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Distributed Signal Processing via Chebyshev
Polynomial Approximation

David I Shuman, Pierre Vandergheynst, Daniel Kressner, Pascal Frossard

Abstract—Unions of graph multiplier operators are an impor-
tant class of linear operators for processing signals defined on
graphs. We present a novel method to efficiently distribute the
application of these operators. The proposed method features ap-
proximations of the graph multipliers by shifted Chebyshev poly-
nomials, whose recurrence relations make them readily amenable
to distributed computation. We demonstrate how the proposed
method can be applied to distributed processing tasks such
as smoothing, denoising, inverse filtering, and semi-supervised
classification, and show that the communication requirements of
the method scale gracefully with the size of the network.

Index Terms—Chebyshev polynomial approximation, denois-
ing, distributed lasso, distributed optimization, functions of
matrices, learning, regularization, signal processing on graphs,
spectral graph theory

I. INTRODUCTION

In distributed signal processing tasks, the data to be pro-
cessed is physically separated and cannot be transmitted to
a central processing entity. This separation may be due to
engineering limitations such as the limited communication
range of wireless sensor network nodes, privacy concerns, or
design considerations. Even when high-dimensional data can
be processed centrally, it may be more efficient to process it
with parallel computing. It is therefore important to develop
distributed data processing algorithms that balance the trade-
offs between performance, communication bandwidth, and
computational complexity (speed).

A. The Communication Network and Signals on the Network

For concreteness, we focus throughout the paper on dis-
tributed processing examples in wireless sensor networks;
however, the problems we consider could arise in a number of
different settings. Due to the limited communication range of
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wireless sensor nodes, each sensor node in a large network is
likely to communicate with only a small number of other nodes
in the network. To model the communication patterns, we can
write down a graph with each vertex corresponding to a sensor
node and each edge corresponding to a pair of nodes that
communicate. Moreover, because the communication graph is
a function of the distances between nodes, it often captures
spatial correlations between sensors’ observations as well.
That is, if two sensors are close enough to communicate, their
observations are likely to be correlated. We can further specify
these spatial correlations by adding weights to the edges of
the graph, with higher weights associated to edges connecting
sensors with closely correlated observations.

We model the communication network with an undirected,
weighted graph G = {V, E , w}, which consists of a set of
vertices V , a set of edges E , and a weight function w : E → R+

that assigns a non-negative weight to each edge. We assume
the number of nodes in the network, N = |V|, is finite, and the
graph is connected. The adjacency (or weight) matrix W for
a weighted graph G is the N ×N matrix with entries Wm,n,
where

Wm,n =

{
w(e), if e ∈ E connects vertices m and n
0, otherwise

.

Therefore, the weighted graph G can be equivalently repre-
sented as the triplet {V, E ,W}. The degree of each vertex
is the sum of the weights of all the edges incident to it. We
define the degree matrix D to be the diagonal matrix with the
nth diagonal entry Dn,n equal to the sum of the entries in the
nth row of W.

A signal or function f : V → R defined on the vertices of
the graph may be represented as a vector f ∈ RN , where the
nth component of the vector f represents the function value at
the nth vertex in V . Throughout, we use bold font to denote
matrices and vectors, we denote the nth component of a vector
f by either f(n) or fn, and we denote the nth component of
a matrix-vector product Pf by (Pf)(n).

B. Distributed Signal Processing Tasks

We consider sensor networks whose nodes can only send
messages to their local neighbors (i.e., they cannot communi-
cate directly with a central entity). Much of the literature on
distributed signal processing in such settings (see, e.g., [1]-[5]
and references therein) focuses on coming to an agreement
on simple features of the observed signal (e.g., consensus
averaging, parameter estimation). We are more interested in
processing the full function in a distributed manner, with each

http://www.macalester.edu/~dshuman1/publications.html


2

node having its own objective. Some example tasks under this
umbrella include:
• Distributed denoising – In a sensor network of N sensors,

a noisy N -dimensional signal is observed, with each
component of the signal corresponding to the observation
at one sensor location. Using the prior knowledge that the
denoised signal should be smooth or piecewise smooth
with respect to the underlying weighted graph structure,
the sensors’ task is to denoise each of their components
of the signal by iteratively passing messages to their local
neighbors and performing computations.

