1p , and Mq = N−1q . The proof of (38) follows from the application of
Theorem 8, with T replaced by T −1 and f by T f .

Proof of Theorem 2 (Hausdorff-Young inequalities for graph signals). First, we have the Parseval equality ‖f‖22 = ‖f̂‖22. Sec-
ond, we have

‖f̂‖∞ = max
`

∣∣∣∣∣
N∑
n=1

u∗` (n)f(n)

∣∣∣∣∣ ≤ max
`

N∑
n=1

|u∗` (n)f(n)| ≤ µG
N∑
n=1

|f(n)| = µG‖f‖1.

Applying the Riesz-Thorin theorem with p1 = 2, p2 = 2, Mp = 1, q1 = 1, q2 =∞, Mq = µG , t = 2
q , r1 = p, and r2 = q leads

to the first inequality (8). The proof of the converse is similar, as we have

‖f‖∞ = max
i

∣∣∣∣∣
N−1∑
`=0

u`(i)f̂(`)

∣∣∣∣∣ ≤ max
i

N−1∑
`=0

∣∣∣u`(i)f̂(`)
∣∣∣ ≤ µG N−1∑

`=0

|f̂(`)| = µG‖f̂‖1.

The graph Fourier transform is invertible, so (9) then follows from Corollary 4, with p1 = ∞, p2 = 1, Mp = µ−1G , q1 = 2,
q2 = 2, Mq = 1, t = 2

q − 1, r1 = p, and r2 = q.

8.2 Variations of Lieb’s uncertainty principle
8.2.1 Generalization of Lieb’s uncertainty principle to frames

Proof of Theorem 4. Let D = {gi,k} be a frame of atoms in CN , with lower and upper frame bounds A and B, respectively. We
show the following two inequalities, which together yield (17). First, for any signal f ∈ CN and any p ≥ 2,

sp(ADf) =
‖ADf‖p
‖ADf‖2

≤ B
1
p

A
1
2

(
max
i,k
‖gi,k‖2

)1− 2
p

(39)

Second, for any signal f ∈ CN and any 1 ≤ p ≤ 2,

1

sp(ADf)
=
‖ADf‖p
‖ADf‖2

≥ A
1
p

B
1
2

(
max
i,k
‖gi,k‖2

)1− 2
p

(40)

For any f , the frame D satisfies √
A‖f‖2 ≤ ‖ADf‖2 ≤

√
B‖f‖2. (41)

The computation of the sup-norm gives

‖ADf‖∞ = max
i,k
|〈f, gi,k〉| ≤ ‖f‖2 max

i,k
‖gi,k‖2. (42)

From (41), AD is a linear bounded operator form `2 to `2 by
√
B. Similarly, from (42), this operator is also bounded from `2 to

`∞ by maxi,k ‖gi,k‖2. Interpolating between `2 and `∞ with the Riesz-Thorin theorem leads to

‖ADf‖p ≤ B
1
p

(
max
i,k
‖gi,k‖2

)1− 2
p

‖f‖2. (43)
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We combine (41) and (43) to obtain (39). The second inequality (40) is obtained using the following instance of Hölder’s
inequality:

‖ADf‖22 ≤ ‖ADf‖∞‖ADf‖1,
which implies that

‖ADf‖1 ≥
‖ADf‖22
‖ADf‖∞

≥ A‖f‖2
maxi,k ‖gi,k‖2

. (44)

We then use Corollary 4, the converse of Riesz-Thorin, to interpolate between (44) and (41), and we find for p ∈ [1, 2]:

‖ADf‖p ≥ A
1
p

(
max
i,k
‖gi,k‖2

)1− 2
p

‖f‖2. (45)

Combining (45) with the second inequality in (41) yields (40).

8.2.2 Discrete version of Lieb’s uncertainty principle

Proof of Theorem 3. Theorem 3 is actually a particular case of Theorem 4. To see why, we need to understand the transfor-
mation between the graph framework used in this contribution and the classical discrete periodic case. The DFT basis vectors{
uk(n) = 1√

N
exp

(
i2πkn
N

)}
k=0,1,...,N−1

can also be chosen as the eigenvectors of the graph Laplacian for a ring graph with

N vertices [69]. The frequencies of the DFT, which correspond up to a sign to the inverse of the period of the eigenvectors, are
not the same as the graph Laplacian eigenvalues on the ring graph, which are all positive. We can, however, form a bijection
between the set σ(L) of graph Laplacian eigenvalues and the set of N frequencies of the DFT, by associating one member from
each set sharing the same eigenvector. At this point, instead of considering graph filters as continuous functions evaluated on the
Laplacian eigenvalues, we can define a graph filter as a mapping from each individual eigenvalue to a complex number. Note that
an eigenvalue with multiplicity 2 can have two different outputs (e.g., λ3 = λ4 = 1, but the filter has different values at λ3 and
λ4). With this bijection and view of the graph spectral domain, we can recover the classical discrete periodic setting by forming
a ring graph with N vertices. Because the classical translation and modulation preserve 2-norms, the discrete windowed Fourier
atoms of the form

gu,k[n] = g[n− u] exp

(
i2πkn

N

)
all have the same norm ||g||2. Together these N2 atoms comprise a tight frame on the ring graph with frame bounds A = B =
N‖g‖22. Inserting these values into (15) and (16) yields (13) and (14).

