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Abstract—Representing data residing on a graph as a linear
combination of building block signals can enable efficient and
insightful visual or statistical analysis of the data, and such
representations prove useful as regularizers in signal processing
and machine learning tasks. Designing collections of building
block signals – or more formally, dictionaries of atoms – that
specifically account for the underlying graph structure as well as
any available representative training signals has been an active
area of research over the last decade. In this article, we survey a
particular class of dictionaries called localized spectral graph
filter frames, whose atoms are created by localizing spectral
patterns to different regions of the graph. After showing how
this class encompasses a variety of approaches from spectral
graph wavelets to graph filter banks, we focus on the two main
questions of how to design the spectral filters and how to select the
center vertices to which the patterns are localized. Throughout,
we emphasize computationally efficient methods that ensure the
resulting transforms and their inverses can be applied to data
residing on large, sparse graphs. We demonstrate how this class of
transform methods can be used in signal processing tasks such
as denoising and non-linear approximation, and provide code
for readers to experiment with these methods in new application
domains.

I. INTRODUCTION: DICTIONARIES OF GRAPH SIGNALS

A major line of work in graph signal processing [1], [2] over
the past ten years has been to design new transform methods
that account for the underlying graph structure in order to
identify and exploit structure in data residing on a connected,
weighted, undirected graph. The most common approach is to
construct a dictionary of atoms (building block signals), and
represent the graph signal of interest as a linear combination
of these atoms. Such representations enable visual analysis of
data, statistical analysis of data, and data compression, and
can also be leveraged as regularizers in machine learning and
ill-posed inverse problems such as inpainting, denoising, and
classification.

In general, desirable properties when designing dictionaries
for graph signals include: (i) the atoms have an interpretable
form that accounts for the underlying graph structure, so that
the inner products between a graph signal and each atom are
informative; (ii) the dictionary comprises an orthonormal basis
or tight frame for the signal space, so that the contribution of
each atom can be computed via an inner product with the
graph signal, and the energy of the graph signal is equal to a
constant multiple of the energy of the transform coefficients;

MATLAB code for all figures and numerical experiments in this paper is
available at http://www.macalester.edu/∼dshuman1/publications.html.

(iii) it is numerically efficient to apply the dictionary analysis
and synthesis operators (forward and inverse transforms); and
(iv) signals of certain mathematical classes can be represented
exactly or approximately as sparse linear combinations of a
subset of the dictionary atoms.

By our count, approximately 100 conference and journal
articles written in the last decade have introduced new dic-
tionaries for graph signals. These include designs for analytic
dictionaries that are adapted to the graph structure but not any
specific training data, as well as techniques for learning dictio-
naries from training data. Some broad classes of dictionaries
include graph Fourier transforms; windowed graph Fourier
transforms (e.g., [3]); vertex domain designs including spatial
wavelets (e.g., [4], [5]), hierarchical trees (e.g., [6]), lifting
transforms (e.g., [7]), and top-down approaches (e.g., [8], [9]);
diffusion-based designs (e.g., [10]); spectral domain designs
(e.g., [11]); pyramid transforms (e.g., [12]); and generalized
filter banks (e.g., [13]–[16]). Despite, or perhaps because of,
the number of new dictionary designs for graph signals, it
remains difficult to identify which dictionary might be best
suited for a specific task, or to understand subtle qualitative
tradeoffs when specifying the parameters of a given dictionary
construction.

In this survey, we restrict our attention to localized spectral
graph filter frames, whose atoms are created by localizing
patterns (spectral filters) to different regions of the graph. The
seminal example of a dictionary of such atoms is spectral
graph wavelets [11]. However, localized spectral graph filter
frames are broad in their scope, including more recently pro-
posed methods such as single-level filter banks for graph sig-
nals [14]–[25], variational or interpolating splines [26], [27],
frames adapted to training data [28], [29], frame construc-
tions for general graph signals [30]–[33], frame constructions
tailored to specific applications such as fMRI data analysis
[34]–[36] or community mining [37], “natural” wavelets [38],
and even some vertex domain constructions [4], [5].1 Our
motivations for examining these dictionaries include (i) the
design framework is flexible - it can yield highly redundant
dictionaries to sparsely represent graph signals or new bases
to efficiently extract structure from data on graphs, and it can
also incorporate representative training signals when they are

1While diffusion wavelets [10] likely inspired many of these dictionaries,
diffusion wavelets do not technically fit into the localized spectral graph
filter dictionary framework outlined in Sec. II due to the additional step of
numerically orthogonalizing the atoms.

http://www.macalester.edu/~dshuman1/publications.html
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Fig. 1. Localized spectral graph filter frame atoms. (a)-(c) Three different filters/patterns localized to the same center vertex. (c)-(e) The same filter/pattern
localized to three different center vertices.

available; (ii) the atoms have a physically interpretable struc-
ture and their closed form definition opens the door to formal
mathematical analysis; and (iii) fast numerical approximations
exist to efficiently apply these dictionary transforms and their
inverses to data residing on large, sparse graphs, which are
increasingly common in signal processing and machine learn-
ing applications. Due to the multiscale and localized structure
of their atoms, these dictionaries are particularly relevant for
applications where interesting phenomena are expressed in
discontinuities or quick changes in signal values in smaller
regions of the graph, analogous to edges in images.

The organization of the article is as follows. In the next
section, we detail a unifying framework for localized spectral
graph filter dictionaries. We survey the key design consider-
ations for this class of dictionaries in Section III (design of
the spectral filters) and Section IV (selection of the center
vertices). In Section V, we review recent work on theoretical
considerations and metrics that inform the design of these
dictionaries. In Sections VI and VII, we pose specific high-
level questions that get to the heart of the “where do we start
when specifying a dictionary?” issue, attempt to answer these
questions with new numerical comparisons and qualitative
insights, and discuss how these comparisons inform future
work in the area.

II. DICTIONARIES OF LOCALIZED SPECTRAL PATTERNS

Keeping with the notation of [1], we consider data residing
on a connected, weighted, undirected graph G = {V, E ,W}
characterized by a finite set of vertices V with |V| = N , a set
of edges E , and a weighted adjacency matrix W. A signal or
function f : V → R defined on the vertices of the graph may
be represented as a vector f ∈ RN , where the ith element of
the vector f represents the graph signal value at vertex i in V .

The dictionaries we consider feature atoms of the form

ϕi,j := Tigj := ĝj(L)δi = Uĝj(Λ)U∗δi. (1)

In (1), δi is a graph signal with a value of 1 at vertex i and 0
elsewhere, L = D−W = UΛU∗ is the (combinatorial) graph
Laplacian, the columns of U are the orthogonal eigenvectors
of L, the ∗ symbol denotes conjugate transpose, and Λ is a di-
agonal matrix whose `th diagonal element λ` is the eigenvalue

of L associated with the eigenvector u`, the `th column of U.2

Each spectral graph filter or kernel ĝj(·) is a function from
σ(L) = {λ0, λ1, . . . , λN−1}, the set of Laplacian eigenvalues,
to the real numbers. Thus, ĝj(Λ) is a diagonal matrix with
the `th diagonal entry equal to ĝj(λ`). In practice, these filter
functions are often defined on the continuous range [0, λ̄],
where 0 = λ0 ≤ λ1 ≤ . . . ≤ λN−1 = λmax ≤ λ̄.

At a more intuitive level, we can think of each spectral
graph filter ĝj(·) as defining a spectral pattern that is localized
to different regions of the graph, with vertex i being the center
of the localized pattern ϕi,j = Tigj . As an extreme example, if
the spectral pattern is ĝ(λ`) = 1 for all λ`, then the localized
pattern centered at vertex i is Tig = UU∗δi = δi. Fig. 1
displays more localized spectral patterns on the Stanford bunny
graph [39].

We refer to a collection of atoms of the form (1) as a
localized spectral graph filter dictionary (LSGFD), denoted
by

D = {Tigj}j=1,2,...,J;i∈Vj . (2)

In (2), Vj ⊆ V is the set of center vertices to which the jth
spectral pattern ĝj(·) is localized, and each atom ϕi,j = Tigj
is a graph signal in RN . Therefore, to fully specify a LSGFD
D, we need to answer the following questions, which are the
focus of the next two sections, respectively:

1) How many spectral patterns should we use, and what
should those patterns be? That is, we must specify
the number of filters, J , and the form of the filters
{ĝ1(·), ĝ2(·), . . . , ĝJ(·)}.

2) For each spectral pattern ĝj(·), how many center vertices
should the pattern be localized to, and which vertices
should those be? That is, we must specify the sets Vj for
each j.

In specifying the spectral patterns and sets of center vertices
for LSGFDs, it is also important to keep in mind (i) what
information is available, and (ii) the graph size. In all cases

2While we use the combinatorial (non-normalized) graph Laplacian L
throughout, the ideas we discuss apply to dictionaries comprised of atoms
of the form (1) with the graph Fourier basis U chosen as the eigenvectors of
other symmetric generalized graph Laplacian operators such as the normalized
graph Laplacian Lnorm = D−

1
2 LD−

1
2 .
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in this survey, we assume the underlying graph structure G is
known, although learning graph structures is a vibrant area of
ongoing research (see, e.g., [40], [41] and references therein).
In terms of data available in the design of the dictionary, there
are three possibilities: (i) no data is available (the default
unless otherwise specified), (ii) the design of the dictionary
atoms may also take into account a set of one or more specific
graph signals that are to be analyzed by the dictionary (we
refer to the resulting dictionaries as signal-adapted), and (iii)
a set of training data is available to learn parameters of the
LSGFD, but the dictionary is then used to analyze a different
set of (presumably similar) graph signals.