• Distributed semi-supervised learning / transductive clas-
sification – A class label is associated with each sensor
node; however, only a small number of nodes in the
network have knowledge of their labels. The cooperative
task is for each node to learn its label by iteratively
passing messages to its local neighbors and performing
computations.

While the methods we propose are applicable to signals
on any weighted, undirected graph G, we predominantly have
in mind large, sparse graphs (i.e., the number of edges grows
approximately linearly with the number of vertices), which are
both common in practice and constitute the realm in which the
proposed methods are most beneficial.

C. Related Work
The tasks mentioned in Section I-B as well as other similar

tasks have been considered recently in centralized settings
in the fields of machine learning and signal processing on
graphs [6], [7]. For example, [8]-[11] consider general regu-
larization frameworks on weighted graphs; [12]-[19] present
graph-based semi-supervised learning methods; and [20]-[23]
consider regularization and filtering on weighted graphs for
image and mesh processing. Spectral regularization methods
for ill-posed inverse problems (see, e.g., [24] and references
therein) are also closely related.

Also in a centralized setting, [25] shows that a truncated
Chebyshev polynomial expansion efficiently approximates the
application of a spectral graph wavelet transform. The trun-
cated Chebyshev polynomial expansion technique is originally
introduced in [26] in the context of approximately computing
the product of a matrix function and a vector. In Section II, we
discuss the connection between the graph multiplier operators
we define and more general matrix functions.

In the distributed setting, reference [27] considers denoising
via wavelet processing and [28] presents a denoising algorithm
that projects the measured signal onto a low-dimensional
subspace spanned by smooth functions. References [29]-[32]
consider different distributed regression problems. Reference
[33] extends the approach proposed in this paper by examining
robustness to quantization noise. Segarra et al. [34], [35]
approximate general linear transformations by what we define
in Section II-A as graph multiplier operators. Infinite impulse
response (IIR) graph spectral filters, which have recently been
introduced in [36], [37], comprise another approach to many
distributed graph signal processing tasks. These filters, which
we discuss in more detail in Section V-D, can be written as
the ratio of two polynomial functions.

D. Main Contributions

In the the initial presentation of this work [38], we extend
the Chebyshev polynomial approximation method to the gen-
eral class of unions of graph Fourier multiplier operators, and
show how the recurrence properties of the Chebyshev poly-
nomials also enable distributed application of these operators.
The communication requirements for distributed computation
using this method scale gracefully with the number of sensors
in the network (and, accordingly, the size of the signals).

Our main contributions in this paper are to i) generalize
graph Fourier multiplier operators to graph multiplier oper-
ators (to be defined in detail in Section II); ii) show that
the application of linear operators that are unions of graph
multiplier operators is a key component of distributed signal
processing tasks such as distributed smoothing, denoising,
inverse filtering, and semi-supervised learning; iii) present a
novel method to efficiently distribute the application of the
graph multiplier operators to high-dimensional signals; iv)
provide theoretical bounds on the approximation error incurred
by the proposed method; and v) theoretically and numerically
compare the proposed method to alternative distributed com-
putation methods.

The remainder of the paper is as follows. In the next section,
we provide some background from spectral graph theory and
matrix function theory, and introduce graph multiplier opera-
tors. In Section III, we provide examples of distributed signal
processing tasks that feature the application of graph multiplier
operators. In Section IV, we introduce a method to efficiently
approximate these operators in a distributed setting via shifted
Chebyshev polynomials. We discuss alternative methods to
perform these approximate distributed computations in Section
V, and we theoretically and numerically compare these alter-
native methods. In Section VI, we show how these methods
can also be used to perform distributed wavelet denoising with
the lasso regularization problem. Section VII concludes the
paper.

II. MATRIX FUNCTIONS AND GRAPH MULTIPLIER
OPERATORS

In this section, we leverage notation from the theory of
matrix functions to introduce a class of operators that we call
graph multiplier operators. We also relate these operators to
multiplier operators from classical Fourier analysis.