For the case of p ≥ 2, we also provide an alternative direct proof following similar ideas to those used in Lieb’s proof for
the continuous case [45]. The arguments below follow the sketch of the proof of Proposition 2 in [61] and supporting personal
communication from Bruno Torrésani. We need two lemmas. The first one is a direct application of Theorem 2, where here
µG = 1/

√
N .

Lemma 4. Let f ∈ CN and p be the Hölder conjugate of p′ ( 1p + 1
p′ = 1). Then for 1 ≤ p ≤ 2, we have

‖f̂‖p′ ≤ N
1
p′−

1
2 ‖f‖p.

Conversely, for 2 ≤ p ≤ ∞, we have
‖f̂‖p′ ≥ N

1
p′−

1
2 ‖f‖p.

The second lemma is an equivalent of Young’s inequality in the discrete case. We denote the circular convolution between
two discrete signals f, g by f ∗ g. The circular convolution satisfies f̂ ∗ g = f̂ · ĝ.

Lemma 5. Let f ∈ Lp, g ∈ Lq , where 1 ≤ p, q, r ≤ ∞ satisfy 1 + 1
r = 1

p + 1
q . Then

‖f ∗ g‖r ≤ ‖f‖p‖g‖q.
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Proof. The proof is based on the following inequalities [70, p. 174]

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1 (46)
‖f ∗ g‖∞ ≤ ‖f‖∞‖g‖1 (47)
‖f ∗ g‖∞ ≤ ‖f‖p‖g‖p′ , (48)

where 1
p + 1

p′ = 1. For a fixed function g ∈ Lq , we define an operator Tg by (Tgf)(n) = (f ∗ g)(n). Using (46) and (47), we
observe that this operator is bounded from L1 to L1 by ‖g‖1 and from L∞ to L∞ by ‖g‖1. Thus, we can apply the Riesz-Thorin
theorem to this operator to get

‖f ∗ g‖p ≤ ‖f‖p‖g‖1. (49)

Similarly, for a fixed function f ∈ Lp, we define another operator Tf by (Tfg)(n) = (f ∗ g)(n). From (49) and (48), we observe
that this new operator is bounded from L1 to Lp by ‖f‖p and from Lp

′
to L∞ by ‖f‖p. One more application of the Riesz-Thorin

theorem leads to the desired result:
‖f ∗ g‖r ≤ ‖f‖p‖g‖q,

where 1 + 1
r = 1

p + 1
q .

Alternative proof of Theorem 3 for the case p ≥ 2. Suppose p > 2 and let 1
p + 1

p′ = 1. We denote the DFT by F . Noting that
p
p′ > 1, we have

‖ADDWFT
f‖pp =

N∑
u=1

N−1∑
k=0

|ADDWFT
f [u, k]|p

= N
p
2

N∑
u=1

N−1∑
k=0

|F{f [·]g[u− ·]}[k]|p

= N
p
2

N∑
u=1

‖F{f [·]g[u− ·]}‖pp

≤ N
p
2

N∑
u=1

N
p
p′−

p
2 ‖f [·]g[u− ·]‖pp′ (50)

= N
p− p

p′

N∑
u=1

(
N∑
n=1

|f [n]g[u− n]|p
′

) p
p′

= N
p− p

p′

N∑
u=1

(
N∑
n=1

|fp
′
[n]||gp

′
[u− n]|

) p
p′

= N
p− p

p′

N∑
u=1

(
(|fp

′
| ∗ |gp

′
|)[u]

) p
p′

= N
p− p

p′
∥∥∥|fp′ | ∗ |gp′ |∥∥∥ p

p′

p
p′

≤ N
p− p

p′ ‖fp
′
‖
p
p′
α ‖gp

′
‖
p
p′

β (51)

= N‖fp
′
‖
p
p′
α ‖gp

′
‖
p
p′

β ,
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for any 1 ≤ α, β ≤ ∞ satisfying 1
α + 1

β = p′. Equation (50) follows from the Hausdorff-Young inequality given in Lemma 4
and (51) follows from the Young inequality given in Lemma 5 with r = p

p′ . Now we can perform a change variable a = αp′ and
b = βp′ so that 1

a + 1
b = 1, and (51) becomes

‖ADDWFT
f‖pp ≤ N‖fp

′
‖
p
p′
α ‖gp

′
‖
p
p′

β = N‖f‖pa‖g‖
p
b . (52)

Finally, we take a = b = 2 and take the pth root of (52) to show the first half of Theorem 3. Note that we cannot follow the same
line of logic for the case 1 ≤ p ≤ 2 without a converse of the Young’s inequality in Lemma 5.
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