For small to medium sized graphs (say on the order of
10,000 or fewer vertices), the full Laplacian eigendecomposi-
tion L = UΛU∗ can be computed, and therefore the exact
Laplacian eigenvectors and eigenvalues can be used in the
dictionary design. For larger graphs, however, it may not be
tractable to perform this decomposition, and we therefore put
an emphasis in the next two sections on methods that do not re-
quire these quantities. Without the Laplacian eigenvectors, we
almost always need an estimate of the maximum eigenvalue
λmax via, e.g., a few steps of the Lanczos algorithm [42] or a
closed form upper bound on it. For example, λ̄ can be taken
to be the maximum sum of the degrees of any two vertices
connected by an edge, λmax ≤ max{(m,n)∈E}{d(m) + d(n)},
where d(n) is the degree of vertex n [43], [44, Cor. 3.2].

In addition to obtaining a fast estimate for the spectral
range [0, λmax], it is often also beneficial to estimate the
distribution of the Laplacian eigenvalues over the spectral
range. Specifically, the cumulative spectral density function
or empirical spectral cumulative distribution of L, defined as

Pλ(z) :=
1

N

N−1∑
`=0

11{λ`≤z}, (3)

can be efficiently estimated by different methods [45]. We
use a variant of the kernel polynomial ethod [46] detailed
in [16, Alg. 2] that leverages Hutchinson’s stochastic trace
estimator to estimate the number of eigenvalues below linearly
spaced points between 0 and λmax, and then interpolates these
values via monotonic piecewise cubic interpolation to generate
an estimate of the cumulative spectral density function (3).
The computational cost is proportional to the number of
edges in the graph. As an order of magnitude example, for
a sparse graph with more than 469,000 vertices, estimates
for the maximum eigenvalue and the density function can
be computed on a laptop in approximately 1 second and
16 seconds, respectively. In Fig. 2, we show examples of
exact and approximate cumulative spectral density functions
on six different graphs. In summary, while the full Laplacian
eigendecomposition is necessary to exactly compute the atoms
in (1) and their inner products with a graph signal, the spectral
range and density function can be computed inexpensively
and leveraged in the design of the filters, the selection of the
center vertices, and the approximate computation of the inner
products between the graph signal and each dictionary atom.
We discuss these details further in the next two sections.
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Fig. 2. Estimated and actual cumulative spectral density functions (3) for six
graph Laplacians: a random Erdös-Renyi graph with N = 500 vertices and
edge probability 0.2; the Minnesota traffic network (N = 2642) [47]; the
Laplacian of the Andrianov net25 matrix (N = 9520) from the SuiteSparse
Matrix Collection [48]; the Stanford bunny graph (N = 2503) [39]; an 8-
neighbor local graph for Eastern Massachusetts (N = 877) [16]; and a graph
of the cerebellum region of the brain (N = 4465) [36].

We represent the synthesis operator with the matrix Φ ∈
RN×M , where the columns of Φ are the M =

∑J
j=1 |Vj |

dictionary atoms in D. We refer to its adjoint Φ∗ as the
analysis operator; this conjugate transpose matrix maps a
graph signal to the analysis coefficients {〈f ,ϕi,j〉}. If the
dictionary D satisfies the frame condition for all vectors f
in some subspace S of RN (or all of RN ),

A||f ||22 ≤ ||Φ
∗f ||22 =

J∑
j=1

∑
i∈Vj

∣∣〈f ,ϕi,j〉∣∣2 ≤ B||f ||22, (4)

then any graph signal in the subspace can be exactly recovered
from its analysis coefficients Φ∗f . Moreover, if A = B in (4),
the dictionary is said to be a tight frame, and

f =
1

A

J∑
j=1

∑
i∈Vj

〈f ,ϕi,j〉ϕi,j =
1

A
ΦΦ∗f .

A tight frame with frame bounds A = B = 1 is called a
Parseval frame, and has the added benefit that ||Φ∗f ||2 =
||f ||2; i.e., the energy of the analysis coefficients is the same as
the energy of the graph signal. For more properties of frames,
see [49], [50].

Finally, we mention the connection between the aforemen-
tioned analysis coefficients and graph spectral filter banks. As
shown in Fig. 3, in a J-channel graph filter bank (e.g., [13]–
[16]), J different filters are applied to the signal, and the values
of ĝj(L)f , the filtered signal in the jth channel, at a specified
set of downsampled vertices Vj are stored. The set of analysis
coefficients {〈f ,ϕi,j〉}i∈Vj derived from the atoms generated
by localizing the filter ĝj(·) to each of the center vertices in
Vj corresponds exactly to the downsampled values in the jth
channel of the filter bank.

III. DESIGN OF THE SPECTRAL FILTERS

Three are three broad classes of spectral filter designs: (i)
those adapted only to the spectral range [0, λmax] (e.g., [11],
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Fig. 3. Equivalence between single-level graph spectral filter banks and localized spectral graph filter dictionaries. In the 4-channel filter bank on the left, the
graph signal is filtered by each of the J = 4 spectral filters and then downsampled on the corresponding vertex sets {Vj} to yield the filter bank coefficients
{αj}. Each coefficient αi,j = [ĝj(L)f ](i) = δ∗i ĝj(L)f = f∗ĝj(L)δi in the final column of the left box corresponds exactly to the inner product between
the graph signal and the dictionary atom ϕi,j , as 〈f ,ϕi,j〉 = 〈f , Tigj〉 = 〈f , ĝj(L)δi〉 = f∗ĝj(L)δi.

[14], [18], [20], [23], [30], [32], [33])3; (ii) those adapted
to an estimate of the cumulative spectral density function of
the graph (e.g., [16], [31]); and (iii) those adapted to both
the graph and training signals residing on the graph (e.g.,
[28], [29]). Examples of all three of these classes are shown
in Examples 2-4. In this section, we survey a number of
considerations when designing the filters for localized spectral
graph filter dictionaries. All but the final of the following
considerations apply to all three of the aforementioned classes
of filter designs.

A. Localization of the atoms in the vertex domain

Whether the underlying graph represents a traffic network,
a social network, a biological network, or some other type
of network, interesting phenomena in the data often occur
at a local scale, particularly for extremely large graphs. To
find or make inferences about such localized patterns, it
can be helpful to have dictionary atoms whose energies are
concentrated in smaller regions of the graph. One method to
guarantee that each atom’s energy is strictly localized in a
small neighborhood of radius K around its center vertex i is
to choose the spectral filters to be degree K polynomials.

Theorem 1 (Lemma 5.2 of [11], Lemma 2 of [3]): Let
dG(i, n) be the geodesic or shortest path distance between
vertices i and n; i.e., the minimum number of edges in any
path connecting the two vertices. Let p̂K be a polynomial
kernel with degree K; i.e.,

p̂K(λ) =

K∑
k=0

akλ
k (5)

for some coefficients {ak}k=0,1,...,K . If dG(i, n) > K, then
(TipK)(n) = 0.
More generally, the localization of the dictionary atoms in
the vertex (spatial) domain is closely related to the smooth-
ness of the filters. There are multiple ways to measure both

3The tight wavelet frames of [30] are also adapted to the maximum degree
of the graph.

“localization” and “smoothness,” but one is to examine how
the magnitude of the localized pattern at vertex n decays as
the distance between n and the center vertex i increases,
depending on how close the filter ĝj(·) is to a degree K
polynomial.

Theorem 2 (Theorem 1 of [3], Theorem 5.16 of [51],
Theorem 8.2 of [52]): Let ĝ : [0, λmax] → R be a spectral
filter and define Kin := dG(i, n)− 1. Then

|(Tigj)(n)| ≤ inf
p̂Kin

{
sup

λ∈σ(L)

|ĝj(λ)− p̂Kin(λ)|

}

≤ inf
p̂Kin

{
sup

λ∈[0,λmax]

|ĝj(λ)− p̂Kin(λ)|

}
, (6)

where the infimum in (6) is taken over all polynomial kernels
of degree Kin, as defined in (5). If ĝj(·) is real analytic on
[0, λmax], the upper bound in (6) converges geometrically to
0 as dG(i, n) increases.
In short, and less precisely mathematically, the smoother the
filter ĝj(·) is in the spectral domain, the more concentrated is
the energy of the atom ϕi,j = Tigj around the center vertex
i; compare, e.g., the first two atoms shown in Fig. 1.

B. Eigenvector groupings

Recall from the introduction that in order for the inner
products between a graph signal and each atom to be infor-
mative, the atoms should have interpretable structural features
that account for the underlying graph. The localization in the
vertex domain described above is one such structural feature.
The shape of the filter ĝ(·) in the graph spectral domain leads
to another: smoothness in terms of how much the atom’s
values vary between neighboring vertices, particularly those
connected by a high edge weight. The unit-norm Laplacian
eigenvectors satisfy

λ` = u∗`Lu` =
∑

(m,n)∈E

Wm,n[u`(m)− u`(n)]2, (7)
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Example 1 (Variational/interpolating splines): Varia-
tional or interpolating splines on graphs, pioneered in
[26] and further studied in [12], [27], [53], are atoms of
the form (1) with a single low pass filter ĝ(·) localized
to a subset V1 of the vertices. They are used as an
interpolation basis to interpolate an entire graph signal
from its sample values at the vertices in V1. In the images
below, we show three examples of interpolating kernels
and an atom generated from each on the Stanford bunny
graph. The three filters are (a) a Green’s kernel [26]
ĝ(λ`) = ε

(λ`+ε)s with ε = .05 and s = 1; (b) a diffusion
kernel [54] ĝ(λ`) = e−τλ` with τ = 10; and (c) a
polynomial decay kernel [27] ĝ(λ`) = 1

(`+1)s with s = 1.
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and therefore the eigenvectors associated with the lower eigen-
values vary less from vertex to neighboring vertex. Moreover,
the eigenvectors are roughly ordered in terms of the number
of zero crossings, defined as edges where the values of the
eigenvector at the two connected vertices have opposite signs
[1, Fig. 3].