A. Matrix Functions

Functions of matrices [39] appear throughout mathematics,
science, and engineering. While functions of more general
matrices can be defined via the Jordan canonical form (e.g.,
[39, Definition 1.2, p. 3]), we restrict our attention in this
paper to the simpler case of functions of real symmetric
positive semi-definite matrices. Such a matrix P ∈ RN×N has
a complete set of orthonormal eigenvectors {u`}`=0,1,...,N−1

and associated real, non-negative eigenvalues {λ`}`=0,1,...,N−1

satisfying Pu` = λ`u`. That is, P admits a spectral decom-
position P = UΛU∗, where U is the N × N matrix with
the (` + 1)th column equal to the eigenvector u`, and Λ
is the N × N diagonal matrix with the (` + 1)th diagonal



3

element equal to λ`. Without loss of generality, we assume
the eigenvalues to be ordered as

0 ≤ λ0 ≤ λ1 ≤ ... ≤ λN−1 := λmax.

Given a function g(·) well-defined on the spectrum σ(P) :=
{λ0, λ1, . . . , λmax}, the corresponding matrix function g(P)
is defined (e.g., [39, p. 3]) as

g(P) := Ug(Λ)U∗ := U

 g(λ0) 0
. . .

0 g(λN−1)

U∗.

(1)

The class of operators that can be written as matrix functions
of P can be equivalently characterized as follows.

Proposition 1: For a fixed real symmetric positive semi-
definite matrix P, the following are equivalent:
(a) Ψ = g(P) for some g : σ(P)→ R.
(b) Ψ and P are simultaneously diagonalizable by a unitary

matrix; i.e., there exists a unitary matrix U such that
U∗ΨU and U∗PU are both diagonal matrices.

(c) Ψ and P commute; i.e., ΨP = PΨ.
Proof of Proposition 1: (a) implies (b) because of the

definition (1) of g(P), and (b) implies (a) if we set g(λ`) to
the (` + 1)th diagonal element of U∗ΨU. The equivalence
between (b) and (c) is shown in [40, Corollary 4.5.18].

B. Graph Multiplier Operators

In the context of distributed signal processing tasks, we
are particularly interested in functions of symmetric matrices
whose sparsity pattern is consistent with the communication
structure of the network.

Definition 1: Ψ is a graph multiplier operator with respect
to the graph G if there exists a real symmetric positive semi-
definite matrix P and a function g : σ(P)→ R such that
(i) Ψ = g(P) =

∑N−1
`=0 g(λ`)u`u

∗
` , and

(ii) Pi,j = 0 if Wi,j = 0 and i 6= j; i.e., P has the same
sparsity pattern as the graph Laplacian L of the graph G.

In order for the distributed computational methods we
introduce in Sections IV and V to be applicable to a wider
range of applications, we can generalize slightly from graph
multiplier operators to unions of graph multiplier operators.
A union of graph multiplier operators is a linear operator
Φ : RN → RηN (η ∈ {1, 2, . . .}) that can be written as

N︷ ︸︸ ︷
Φ =


g1(P)
g2(P)

...
gη(P)

 =


Ψ1

Ψ2

...
Ψη


 ηN . (2)

The application of the operator Φ to a function f can equiva-
lently be written as

(Φf) ((j − 1)N + n) =

N−1∑
`=0

gj(λ`)〈f ,u`〉u`(n), (3)

for j ∈ {1, 2, . . . , η}, n ∈ {1, 2, . . . , N}.

C. Graph Fourier Multiplier Operators

When the matrix P in Definition 1 is the graph Laplacian
L, we call Ψ a graph Fourier multiplier operator. The non-
normalized graph Laplacian is the real symmetric matrix
L := D − W, the difference between the degree matrix
and the weighted adjacency matrix (see, e.g., [41], [42], for
introductions to spectral graph theory). Because this situation
arises frequently, we briefly motivate this terminology and
relate it to the analogous operators from the classical signal
processing literature.

For a function f defined on the real line, a Fourier multi-
plier operator or filter Ψ reshapes the function’s frequencies
through multiplication in the Fourier domain:

(Ψ̂f)(ω) = g(ω)f̂(ω), for every frequency ω.