Based off the analogy between this smoothness of Laplacian
eigenvectors and the frequency of complex exponentials in
one-dimensional signal processing, the most common spectral
design approach in the graph signal processing literature
is to choose filters concentrated on one part of the graph
spectrum, grouping together eigenvectors with similar levels
of total variation with respect to the graph, as defined in (7).
In particular, when localized to different center vertices via
(1), filters whose support is concentrated on the eigenvectors
associated with small eigenvalues lead to scaling functions or
windows around the center vertex (c.f., Fig. 1(a) and Example
1). The inner products between such atoms and a graph signal
provide information about the trend or local average of the
signal in the neighborhood of the center vertex. On the other
hand, all Laplacian eigenvectors associated with eigenvalues
greater than 0 sum to zero, because they are orthogonal to
u0, which is constant across all vertices. Thus, any filter with
ĝj(0) = 0 yields atoms ϕi,j that have a mean of zero and
feature some oscillation (c.f., Fig. 1(b)-(c)).

Noting that the Laplacian eigenvalues correspond to the
total variation of the eigenvectors but not necessarily the
directions of their oscillations on the graph (see Fig. 4), some
more recent works [38], [55]–[57] investigate other ways to
group the eigenvectors. For example, [38] suggests to view the
eigenvectors as probability distributions on the graph, quantify
the distances between eigenvectors using optimal transport
theory, cluster the eigenvectors based on their distances, and
construct a spectral filter for each cluster, with the support of
the filter set to match the eigenvectors of that cluster.

C. Orthogonality or near orthogonality

To reduce the correlation between atoms (and in turn
improve the discriminatory power of taking inner products be-
tween each atom and a target signal, as discussed below in Sec.
V), it may be desirable for all atoms that are generated from
a single filter to be orthogonal or near orthogonal to all atoms
that are generated from all other filters; i.e., 〈Tigj , Ti′gj′〉 ≈ 0
for all j′ 6= j). This can be ensured via the filter design, with
a sufficient condition for the orthogonality of atoms generated
from different patterns being that ĝj(λ`)ĝj′(λ`) = 0 for all
j′ 6= j and all λ`.

For the specific case when J = 2 and G is a bipartite
graph with the normalized Laplacian eigenvectors as the graph
Fourier basis4, it is possible to go a step further and generate
N atoms that are not only orthogonal to atoms generated from
the other filter, but also from the same filter.

Theorem 3 ( [14]): Let G be a bipartite graph with a
bipartition {V1,V2}, and consider an LGSFD D of the form
(2) with J = 2 (i.e., ĝi(·) is localized to the center vertices in
Vi for i = 1, 2), using the normalized Laplacian graph Fourier
basis. Then necessary and sufficient conditions on the filters
to ensure that the N atoms of D form an orthogonal basis
for RN are that ĝ1(λ`)ĝ1(2 − λ`) = ĝ2(λ`)ĝ2(2 − λ`) and
|ĝ1(λ`)|2 + |ĝ2(λ`)|2 = c2 for all λ` and any constant c.

D. Coverage of the spectrum

A necessary condition for D to be a frame for all graph
signals in RN is that for all λ ∈ σ(L), ĝj(λ) 6= 0 for some j ∈
{1, 2, . . . , J}. If this is not true for some λ`, then 〈u`,ϕi,j〉 =
0 for all i and j and thus ||Φ∗u`||22 = 0, contradicting the
frame condition (4). Thus, choosing a set of filters that covers
the full spectral range [0, λmax] (or at least the portion of it
whose Laplacian eigenvectors span the subspace of signals of
interest) is a good place to start.

In the case that Vj = V for all j (i.e., every spectral pattern
is localized to every vertex), which is often referred to as

4These conditions can be adapted for a regular bipartite graph with the
non-normalized Laplacian eigenvectors as the graph Fourier basis.
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Fig. 4. Six Laplacian eigenvectors of the Eastern Massachusetts 8-neighbor
graph, labeled by the corresponding eigenvalues. While the three in the top row
and the three in the bottom row are more similar to each other in terms of total
variation (captured by the eigenvalue), the directions of the oscillations and
regions where the eigenvectors’ energies are concentrated are not necessarily
in linear order. For example, both u0.39 and u1.07 have more of their energies
concentrated on the vertices corresponding to Cape Cod.
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complete sampling or an undecimated filter bank, it is possible
to design the spectral filters such that D is a (tight) Parseval
frame.

Theorem 4 (Theorem 5.6 of [11], [30], and Lemma
1 of [31]): Let Vj = V for all j and D :={
ϕi,j

}
i=1,2,...,N ; j=1,2,...,J

be a dictionary of atoms with

ϕi,j := Tigj . Define G(λ) :=
∑J
j=1

∣∣ĝj(λ)
∣∣2. If G(λ) > 0

for all λ ∈ σ(L), then the frame condition (4) is satisfied
for all f ∈ RN , with frame bounds A = minλ∈σ(L)G(λ)
and B = maxλ∈σ(L)G(λ). In particular, if G(λ) is constant
on σ(L), D is a tight frame with A = B. Moreover, if∑J
j=1 |ĝj(λ)|2 = 1, ∀λ ∈ σ(L), then D is a Parseval frame;

i.e., ||Φ∗f ||22 =
∑J
j=1

∑N
i=1 |〈f ,ϕi,j〉|2 = ||f ||22, ∀f ∈ RN .

Example 2 contains filters that satisfy the sufficient condition
of Theorem 4 for a Parseval frame.

It is important to distinguish between coverage of the
spectral range and coverage of the spectrum. One subtlety
about Theorem 4 is that while the filters are often designed
over the interval [0, λmax] or [0, λ̄], the condition for a tight
frame is that G(λ) only needs to be constant on the set of
actual Laplacian eigenvalues σ(L), as these are the values
of the filter that contribute to the definition of the atom in
(1). Related to this point, if a filter is defined on the interval
[0, λmax], but ĝj(λ) = 0 for all λ in σ(L), then any atoms
Tigj derived from this filter are equal to the zero vector, and
therefore do not provide any useful information about the
graph signal. One way to avoid such non-informative atoms
is to adapt the filter design not only to the spectral width,
but also to the estimated spectral density function (3). By
leveraging the spectral density approximation, the spectrum-
adapted designs in [31] warp a set of non-adapted filters in
order that the support of each filter approximately contains
a desired number of Laplacian eigenvalues (e.g., each filter
has the same number of eigenvalues or they satisfy a dyadic
structure with twice as many in each subsequent filter, moving
from the low end of the spectrum to the high end). See
Example 3 for examples of spectrum-adapted filter designs.

E. Computational efficiency and approximation

As mentioned in Sec. II, exactly computing the graph
Laplacian eigenvectors is only feasible for small to medium
graphs, implying that for large graphs, the computation of the
analysis coefficients 〈f ,ϕi,j〉 = δ∗i ĝj(L)f must be efficiently
approximated. Methods for approximating a matrix function
times a vector (i.e., ĝj(L)f ) include Krylov subspace methods
such as the Lanczos method, contour integral methods, con-
jugate gradient, algebraic multigrid methods, rational approx-
imations (also referred to as infinite impulse response filters
in the graph signal processing community [59], [60]), spline
approximations, and polynomial approximations (see [61]–
[63] for surveys of these methods in centralized and distributed
settings).

We focus our attention and numerical experiments in this
survey on degree K polynomial approximations p̂j,K(λ) of

the form (5) to each filter ĝj(·) (also referred to as finite
impulse response (FIR) filters in the graph signal processing
community). The approximation x

(K)
j = p̂j,K(L)f to ĝj(L)f

can be computed recursively, either through a three-term
recurrence for specific types of polynomials (e.g., Chebyshev)
or through the nested multiplication iteration [67, Section
9.2.4]

x
(l)
j = aj,K−lf + Lx

(l−1)
j , l = 1, 2, . . . ,K, (8)

with x
(0)
j = aj,Kf . The computational complexity of com-

puting x
(K)
j = ĝj(L)f through (8) or a three-term recurrence

is O(K|E|), which for a large, sparse graph is approximately
linear in the number of vertices, as opposed to the O(N3)
required to naively compute the full eigendecomposition of
L. Additional advantages of the polynomial approximations
include (i) the atoms are strictly localized as described in
Theorem 1, (ii) in addition to the analysis operator, the
synthesis operator Φ can be applied efficiently, and (iii) both
the analysis and synthesis computations can be performed in a
distributed setting where each vertex only knows its own signal
value and can only communicate with its neighboring vertices
[63], [68]. Polynomial approximation methods commonly used
in the graph signal processing literature include Chebyshev
[11], [65] and Jackson-Chebyshev [66]. Example 4 shows
filters resulting from these polynomial approximation methods.
For the specific case of approximating an ideal low pass
filter with a small degree polynomial, [69] introduces energy
compaction filters that maximize the energy of the polynomial
filter that is concentrated on the specified band.

However, there are also tradeoffs to using polynomial filters.
First, polynomial approximations to filter designs that meet
the orthogonality or tight frame criteria may no longer satisfy
these conditions. In fact, [23] shows that it is not possible
to find J polynomial filters with the property that G(λ) is
constant for all λ in the interval [0, λmax]. Although it may
be possible to satisfy this condition for all λ in σ(L), it is
not usually tractable to do so. When using ideal filters, one
option to mitigate the approximation error at the Laplacian
eigenvalues (recall that the filter values at these eigenvalues
are the only filter values that actually affect the form of the
dictionary atoms) is to attempt to place the endpoints of the
subband filters in areas of the spectrum with low density (or
even better, in spectral gaps), as the error is typically highest
near the endpoints (c.f., middle row of Example 4) [16]. A
second option for mitigating the approximation error is to
choose polynomials that control the error in specific parts
of the spectrum, such as transformed linear phase multirate
filters [23], which reduce the error near the eigenvalue 0 (no
DC leakage) or spectrum-adapted polynomial approximation
[70], which can reduce the error in high density areas of the
spectrum. A third option is to directly choose the initial set
of filters to be polynomials, or at least choose them to be
smoother functions that are more accurately approximated by
polynomials (e.g., [20]).
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Example 2 (Spectral filter designs that only use the spectral range): We show 11 different sets of six filter patterns
for the cerebellum graph [36], whose spectral range is [0, λmax] = [0, 32.4]. In all images, the vertical axis represents
the value of the filter, and the shaded gray/black circles represent the values of G(λ) =

∑J
j=1 |ĝj(λ)|2 at each of the

Laplacian eigenvalues, with darker areas denoting regions of higher spectral density. For each of the filters ĝj(λ) in the
set of uniform translates, the corresponding filter in the log-warped set (right) is given by ĥj(λ) = ĝj

(
λmax

ω(λmax)ω(λ)
)
,

where the warping function is ω(λ) = log(1 + νλ) for a parameter ν > 0 (ν = 10 here).

Uniform Translates

Ideal filters [16]
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Uniform translates: Itersine kernel [31], [58]
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Let us highlight some of the design considerations
mentioned in this section:

1) All of these designs cover the entire spectrum;
i.e., G(λ) > 0 for all λ ∈ [0, λmax]. Thus,
each design yields a frame when every filter is
localized to be centered at every vertex.

2) The last two sets of wavelet filters are the only
two amongst those shown that do not satisfy the
Parseval frame condition, G(λ) = 1 for all λ ∈
σ(L), from Theorem 4.

3) Because the ideal filters in the top row do not
overlap, the atoms generated from a filter are
orthogonal to the atoms generated from any other

Wavelets (Octave-Band)

Ideal octave-band filters [16]
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Fast tight wavelet frame [33]
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filter. On the other hand, the atoms generated by localizing filters with significant overlap (e.g., the yellow and red
filters of the fast tight wavelet frame) to the same center vertex are likely to be highly correlated.

4) As detailed in Theorem 2, filters that are smooth (well approximated by low order polynomials) yield dictionary
atoms that are more localized around the center vertex; i.e., most of their energy is close to the center. In particular,
for the octave-band designs such as the Meyer-type wavelets, log-warped translates, and spectral graph wavelets,
the filters that cover the upper end of the spectrum yield more localized atoms than the scaling and wavelet filters
at the low end of the spectrum.

F. The number of filters

For sets of filters that cover the whole spectrum, typical
choices of J in the literature are in the 4-8 range; how-
ever, we are not aware of theoretical analysis concerning the
choice of J . In general, increasing J may lead to sparser
representations by increasing the number of atoms and the
ability to distinguish between signals by capturing the behavior
of the signal across smaller spectral regions. On the other
hand, at some point, the benefits may saturate as the atoms
become more correlated (see, e.g., [29, Fig. 13]). Moreover,

as the filters become narrower, they are more difficult to
approximate by polynomials. If the dictionary is critically
sampled (M =

∑J
j=1 |Vj | = N ), increasing J also leads

to fewer center vertices for each filter, making accurate
reconstruction from the analysis coefficients more difficult.
Narrower filters, especially those whose support is at the high
end of the spectrum, can also lead to dictionary atoms that
are more sensitive to small perturbations in the graph weights,
an important consideration in applications where the graph is
estimated. We explore the choice of J further in Section VI.
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Example 3 (Spectral filter designs that are adapted to the spectral density of
the graph or ensemble energy density of training signals): The ideal filters
and uniform translates from Example 2 are designed to cover equal portions
of the spectral range [0, λmax], but are the same for any two graphs with the
same value of λmax. One option to further adapt the filters to the specific graph
structure is to warp them so that each filter contains roughly the same number of
Laplacian eigenvalues [31]. This is accomplished by defining spectrum-adapted
filters ˜̂gj(λ) = ĝj(λmaxPλ(λ)), where {ĝj(·)} are the uniform translates from
Example 2 and Pλ(·) is an estimate of the cumulative spectral density defined in
(3). For the cerebellum graph, the Laplacian eigenvalues are concentrated in the
middle of the spectral range (right), and therefore the spectrum-adapted uniform
Meyer-type filters shown in the middle row below are narrower in this region of

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Spectral CDF 
(graph only)

Ensemble energy CDF 
(graph + training signals)

high spectral density. The same idea can be used to generate spectrum-adapted wavelets ˜̂
hj(λ) = ĝj

(
λmax

ω(λmax)ω(λ)
)
,

by using a warping function ω(λ) = log(1 + νλmaxPλ(λ)).

When training data is available on the graph, a second op-
tion is to adapt the filters to be narrower in the regions
of the spectrum where the energy of the training signals is
concentrated [29]. This can again be achieved via warping,
using an estimate of the ensemble energy cumulative spectral
density function PY(z) defined in (9) in place of the spectral
density estimate Pλ(z) in the warping function. The plot of the
density functions (above right) shows that despite the Laplacian
eigenvalues being more heavily concentrated in the middle of
the spectrum, the energies of 292 fMRI training signals on the
cerebellum graph are heavily concentrated in the lower end of
the spectrum. Therefore, the signal-adapted design that aims to
have roughly the same signal energy in each filter band (bottom
row, right) features narrower filters at lower eigenvalues.

Uniform translates: Meyer-type [30]
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G. Available data

The graph spectral filters can also be adapted to an ensemble
of T training signals, {yt}t=1,2,...,T , that are exemplary of the
data to be analyzed by the dictionary D, when such training
signals are available. We briefly review two parametric dic-
tionary learning approaches, both of which set Vj = V for
all j and adapt the filters {ĝj(·)} to the training data. The
first approach, presented in [29] and shown in Example 3, is
to design the filters so that (i) each filter captures a roughly
equal amount of the energy of the ensemble of training signals,
and (ii) the filters satisfy the tight frame condition G(λ) = 1
for all λ ∈ [0, λmax]. Similar to the spectrum-adapted filter
design of [31], this signal-adapted filter design constructs a
set of prototype filters that uniformly cover the spectrum,
and then warps/transforms the filters. Whereas the warping
function in [31] is an estimate of the cumulative distribution
of the Laplacian eigenvalues (3), the warping function in [29]
estimates the ensemble energy cumulative spectral density

PY(z) :=

∑
{`: 0<λ`≤z}

1
T

∑T
t=1

∣∣∣〈 yt

||yt||2 ,u`

〉∣∣∣2∑N−1
`=1

1
T

∑T
t=1

∣∣∣〈 yt

||yt||2 ,u`

〉∣∣∣2 , (9)

which can also be efficiently approximated [71]. An example
where a signal-adapted spectral design is particularly bene-
ficial is in functional magnetic resonance imaging (fMRI),
where the energy of the data tends to be highly concentrated

at the low end of the spectrum of the cerebellum graph even
though there are more eigenvalues at the upper end of the
spectrum [29].

A second approach to incorporate the training data, pre-
sented in [28], is to force the J spectral filters to be polyno-
mials, and through optimization, find polynomial coefficients
that (i) lead to sparse representations of the training data, and
(ii) yield filters that cover the spectrum so that the frame is
close to being tight (i.e., the ratio of frame bounds B

A is close to
1). Specifically, [28] suggests to alternate between (a) a sparse
approximation step that fixes the dictionary (i.e., fixes the poly-
nomial filters) and uses orthogonal matching pursuit to find the
coefficient matrix X that minimizes ||Y − Φ̃X||2F subject to
||xt||0 ≤ K0 for all t, where the columns of Y are the training
signals, Φ̃ is the current dictionary with normalized atoms, and
K0 is a fixed sparsity level; and (b) a dictionary update step
that fixes that coefficient matrix X and updates the polynomial
filter coefficients by minimizing ||Y−ΦX||2F+µ

∑J
j=1 ||aj ||22,

where aj is a vector of the K + 1 polynomial coefficients in
(5) for the jth filter, subject to constraints ensuring that the
learned polynomial filters are nonnegative and cover the whole
spectrum (c − ε ≤

∑J
j=1 ĝ(λ) ≤ c + ε for some constants c

and ε).