Taking an inverse Fourier transform yields

(Ψf)(x) = F−1
(
g(ω)F(f)(ω)

)
(x) (4)

=
1

2π

∫
R

g(ω)f̂(ω)eiωx dω.

Denoting the eigenvectors of L by {χ`}`=0,1,...,N−1, we can
extend this straightforwardly to functions defined on the ver-
tices of a graph by replacing the Fourier transform and its in-
verse in (4) with the graph Fourier transform f̂(`) := 〈f ,χ`〉 =∑N
n=1 f(n)χ∗` (n), and its inverse f(n) =

∑N−1
`=0 f̂(`)χ`(n).

Namely, a graph Fourier multiplier operator is a linear operator
Ψ : RN → RN that can be written as

(Ψf)(n) = F−1
(
g(λ`)F(f)(`)

)
(n)

=

N−1∑
`=0

g(λ`)f̂(`)χ`(n). (5)

We refer to g(·) as the multiplier or graph spectral filter.1

Equivalently, borrowing the above notation from the theory of
matrix functions [39], we can write

Ψ = g(L) =

N−1∑
`=0

g(λ`)χ`χ
∗
` = χg(Λ)χ∗.

A high-level intuition behind graph spectral filtering (5) is as
follows. The eigenvectors corresponding to the lowest eigen-
values of the graph Laplacian are the “smoothest” in the sense
that |χ`(m)− χ`(n)| is small for neighboring vertices m and
n. The inverse graph Fourier transform provides a representa-
tion of a signal f as a superposition of the orthonormal set of
eigenvectors of the graph Laplacian. The effect of the graph
Fourier multiplier operator Ψ is to modify the contribution of
each eigenvector. For example, applying a multiplier g(·) that
is 1 for all λ` below some threshold, and 0 for all λ` above
the threshold is equivalent to projecting the signal onto the
eigenvectors of the graph Laplacian associated with the lowest
eigenvalues. This is analogous to ideal lowpass filtering in the
continuous domain. Section III contains further intuition about

1Unlike [6], we omit the hat symbol (̂ ) on the multiplier g(·), in order
to maintain consistency with the notation most commonly used for matrix
functions.
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and examples of graph Fourier multiplier operators. For more
properties of the graph Laplacian eigenvectors, see [6] and
[43], and references therein.

III. ILLUSTRATIVE DISTRIBUTED SIGNAL PROCESSING
APPLICATIONS

In this section, we show that a number of distributed
signal processing tasks can be solved as applications of graph
multiplier operators or unions of graph multiplier operators.

A. Denoising with Distributed Tikhonov Regularization
First, we consider the distributed denoising task discussed

in Section I. We start with a noisy signal y ∈ RN that is
defined on a graph of N sensors and has been corrupted
by uncorrelated additive Gaussian noise. Through an iterative
process of local communication and computation, each sensor
should end up with a denoised estimate of its component, f0

n,
of the true underlying signal, f0.

To solve this problem, we enforce a priori information that
the target signal is smooth with respect to the underlying graph
topology. To enforce the global smoothness prior, we consider
the class of regularization terms fTLrf for r ≥ 1. The resulting
distributed regularization problem has the form

argmin
f

τ

2
‖f − y‖22 + fTLrf . (6)

Intuitively, the regularization term fTLrf is small when the
signal f has similar values at neighboring vertices with large
weights (i.e., it is smooth). For example, when r = 1,

fTLf =
1

2

∑
n∈V

∑
m∼n

Wm,n

(
fm − fn

)2
.

The proof of the following proposition is included in the
Appendix of [44].

Proposition 2: The solution to (6) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λ`) = τ

τ+2λr`
.2

So, one way to do distributed denoising is to approximately
compute Ry in a distributed manner. We discuss methods to
do this in Sections IV and V, and numerical examples are
included in Section IV-D and Section V-E.