IV. SELECTION OF THE CENTER VERTICES

When selecting the center vertices Vj for the jth filter, four
broad options are most commonly used: (i) take Vj = V
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Example 4 (Fast transforms and inverse transforms via polynomial approximation): Approximating each spectral filter
ĝj(·) by a degree K polynomial p̂j,K(·) reduces the complexity of applying the dictionary analysis operator from
O(N3) to O(K|E|), which for large, sparse graphs is O(N). The drawback of this scalable approximation is that the
tight Parseval frame condition G(λ) = 1 for all λ ∈ σ(L) of Theorem 4 is not typically satisfied by the polynomial
approximants. Let Φ̃

∗
be the approximate analysis operator with the polynomial filters, and α = Φ̃

∗
f be the resulting

analysis coefficients. There are three common options for fast, approximate inverse transforms. The first is to solve
Φ̃Φ̃

∗
frec = Φ̃α via the conjugate gradient method [11]; and the second is the frame inversion algorithm [64, Ch. 3]

that sets f
(0)
rec = 2

A+B Φ̃α and iterates f
(t)
rec = f

(0)
rec + f

(t−1)
rec − 2

A+B Φ̃Φ̃
∗
f

(t−1)
rec . Both of these iterative methods have

complexity O(2TK|E|), where the number of iterations T is typically small (5-10), and the speed of convergence
depends on how close the ratio of frame bounds B

A is to 1 (recall that when Vj = V for all j, the lower frame bound
is A = minλ∈σ(L)

∑J
j=1 |p̂j,K(λ)|2 and the upper frame bound is B = maxλ∈σ(L)

∑J
j=1 |p̂j,K(λ)|2). Thus, for the

non-tight frame generated from the polynomial filters, near perfect reconstruction is still possible at the same O(N)
complexity, but the inverse transform may require 10-20 times the number of computations as the fast analysis operator.
A third, faster (O(K|E|)) but less accurate option is to just take frec = 2

A+B Φ̃α (i.e., stop the frame inversion algorithm
after the initial guess). The high-level intuition is that 2

A+B Φ̃Φ̃
∗

is close to the identity matrix IN if B
A is close to 1

[64, Ch. 3]. For this faster synthesis operator, the squared reconstruction error can be upper bounded by

||f − frec||22 =
∣∣∣∣∣∣f − 2

A+B
Φ̃α

∣∣∣∣∣∣2
2

=
∣∣∣∣∣∣(IN −

2

A+B

J∑
j=1

p̂2
j,K(L)

)
f
∣∣∣∣∣∣2

2
=

N−1∑
`=0

|f̂(λ`)|2
[
1− 2

A+B

J∑
j=1

|p̂j,K(λ`)|2
]2
≤
(

r

2 + r

)2

||f ||22,

where r = B
A − 1 [11], [64, Ch. 3]. So, regardless of the choice of fast inverse transform, it desirable for G̃(λ) :=∑J

j=1 |p̂j,K(λ`)|2 to be close to 1 for each λ`, yielding a ratio of frame bounds B
A close to 1 and a small value of r.

In the figures below, we show degree 40 Chebyshev polynomial approximations to three different sets of five filters on
the net25 graph, which features many repeated eigenvalues and therefore has areas of the spectrum with high density.
The polynomial approximants to the ideal filter bank in the top row yield a G̃(λ) (black points in the right column
of images) that fluctuates across λ ∈ σ(L), and the ratio of frame bounds B

A is equal to 2.78. By shifting the filter
end points slightly to be in regions of lower spectral density (middle row), the frame bound ratio drops to 1.85. The
smoother spectrum-adapted translates (bottom row) are more amenable to polynomial approximation; the polynomial
filters for this design have a frame bound ratio of 1.16.
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Spectrum-adapted uniform translates: Itersine kernel
1 

0.5 

o L����=::::!::::::�L=======:=�=�=�---___._
o 17 34 51 68 85 1 02 119 136 153 

A 

Degree 40 Chebyshev Polynomial Approximation

1 ......_...� 

0.5 
0 ����-���---...::=::��------------=�--=-��-=--=---=--=� 

0 17 34 51 68 85 1 02 119 136 153 
A 

1 ----
0. 5

0 --=-�� ...... ..-....--:::::���-..e==::--�==--=�r:=.---==--=---=---=111111111=:a-.·11 

0 17 34 51 68 85 1 02 119 136 153 
A 

1 

0.5 

oL-.-:���---...1.--.�L�==�===�----....... --
0 17 34 51 68 85 1 02 119 136 153 

A 

While the Chebyshev polynomial approximations [11], [65] are good general choices as they are near op-
timal in terms of minimizing the maximum approximation error across the spectrum, they may not be
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1 Ideal

Chebyshev (K=40)

Jackson-Chebyshev (K=40)

the most desirable in certain situations, such as approximating a
series of ideal bandpass filters. This is because the oscillations
of the Chebyshev polynomials may lead to more energy at the
spectral values farther from the bandpass region. The Jackson-
Chebyshev polynomial approximations [66] damp these Gibbs
oscillations, resulting in less energy farther from the bandpass
region (right).
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for every filter (i.e., localize every pattern to every vertex
as done in [11]); (ii) select the center vertex sets such that∑J
j=1 |Vj | = N (i.e., the total number of atoms is equal to

N , the number of vertices in the graph), which is typically
referred to as critical sampling (e.g., [16]); (iii) do not localize
every filter to every vertex but do not restrict the total number
of atoms, resulting in a frame (overcomplete dictionary) with
more than N atoms, but fewer than JN atoms; and (iv)
localize a single filter ĝ1(·) to a strict subset V1 ⊂ V of
vertices to generate an interpolation basis for a subspace of
graph signals, as discussed in Example 1. For option (i), there
is no choice to be made regarding the selection of center
vertices; for options (ii)-(iv), the specific center vertices for
each filter ĝj(·) must be chosen, and this selection process may
also involve deciding how many center vertices to use for each
filter. We now outline the main considerations when choosing
between these four options and/or selecting the specific center
vertices.

A. Frame Bounds and Reconstruction Error

Recall that when Vj = V for every j, Theorem 4 outlines
the computation of the frame bounds and provides a sufficient
condition on the filters to yield a (tight) Parseval frame. When
D is a Parseval frame,

f =

J∑
j=1

N∑
i=1

〈f ,ϕi,j〉ϕi,j =

J∑
j=1

ĝj(L)αj , (10)

and so the graph signal f can be perfectly reconstructed from
the vectors of analysis coefficients, αj = {〈f ,ϕi,j〉}i∈Vj .

When Vj = V for every j and G(λ) > 0 for all λ ∈ σ(L),
the atoms form a frame, but not necessarily a tight frame. This
is also the case when each filter is not centered to each vertex,
as long as the dictionary atoms span the space of graph signals
under consideration (typically RN ). Example 4 details three
options for inverse transforms in these situations where the
dictionary atoms form a frame, but not a tight frame. The least
squares solution via conjugate gradient and iterative frame
inversion algorithm are accurate but converge slower when the
frame is farther from being tight (BA >> 1). We are not aware
of any investigations into how to select the center vertices from
general weighted graphs in a manner that explicitly controls
the ratio of frame bounds.

B. Band-By-Band Reconstruction and Connections to Sam-
pling and Interpolation Theory

When the filters are not localized to every vertex, but (i)
do not overlap too much and (ii) evenly cover the whole
spectrum (

∑J
j=1 ĝj(λ) ≈ 1 for all λ), an alternative approach

to synthesis is to try to reconstruct the signal from each band
separately and add them up, similar to (10), except that we
replace ĝj(L) with a different synthesis operator for each
band. The main idea is that f ≈

∑J
j=1 ĝj(L)f , where each

filtered signal ĝj(L)f belongs to the subspace Uj spanned by
the eigenvectors {u`}{`: ĝj(λ`)6=0}. Thus, dim(Uj) provides an
estimate for the number of center vertices, |Vj |, required to
recover ĝj(L)f from the analysis coefficients αj .

0 8
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5

Fig. 5. Selection of center vertices for a critically sampled LSGFD with five
spectrum-adapted ideal octave-band filters on the bunny graph. Exactly one of
the five filters is localized to each vertex i, according to the mapping shown
in the right image, yielding a total of N atoms [16].

The problem of first selecting the center vertices Vj and
then specifying a method to recover ĝj(L)f from αj falls
into the broader category of sampling and interpolation of
graph signals. Generally speaking, algorithm development
in this area proceeds as follows: (i) define a signal model
and, if appropriate, a measurement noise model; (ii) specify
a reconstruction method that maps a given set of (possibly
noisy) sample values of the signal to the entire signal in
a way that optimizes a specified error criteria, accounting
for the signal model (and noise model) and graph structure;
and (iii) given the signal model and reconstruction method,
select vertices (often constrained to a fixed number of them)
on which to sample the graph signal values. See [72]–[75]
for more detailed literature reviews and theoretical results on
sampling and interpolation of graph signals. The majority of
sampling selection methods (i) focus on smooth or lowpass
graph signals, and (ii) require the Laplacian eigenvectors
associated with the eigenvalues λ` for which ĝj(λ`) 6= 0. We
focus our review in the remainder of this section on sampling
strategies where at least one of these conditions is not met, as
these strategies are particularly relevant for LSGFD design.

For the special case of a set of ideal filters that partition the
spectrum, as shown, e.g., in Example 2, Example 4, and Fig. 5,
the critically sampled sets of center vertices can be constructed
so as to ensure the signal can be recovered perfectly from the
N analysis coefficients.

Theorem 5 (Prop. 2 and Cor. 1 of [16]): Let
ĝ1(·), ĝ2(·), . . . , ĝJ(·) be a set of spectral filters with the prop-
erties that for all λ ∈ σ(L), G(λ) = 1 and ĝj(λ)ĝj′(λ) = 0
for all j 6= j′ (i.e., the filters form a partition of the spectrum
[0, λmax] such that each eigenvalue is in the support of exactly
one filter). Then there exists a partition {V1,V2, . . . ,VJ} of
V with |Vj | =

∑N−1
`=0 11{ĝj(λ`)=1} such that the resulting

dictionary D of the form (2) is a basis. Each atom in the basis
is orthogonal to all atoms generated from a different filter.
Ref. [16] provides a constructive algorithm for finding the
center vertex sets {V1,V2, . . . ,VJ} in Theorem 5, the choice
of which is not unique. This algorithm requires a full eigen-
decomposition and therefore is only applicable to small or
medium graphs. Each set Vj is a uniqueness set [76] for the
subspace Uj spanned by the eigenvectors {u`}{`: ĝj(λ`)=1}.
That is, any graph signal in Uj can be uniquely recovered
from its values at the vertices in Vj . In Fig. 5, we display a
set of five spectrum-adapted ideal octave-band filters on the
bunny graph, and the corresponding partition of the vertices
into the uniqueness sets V1 to V5.
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Which sampling and interpolation techniques are applicable
to smoother approximations to ideal filter banks (e.g., middle
row, right in Example 4) for large, sparse graphs, where
computation of the Laplacian eigenvectors is not tractable?
The fastest methods are random, not necessarily uniform,
sampling methods. For example, leveraging the literature on
compressed sensing, [16], [77] propose to sample according
to a non-uniform distribution with the weight at vertex i
proportional to an approximation of ||U∗Rj

δi||22, where URj

is the submatrix of U containing the columns corresponding
to the support of the ideal filter ĝj . The jth filtered signal is
then reconstructed via the optimization problem

min
zj∈RN

{
z∗jφj(L)zj + κ||Ω−

1
2

j (Mjzj −αj) ||22
}
, (11)

where Ωj is a |Vj |×|Vj | diagonal matrix with the jth channel
sampling weights of Vj along the diagonal, Mj ∈ R|Vj |×N
is a downsampling matrix that maps a full graph signal to
a vector of its values on Vj , and κ > 0 is a parameter to
trade off the two optimization objectives: the regularization
term z∗jφj(L)zj in (11) penalizes reconstructions with support
outside of the desired spectral band, and the data fidelity term
||Ω−

1
2

j (Mjzj −αj) ||22 penalizes reconstructions that do not
match the analysis coefficients (filtered signal values). From
the first-order optimality conditions, the solution to (11) is the
solution to the linear system of equations(

κM∗
jΩ
−1
j Mj + φj(L)

)
zj = κM∗

jΩ
−1
j αj , (12)

which can be solved, for example, with the preconditioned
conjugate gradient method (see [16] for more on the choice
of the preconditioner).

The other more scalable options are efficient greedy meth-
ods that do not rely on the Laplacian eigendecomposition, such
as [73], [78]. For example, for each j, the eigendecomposition-
free (ED-free) method of [73] attempts to select center vertices
i such that (i) ||Tigj ||1 = ||ϕi,j ||1 is large, and (ii) the atoms
ϕi,j do not overlap too much in the vertex domain. The binary
search Gershgorin disc alignment (BS-GDA) method of [78]
aims to select vertices in a way that reduces the condition
number of the matrix κM∗

jΩ
−1
j Mj + φj(L) in (12) (with

Ωj = IN and a regularization term of φ(L) = L), improving
the reconstruction stability. These methods may lead to better
reconstruction for lowpass signals, but are slower than random
sampling and are either not applicable to or may lead to
worse reconstruction for bandpass signals (see Sec. IV-D and
Example 5).

C. Allocation of Center Vertices Across the Filters
When the sum of the cardinalities {|Vj |} is constrained (e.g.,

to N ), how should we allocate the center vertices (samples)
across the filters? One option is to estimate the spectral
cumulative density and match the number of samples to the
estimated number of eigenvalues in each band. Another option
is to adjust the distribution of samples to the signal f by
multiplying the initial allocation of samples to Vj by a factor
that increases with the amount of energy in the filtered signal
ĝj(L)f [16].

D. Computational Complexity

We briefly analyze the computational complexity implica-
tions of the choice of method for selecting the center vertices
on large, sparse graphs, the most typical and important case for
complexity considerations. We assume the filters are degree
K polynomials throughout this analysis. First, for selecting
the center vertices, the costs of the random sampling methods
(either signal-adapted or not) are negligible if the spectral
density of the Laplacian has been estimated (or O(K|E|)
if it has not), at least an order of magnitude faster than
the O(KN |E|) = O(N2) complexity of the greedy ED-
free method. Second, regardless of the selection of center
vertices, applying the analysis operator (forward transform)
has the same complexity O(K|E|) as the case where we
localize each filter to every vertex; i.e., there is not a significant
computational savings in the analysis step from subsampling
the center vertices. Third, as detailed in Example 4, the
complexity of the inverse transform is O(2TK|E|) if either the
least squares least squares solution via conjugate gradient or
iterative frame inversion algorithm is used, and O(K|E|) if the
inverse is approximated by a constant multiple of the analysis
operator. The band-by-band reconstruction method of (12) has
a similar complexity of O(TJK̃|E|), where K̃ is the degree
of the polynomial penalty function φ. These inverse transform
complexities do not depend on either the method used to select
the center vertices or the number of center vertices for each
filter. In summary, for large, sparse graphs, the complexities
of the design, forward transform, and inverse transform are
all no more than linear in the number of vertices, as long as
each filter is localized to every vertex or the center vertices
are selected through non-uniform random sampling.

E. Memory

The total number of analysis coefficients to store for a
graph signal of length N is

∑J
j=1 |Vj |. Thus, the complete

sampling of option (ii) yields NJ coefficients to store, while
the critical sampling of option (iii), e.g., reduces that number
to N . Except for special filters such as the heat kernel, the
ED-free method requires storing the entire matrices {ĝj(L)};
thus, when memory is an important concern and a critically
sampled dictionary is desired, random sampling should be used
to select the center vertex sets.

V. THEORETICAL CONSIDERATIONS AND METRICS

Whether the dictionary of atoms is critically sampled (a
basis for the vector space of signals) or redundant (a frame
for the vector space of signals), different mathematical charac-
teristics can be beneficial for different applications. Desirable
characteristics of dictionaries may include, for example:
• The atoms are not too correlated, in order to enhance the

discriminatory power of taking inner products between
each atom and a target signal;

• The atoms are jointly localized in the vertex domain and
the spectral domain.

• Classes of signals on the graph (e.g., globally smooth
or locally smooth signals), can be represented as sparse
combinations of the dictionary atoms.
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Example 5 (Scalable sampling strategies for LSGFD design): We compare the sampling and reconstruction of a lowpass
and a bandpass filtered signal using (i) greedy eigendecomposition-free (ED-free) sampling [73]; (ii) uniform random
sampling; (iii) non-uniform random sampling [16], [77]; and (iv) signal-adapted non-uniform random sampling [16].
For each polynomial filter type, we show the random sampling distributions, examples of sets of center vertices selected
by these methods, and the normalized mean square reconstruction error (NMSE)

||z∗j−ĝj(L)f ||22
||ĝj(L)f ||22

between the filtered
signal and the reconstruction z∗j , computed via (12), averaged over 50 trials of choosing the random center locations
(samples). The greedy ED-free method explicitly prioritizes choosing samples that are not too close to the previously
chosen samples. The non-uniform random sampling weights are derived from a computationally-efficient approximation
to the ideal distribution, for which the probability of sampling vertex i is proportional to ||U∗Rj

δi||22. This approach has
a close connection to leverage score sampling in the statistics and numerical linear algebra literature [79], [80]. The
signal-adapted non-uniform random sampling distribution (shown in the third column of the right group of images) is
computed by multiplying the initial non-uniform weight associated with vertex i (shown in the second column of the
right group of images) by log(1 + |(ĝj(L)f)(i)|) and then renormalizing. The intuition is that it is beneficial to take
additional samples in regions of the graph where the filtered signal has the most energy. For this particular bandpass
signal, the regions of highest energy are around the midsection and tail of the bunny. Indeed, the signal-adapted method
leads to more samples in these areas, and, in turn, to better reconstruction performance [16]. The average NMSE of the
signal-adapted sampling method at the dashed vertical line represents a 79%, 78%, and 83% reduction of the errors of
the ED-free, non-uniform random sampling, and uniform random sampling methods, respectively.
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Key insights highlighted by this example include:
1) For the lowpass filter, the results are consistent with the common insight from the graph sampling literature that

the scalable greedy methods are slower than random sampling, but can yield better reconstruction performance by
forcing the samples to be more spread out [75].

2) For bandpass or highpass filters, however, forcing or incentivizing the samples to be more spread out does not
necessarily (or even usually) improve reconstruction performance.

3) When performing random sampling to choose the center vertices, using a non-uniform sampling distribution is
more important for bandpass and highpass filtered signals. For lowpass filtered signals, the non-uniform random
sampling distribution is much closer to uniform as the energy distributions of the eigenvectors at the low end of the
spectrum tend to be more evenly spread across the graph than those associated with higher Laplacian eigenvalues.

4) In the classical sampling and interpolation problem, the complete signal is not usually available when selecting
the sample locations. However, in the context of subsampled LSGFDs, it is often feasible and highly beneficial to
adapt the non-uniform random selection of the center vertices to the energy distribution of each filtered signal.
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We briefly describe each of these considerations, in order.

One common metric for capturing the correlation between
dictionary atoms is the cumulative coherence [81] of the
dictionary D, which, for a given sparsity level k, is defined as

µ1(k) := max
{Θ⊂D: |Θ|=k}

max
ψ∈D\Θ

∑
θ∈Θ

|〈ψ,θ〉|
||ψ||2||θ||2

.