B. Distributed Smoothing
An application closely related to distributed denoising is

distributed smoothing. Here, the graph Fourier multiplier is
the heat kernel g(λ`) = e−tλ` . In other words, a signal
y ∈ RN is smoothed by computing Hty, where (Hty)(n) :=∑N−1
`=0 e−tλ` ŷ(`)χ`(n) for fixed t. In the context of a cen-

tralized image smoothing application, [22] discusses in detail
the heat kernel and its relationship to classical Gaussian
filtering. Similar to both the example at the end of Section
II-C and distributed Tikhonov regularization, the main idea is
that the multiplier g(λ`) = e−tλ` acts as a lowpass filter that
attenuates the higher frequency (less smooth) components of
y. The distributed smoothing problem is to compute Ry, with
R = Ht = e−tL and each vertex n beginning with only its
observation yn.

2This filter g(λ`) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

C. Distributed Inverse Filtering

Next, we consider the situation where node n observes the
nth component of y = Ψf + ν, where Ψ is a graph Fourier
multiplier operator with multiplier gΨ(·), and ν is uncorrelated
Gaussian noise. The task of the network is to recover f by
inverting the effect of the graph multiplier operator Ψ. This
is the distributed graph analog to the deblurring problem in
imaging, which is discussed in [45, Chapter 7]. As discussed
in [45, Chapter 7], trying to recover f by simply applying the
inverse filter in the graph Fourier domain, i.e., setting

f∗(n) =

N−1∑
`=0

(
1

gΨ(λ`)

)
ŷ(`)χ`(n)

=

N−1∑
`=0

(
f̂(`) +

ν̂(`)

gΨ(λ`)

)
χ`(n)

= f(n) +

N−1∑
`=0

(
ν̂(`)

gΨ(λ`)

)
χ`(n), (7)

does not work well when gΨ(·) is zero (or close to zero)
for high frequencies, because the summation in (7) blows up,
dominating f(n). Therefore, we again use the prior that the
signal is smooth with respect to the underlying graph structure,
and approximately solve the regularization problem

argmin
f

τ

2
‖y −Ψf‖22 + fTLrf (8)

in a distributed manner.
Proposition 3: The solution to (8) is given by Ry, where

R is a graph Fourier multiplier operator with multiplier

h(λ`) =
τgΨ(λ`)

τg2
Ψ(λ`) + 2λr`

.

The proof of Proposition 3 is included in the Appendix of
[44].

D. Distributed Semi-Supervised Classification

The goal of semi-supervised classification is to learn a
mapping from the data points X = {x1, x2, . . . , xN} to
their corresponding labels Y = {y1, y2, . . . , yN}. The pairs
(xi, yi) are independently and identically sampled from a joint
distribution p(x, y) over the sample space X × Y, where
Y := {1, 2, . . . , κ} is the space of κ classes. The transductive
classification problem is to use the full set of data points
X = {x1, x2, . . . , xN} and the labels Yl = {y1, y2, . . . , yl}
associated with a small portion of the data (l� N ) to predict
the labels Yu = {yl+1, yl+2, . . . , yN} associated with the
unlabeled data Xu = {xl+1, xl+2, . . . , xN}.

Many semi-supervised learning methods represent the data
X by an undirected, weighted graph, and then force the labels
to be smooth with respect to the intrinsic structure of this
graph. We show how a number of these centralized graph-
based semi-supervised classification methods can be written
as applications of graph multiplier operators. Throughout, we
assume there is one data point at each node in the graph, and
the nodes know the weights of the edges connecting them to
their neighbors in the graph. For example, each data point
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could be at a different node in a sensor network, and the
weights could be a function of the physical distance between
the nodes.

For different choices of reproducing kernel Hilbert spaces
(RKHS) H, a number of centralized semi-supervised clas-
sification methods estimate the label of the nth data point
(n ∈ {l + 1, . . . , N}) by

arg max
j∈{1,2,...,κ}

F opt
nj , where (9)

Fopt = argmin
F∈RN×κ

κ∑
j=1

{
τ‖F:,j −Y:,j‖22 + ‖F:,j‖2H

}
. (10)

In (10), A:,j denotes the jth column of a matrix A; Y is an
N × κ matrix with entries

Yij =

{
1, if i ∈ {1, 2, . . . , l} and the label for point i is j
0, otherwise

;

and for some symmetric positive semi-definite matrix S ∈
RN×N ,

‖f‖2H = 〈f , f〉H := 〈f ,Sf〉 = fTSf . (11)

Note that for any symmetric positive semi-definite matrix S,
H endowed with the inner product defined in (11) is in fact a
RKHS on the image of RN under S, and its kernel is k(i, j) =(
S−1

)
ij

, where S−1 denotes the pseudoinverse if S is not
invertible [8, Theorem 4].