Uncertainty principles for signals on graphs (e.g., [82]–[86])
characterize the degree to which graph signals can be jointly
localized in both the vertex (spatial) domain and the spectral
(frequency) domain. Particularly interesting for guiding the
selection of the center vertices of LGSFDs are the uncertainty
principles developed in [82], [86]. Let γ ∈ RN be a spatial
filter or window function; i.e., a set of weights assigned to the
vertices, with 0 ≤ γi ≤ 1 for all i ∈ V and maxi∈V γi = 1.
Typical examples of such spatial filters include (i) setting
the weights equal to 1 for all vertices in a certain region of
the graph and 0 elsewhere, or (ii) choosing each γi to be a
measure of the distance from vertex i to a fixed center vertex
n. Then for any graph signal f , the quantity m̄γ(f) := f∗Γf

||f ||22
,

where Γ is a diagonal matrix with diagonal elements equal
to the weights γ, captures the portion of the energy of f
that is located in the specified region of the graph (i.e.,
those vertices with high weights γi). Similarly, for each filter
satisfying 0 ≤ ĝj(λ`) ≤ 1 for all ` and max` ĝj(λ`) = 1,
the quantity c̄ĝj (f) :=

f∗ĝj(L)f

||f ||22
captures the portion of the

energy of f that is located in the region of the spectrum
specified by the filter. The uncertainty principles in [82],
[86] characterize and provide algorithms to approximate the
sets Wγ,ĝj :=

{(
m̄γ(f), c̄ĝj (f)

)
: ||f ||2 = 1

}
⊆ [0, 1]2. For

example, for a given filter pattern, such a principle can inform
how localized a dictionary atom of the form (1) can be in the
vertex domain (typically around the center vertex i). Due to
the irregularity of general graphs and the possibility of highly
localized Laplacian eigenvectors, uncertainty does not always
exist, in which case Wγ,ĝj may be equal to [0, 1]2.

With regard to the third desirable characteristic above,
nearly a decade after being listed as an open issue in [1],
relatively little progress has been made in developing a math-
ematical theory of approximation linking structural properties
of graph signals and their underlying graphs to the sparsity of
the analysis coefficients {〈f ,ϕi,j〉}, analogous to the theory
for wavelet transform coefficients in Euclidean domains (see,
e.g., [87]). In [88], vertex domain dictionary designs are
proposed that sparsely represent defined classes of piecewise
constant and piecewise smooth graph signals. For the special
case of signals on circulant graphs, [25] defines a family of
complex exponential polynomial graph signals and designs a
class of filters that annihilate graph signals from this class;
i.e., 〈f , Tigj〉 = 0 for all i. Reference [89] defines notions of
global and local regularity for graph signals, and begins to
connect the regularities of the signals and the degree of the
polynomial filters to the decay of the magnitudes of spectral
graph wavelet analysis coefficients.

VI. APPLICATION EXAMPLES AND COMPARISON VIA
NUMERICAL EXPERIMENTS

In this section, we first describe LSGFD transform meth-
ods for two signal processing tasks – denoising and non-
linear approximation (compression) – and then perform a
set of targeted numerical experiments that attempt to answer
high-level design questions and help focus the community’s
research going forward. Our objective is not to determine
whether a specific dictionary outperforms other dictionaries in
a specific task; for that type of analysis, we encourage readers
to experiment on their own data with the publicly available
code used to generate all figures and tables in this article.

A. Denoising

We consider the denoising problem of recovering a graph
signal f from a noisy observation, y = f +ξ, where ξ ∈ RN is
a white Gaussian noise vector whose entries are independent
and identically distributed (i.i.d.) normal random variables
with mean 0 and known variance σ2. We use the common
wavelet denoising method of performing soft thresholding on
the LSGFD transform coefficients, and then resynthesizing
the signal with the inverse transform. Specifically, we take
fdenoised = Φ∗−1(ᾱ), where each soft thresholded coefficient
in the vector ᾱ is set to

ᾱi,j = sgn(〈y,ϕi,j〉) ·max{0, |〈y,ϕi,j〉| − Υi,j}. (13)

If the dictionary used to transform the noisy signal is a Parseval
frame, then Φ∗−1(ᾱ) = Φᾱ; otherwise (e.g., not every
filter is localized to every vertex or the filters do not satisfy
the tight frame condition of Theorem 4 due to polynomial
approximation), Φ∗−1 can be taken to be any of the three
approximate inverse transforms discussed in Example 4.

We set the soft thresholds Υi,j in (13) to 0 for the scaling
functions (atoms generated from filters satisfying ĝj(0) > 0)
since these coefficients are not expected to be sparse. For the
other thresholds, as in [32], to account for the fact that the
dictionary atoms have different norms, we use atom-adapted
thresholds of the form Υi,j = Υjσ||ϕi,j ||2, where {Υj} are
the J − 1 scalar parameters. The optimal value of each Υj
is estimated with Stein’s Unbiased Risk Estimator (SURE).
As detailed in [90], for soft thresholding on a dictionary with
a single lowpass filter (j = 1), this amounts to solving the
following for each j = 2, 3, . . . , J :

argmin
Υj

N∑
i=1

{
min

{
|〈y,ϕi,j〉|2, Υ 2

j σ
2||ϕi,j ||22

}
+2σ2||ϕi,j ||2211{|〈y,ϕi,j〉|≥Υjσ||ϕi,j ||2}

}
.

(14)

Importantly, the objective in (14) does not depend on the
unknown signal f . The thresholds {Υi,j} and the objective
in (14) depend on the atom norms {||ϕi,j ||2}. For small to
medium graphs, these can be computed exactly; for poly-
nomial filter designs on large, sparse graphs, they can be
efficiently estimated as ||ϕi,j ||2 ≈ 1

σ s.d.
(
{δ∗i p̂j,K(L)ηl}Ll=1

)
,

where p̂j,K is a polynomial approximation to ĝj and {ηl}Ll=1

is a sequence of i.i.d. random vectors, each with i.i.d. entries
normally distributed with mean 0 and variance σ2.
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Sensor Network Bunny Minnesota Cerebellum
σ/σf 1/8 1/4 1/2 1 1/8 1/4 1/2 1 1/8 1/4 1/2 1 1/8 1/4 1/2 1

Spectral graph wavelets [11] 1.56 2.29 4.04 6.37 4.99 5.92 7.69 10.46 5.81 6.69 8.50 10.93 0.53 1.74 3.76 6.85
Cohen-Daubechies-Feauveau 9/7 filters [20] 1.50 2.04 3.83 5.85 4.76 5.68 7.44 10.42 5.51 6.52 8.61 11.86 0.50 1.60 4.03 6.86
Uniform ideal filters 1.00 1.89 3.52 5.75 3.51 4.54 6.48 9.33 3.50 4.72 6.45 7.20 0.66 2.06 4.02 7.05
Octave-band (wavelet) ideal filters 0.96 1.82 3.61 6.12 3.67 4.81 6.97 10.16 4.37 5.81 8.23 11.61 0.44 1.49 3.62 6.55
DCT with frequency conversion [20] 1.77 2.30 3.94 6.26 4.87 5.88 7.61 10.32 4.86 5.83 7.51 8.73 0.63 1.89 4.14 7.10
Log-warped DCT with frequency conversion [20] 1.39 2.07 3.85 6.26 4.51 5.76 7.60 10.37 6.29 7.08 9.10 12.06 0.41 1.39 3.59 6.31
Uniform translates: Itersine kernel [31] 1.33 2.14 3.93 6.37 4.61 5.69 7.36 10.41 4.63 5.89 7.94 9.57 0.69 2.03 4.10 7.09
Log-warped translates (wavelets): Itersine kernel [31] 1.42 2.15 3.98 6.38 4.40 5.76 7.48 10.44 5.81 6.76 8.86 11.94 0.55 1.70 3.90 6.99
Spectrum-adapted uniform translates: Itersine kernel [31] 1.48 2.11 3.97 6.27 4.35 5.46 7.14 10.32 5.11 6.23 8.48 11.22 0.68 2.05 4.05 7.03
Spectrum-adapted wavelets: Itersine kernel [31] 1.32 2.12 4.00 6.61 4.46 5.60 7.59 10.45 5.69 6.65 8.94 12.02 0.63 1.95 4.05 7.10
Signal-adapted Meyer-type [29] 0.39 1.38 3.53 6.85

TABLE I
DENOISING PERFORMANCE FOR DIFFERENT GRAPH SIGNALS, NOISE LEVELS, AND FILTER DESIGNS, SHOWN IN SNR IMPROVEMENT:

∆SNR = 10 log10

(
||f ||22

||fDENOISED−f ||22

)
− 10 log10

(
||f ||22
||ξ||22

)
= 10 log10

(
||ξ||22

||fDENOISED−f ||22

)

B. Non-linear approximation

One approach to compression of smooth and piecewise-
smooth graph signals is to represent them as sparse linear
combinations of LSGFD atoms. To find such sparse represen-
tations for a graph signal f , the sparse coding optimization

argmin
α
||f −Φα||22 subject to ||α||0 ≤ T0,

where T0 is a predefined sparsity level, can be approximately
solved, e.g., by normalizing the dictionary atoms and then
applying the greedy orthogonal matching pursuit (OMP) algo-
rithm [81]. When the graph is very large and OMP becomes
impractical computationally, a common approximation method
is to hard threshold the analysis coefficients (normalized by an
estimate of the corresponding atom norm), and then resynthe-
size the signal from the T0 largest magnitude coefficients, via
one of the inverse transform methods described in Example 4.

C. Design considerations revisited

We use five different test signals in this section: the
piecewise-smooth signal on a sensor network shown in Fig. 6
[12]; the piecewise-smooth signal on the bunny graph shown
in Fig. 3 [12]; the piecewise constant signal on the Minnesota
road network from [14]; the average of 292 fMRI signals on
the cerebellum graph [29], [36]; and the average temperatures
for March 2018 at N = 469, 404 locations in the United States
on an eight-neighbor local graph from [16]. We preprocess all
signals by normalizing them to have mean zero.

1) How should we design the filters? Are there dictionary
metrics that can inform this decision?: In Table I, we examine
the denoising performance for different graph signals, noise
levels (σf is the standard deviation of the signal values and
σ is the standard deviation of the noise values), and filter
designs. For each filter design type, we report the best SNR
improvement over the range of 3-12 filters, each localized to
every vertex in the graph to create the dictionary. In Fig. 6, we
use OMP to compress a piecewise-smooth signal on a sensor
network with nine different dictionaries. For both of these
application examples, we use exact computations throughout.

What are the design takeaways from these examples? First,
there is no clear “best” filter design method across applications

and setup parameters, which is not surprising but worth stating.
Second, using redundant dictionaries generally enables sparser
representations of the data and better compression perfor-
mance than the bases considered in this example. Third, with
exact computations, there is not a significant drawback from
using a non-tight frame; e.g., the spectral graph wavelets have
excellent performance in many of the denoising setups and the
compression example. Fourth, in this setting, the cumulative
coherence is not necessarily a good prediction of compression
(sparse approximation) performance. For example, µ1(25) is
equal to 24.96, 24.77, 24.57, 15.71, 13.12, and 4.12 for the
translated Hann wavelets, uniform Hann translates, spectral
graph wavelets, uniform DCT filters, fast tight wavelet frame,
and M -channel critically sampled filter bank, respectively; that
is, higher, not lower, cumulative coherence is correlated with
better performance. Indeed, the identification of dictionary
metrics that correlate with application performance metrics is
very much an open issue.

2) How should we select the number of filters?: There is
not an easy answer for best practices in choosing the number
of filters in an LSGFD. For small and medium graphs where
exact filtering is tractable, the choice that yields the best
performance usually depends on the specific application and
signal model. For example, in Table II, for each type of filter
design, we provide the number of filters that leads to the
best performance in the corresponding entry of the denoising

Sensor Network Bunny Minnesota Cerebellum
σ/σf 1/8 1/4 1/2 1 1/8 1/4 1/2 1 1/8 1/4 1/2 1 1/8 1/4 1/2 1

SGWT 7 12 8 10 9 10 8 8 12 6 6 12 4 4 8 9
CDF 9/7 12 8 10 6 7 12 9 6 9 8 12 9 12 9 12 5
UnifIdeal 6 10 11 12 6 7 11 12 9 12 12 12 11 11 11 11
WavIdeal 4 8 4 6 6 11 9 6 9 8 12 9 12 9 6 5
UnifDCT 4 6 6 11 4 8 12 12 12 12 12 11 12 12 12 12
WavDCT 6 12 6 12 6 8 6 8 4 6 6 10 10 12 12 12
UnifTr 4 6 6 10 4 5 8 12 10 12 12 12 11 11 12 9
WavTr 3 4 12 4 4 4 5 6 3 4 5 9 7 11 12 12
SpAUnifTr 3 4 6 7 5 5 9 11 6 11 12 12 10 12 10 11
SpAWavTr 4 4 7 4 4 4 4 7 4 4 4 5 12 12 12 9
SigAUnif 12 12 12 12

TABLE II
NUMBER OF FILTERS THAT ACHIEVES THE BEST DENOISING RESULT

SHOWN IN THE CORRESPONDING ENTRY IN TABLE I. THE RANGE
CONSIDERED FOR EACH DESIGN IS 3 TO 12 FILTERS.
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Fig. 6. Non-linear approximation of the piecewise-smooth signal on a random sensor network with 500 vertices from [12]. The left two images show the
signal in the vertex domain and spectral domain, respectively. The third image shows the normalized mean square reconstruction error incurred by applying
the OMP algorithm to the analysis coefficients from nine different dictionary transforms. The first four are bases, with errors shown in dashed lines, and the
next five are frames generated from six filters, with all but the spectral graph wavelet frame being Parseval frames. The final image shows the same error for
tight frames with different numbers of uniform translates of the Hann kernel as the filters.

results of Table I. The best number of filters to use varies
widely depending on the type of filters, level of noise, and
underlying graph signal, most likely according to how well
some of the resulting atoms can capture the energy of the
signal. Similarly, the last image in Fig. 6 shows that the choice
of the number of filters in the compression of the sensor
signal does not have an outsized impact when using an exactly
computed dictionary generated (in this case, based on octave-
band translates of a Hann kernel).

The drawbacks of using more filters are exacerbated when
the data resides on a large graph, necessitating approximations
for computational tractability. In Fig. 7, we show the denoising
performance on the bunny graph signal of tight wavelet
frames generated from different numbers of uniform translates.
With exact computations, the performance continues to slowly
increase with additional filters (although it has nearly saturated
at J = 10 filters); however, as the number of filters increases,
they become narrower and more difficult to approximate by
low degree polynomials, leading to worse performance with
approximate computations. This is part of the reason a general
rule of thumb in practice has been to use 4-8 filters.

3) When is it beneficial to use fewer center vertices?: It
appears to be most beneficial to include fewer center vertices
in applications where either (i) memory is a critical issue,
or (ii) the graph signals under consideration reside on very
large, sparse graphs, necessitating approximations at all stages
of the signal processing or machine learning pipelines. As
an example, in Fig. 8, we compress the average temperature
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Fig. 7. The wider filters arising in the filter designs with a lower number
of filters are more amenable to approximation by low order polynomials,
which in turn keeps the ratio of frame bounds closer to 1 and can lead
to better reconstruction and denoising performance when fast numerical
approximations are used.

signal, reconstructing it from N
2 of the analysis coefficients.

We compare the hard thresholding method using a five filter
spectrum-adapted tight wavelet dictionary with complete sam-
pling (Vj = V for all j) to the band-by-band reconstruction
method outlined in Section IV-B, using the 5-channel critically
sampled filter bank (M -CSFB) design detailed in [16] with
the center vertices for each filter selected via signal-adapted
nonuniform random sampling. The hard thresholding method
tends to keep the coefficients associated with the scaling
functions (j = 1) and center vertices in the northern and
southern parts of the country. Combined with the fact that the
atoms are localized within K = 50 hops of the center vertices
due to the necessary polynomial approximation of the filters on
a graph this size, it incurs more reconstruction error in areas of
the graph where either the center vertices were not selected or
there are sharper changes in the signal values, which would
be captured by the discarded wavelet coefficients (j > 1).
Although it is possible to mitigate this issue to some extent via
more clever reconstruction methods, the problem also becomes
more pronounced as the compression ratio increases and fewer
analysis coefficients are stored. The M -CSFB dictionary, on
the other hand, only has 28,022 atoms generated from the
scaling filter, leading to many of the wavelet coefficients being
used in the reconstruction. Moreover, the random sampling
selection of center vertices leads to preserved coefficients
associated with atoms centered across the country. A high-
level difference between these two approaches is that the M -
CSFB already includes some of the compression in the process
of choosing the strict subsets Vj ⊂ V to be the center vertices.

VII. SUMMARY AND FUTURE DIRECTIONS

In summary, localized spectral graph filter frames feature
structured atoms with analytically tractable properties such as
localization around the center vertex and spectral patterns that
carry a notion of smoothness with respect to the graph. At
the same time, efficient numerical approximations exist to the
forward and inverse transforms, rendering these dictionaries
useful in myriad applications on large, sparse graphs. For
small and medium graphs, it is typical to perform an exact
eigendecomposition, localize each filter to every vertex, and
choose the filters to satisfy the condition of Theorem 4,
guaranteeing that the frame is tight. For large, sparse graphs,
we reviewed fast techniques to approximate or bound the
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Fig. 8. Compression of the average temperature signal from [16]: the initial signal, the reconstructions from N
2

= 234, 702 analysis coefficients of two
different dictionaries, and the absolute values of the corresponding reconstruction errors. The NMSEs are 0.099 and 0.001 for the redundant tight wavelet
frame and the critically sampled filter bank dictionary, respectively.

maximum graph Laplacian eigenvalue and the cumulative
spectral density function, and subsequently, how to leverage
these approximations in the design and application of the
spectral filters, the selection of center vertices via signal-
adapted non-uniform random sampling, and fast reconstruction
methods.

Open issues and future directions in this line of research
include:

1) Continued investigation of algorithms that use LSGFDs
to efficiently extract information in the context of specific
application domains and signal processing and machine
learning tasks; as just one example, [91] begins to inves-
tigate how to leverage the structured sparsity of LSGFD
analysis coefficients to recover piecewise-smooth graph
signals in the semi-supervised learning problem.

2) New connections between theoretical metrics, dictionary
design, and applications. Many unanswered or partially
answered questions remain on this front: What mathe-
matical classes of graph signals are sparsely represented
by LSGFDs with specific spectral patterns? Are there
easily computable metrics on the dictionary that are good
predictors of performance in application tasks, as demon-
strated either empirically or via mathematical analysis? In
what applications is it most beneficial to adapt the filters
to the spectrum or the energy density of training signals?

3) The development of faster greedy or hybrid
greedy/random graph sampling methods that are
applicable to both smooth and non-smooth graph signals,
as well as accompanying fast, scalable interpolation
methods.

4) Extensions of the dictionary design principles reviewed
here to the settings of data on directed graphs, time series
data on graphs, and deep learning / convolutional neural
networks on graphs.
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