The following graph-based centralized semi-supervised
classification methods fall into this category:
• In Tikhonov regularization, S = Lr (e.g., [14])
• Zhou et al. [15] take S = Lrnorm, where Lnorm :=

D−
1
2LD−

1
2

• Smola and Kondor [8] consider a variety of ker-
nel methods, including a diffusion process with S =[
exp

(
−β2

2 Lnorm

)]−1

, an inverse cosine with S =[
cos
(
π
4Lnorm

)]−1
, and an r-step random walk with

S = (βIN − Lnorm)
−r, where β ≥ 2 and IN is the

N ×N identity matrix
• Ando and Zhang’s K-scaling method [18], [19] takes

S = (γIN + D)−
1
2 (γIN + L)(γIN + D)−

1
2 ,

which reduces to Lnorm when γ = 0
• Zhu et al. [17, Chapter 15] take the kernel approach a

step further by solving a convex optimization problem to
find a good S

Before moving on to the distributed semi-supervised classi-
fication problem, we note that in all of the examples above, we
can write S = h(P) for some h(·), where P is either the com-
binatorial graph Laplacian, the normalized graph Laplacian, or
the matrix S used in the K-scaling method, all of which have
the same sparsity pattern as L and are easily computable from
the weighted adjacency matrix.

Now, Fopt in (10) can be equivalently rewritten as the
solution to κ separate minimization problems, with

Fopt
:,j = argmin

f∈RN

{
τ‖f −Y:,j‖22 + fTSf

}
= argmin

f∈RN

{
τ‖f −Y:,j‖22 + fTh(P)f

}
. (12)

We can write the solution to (12) as RY:,j , where R is a
graph multiplier operator of the form outlined in Definition 1,
with respect to P. The optimal multiplier is g(λ`) = τ

τ+h(λ`)
.

Therefore, the following is a method to distribute any of the
centralized semi-supervised classification methods that can be
written as (9) and (10):

1) Node n starts with or computes the entries of the nth

row of P
2) Each node n forms the nth row of Y
3) For every j ∈ {1, 2, . . . , κ}, the nodes approximately

compute Fopt
:,j := RY:,j in a distributed manner via

algorithms outlined in the subsequent sections.
4) Each node n with an unlabeled data point computes its

label estimate according to arg maxj∈{1,2,...,κ}
{
F opt
nj

}
IV. DISTRIBUTED CHEBYSHEV POLYNOMIAL

APPROXIMATION OF GRAPH MULTIPLIER OPERATORS

Motivated by the fact that a number of distributed signal
processing tasks can be viewed as applications of unions
of graph multiplier operators, we proceed to the issue of
how to approximately compute Φf , where Φ is of the form
(2), in a distributed setting. In this section, we introduce a
computationally efficient approximation to unions of graph
multiplier operators based on shifted Chebyshev polynomials.

A. The Centralized Chebyshev Polynomial Approximation

Exactly computing g(P)f requires explicit computation of
the entire set of eigenvectors and eigenvalues of P, which
becomes computationally challenging as the size of the net-
work, N , increases, even in a centralized setting. Druskin
and Knizhnerman [26] introduce a method to approximate
g(P)f by g̃(P)f , where g̃(·) is a polynomial approximation
of g(·) computed by truncating a shifted Chebyshev series
expansion of the function g(·) on the interval [λmin, λmax].
Doing so circumvents the need to compute the full set of
eigenvectors and eigenvalues of P. This idea is extended
to unions of graph Fourier multipliers in [25, Section 6];
that is, a computationally efficient approximation Φ̃f of Φf
can be computed by approximating each multiplier gj(·) by
a truncated series of shifted Chebyshev polynomials. We
summarize this approach below.

For y ∈ [−1, 1], the Chebyshev polynomials
{Tk(y)}k=0,1,2,... are generated by

Tk(y) :=


1, if k = 0

y, if k = 1

2yTk−1(y)− Tk−2(y), if k ≥ 2

.

These Chebyshev polynomials form an orthogonal basis for

L2

(
[−1, 1], dy√

1−y2

)
. So every function h on [−1, 1] that is

square integrable with respect to the measure dy/
√

1− y2

can be represented as h(y) = 1
2b0 +

∑∞
k=1 bkTk(y), where

{bk}k=0,1,... is a sequence of Chebyshev coefficients that
depends on h(·). For a detailed overview of Chebyshev
polynomials, including the above definitions and properties,
see [46]–[50].
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By shifting the domain of the Chebyshev polynomials to
[0, λmax] via the transformation x = λmax

2 (y + 1), we can
represent each multiplier as

gj(x) =
1

2
cj,0 +

∞∑
k=1

cj,kT k(x), for all x ∈ [0, λmax], (13)

where T k(x) := Tk
(
x−α
α

)
, α := λmax

2 , and3

cj,k :=
2

π

∫ π

0

cos(kφ) gj

(
α
(
cos(φ) + 1

))
dφ. (14)

For k ≥ 2, the shifted Chebyshev polynomials satisfy

T k(x) =
2

α
(x− α)T k−1(x)− T k−2(x).

Thus, for any f ∈ RN , we have

T k(P)f =
2

α
(P− αI)

(
T k−1(P)f

)
− T k−2(P)f , (15)

where T k(P) ∈ RN×N and, by (3), the nth element of
T k(P)f is given by

(
T k(P)f

)
(n) =

N−1∑
`=0

T k(λ`)〈f ,u`〉u`(n). (16)

Now, to approximate the operator Φ, we can approximate
each multiplier gj(·) by the first K+1 terms in its Chebyshev
polynomial expansion (13). Then, for every j ∈ {1, 2, . . . , η}
and n ∈ {1, 2, . . . , N}, we have(

Φ̃f
)

((j − 1)N + n)

:=

(
1

2
cj,0f +

K∑
k=1

cj,kT k(P)f

)
(n) (17)

(16)
=

N−1∑
`=0

[
1

2
cj,0 +

K∑
k=1

cj,kT k(λ`)

]
〈f ,u`〉u`(n)

≈
N−1∑
`=0

[
1

2
cj,0 +

∞∑
k=1

cj,kT k(λ`)

]
〈f ,u`〉u`(n)

(13)
=

N−1∑
`=0

gj(λ`)〈f ,u`〉u`(n)

(3)
= (Φf) ((j − 1)N + n).

To recap, we propose to compute Φ̃f by first computing the
Chebyshev coefficients {cj,k}j=1,2,...,η; k=1,2,...,K according
to (14), and then computing the sum in (17). The compu-
tational benefit of the Chebyshev polynomial approximation
arises in (17) from the fact the vector T k(P)f can be computed
recursively from T k−1(P)f and T k−2(P)f according to (15).
The computational cost of doing so is dominated by the cost

3The integral on the right-hand side of (14) often needs to be approximated
numerically. The default method to do so in the Graph Signal Processing
Toolbox (GSPBox) [51] is the general purpose trapezium quadrature rule
described in [46, Section 5.2.2]. However, the GSPBox also allows the user
to specify that this integral should be approximated with the open source
Chebfun toolbox [50], which uses more nuanced quadrature methods that
can, e.g., split the integral into multiple parts to perform the numerical
approximation. We leverage the Chebfun toolbox in the numerical experiments
in this paper.

of matrix-vector multiplication with P, which is proportional
to the number of edges, |E| [25]. Therefore, if the underlying
communication graph is sparse (i.e., |E| scales linearly with
the network size N ), it is far more computationally efficient
to compute Φ̃f than Φf .

The approximation order K required to achieve a desired
approximation error depends on the smoothness of the function
g(·) and the magnitudes of its derivatives. In practice, for
smooth functions g(·) (say twice continuously differentiable
without large derivatives), choosing K on the order of 20 to 30
has led to close enough approximations for the applications we
have examined. Alternatively, one can implement an adaptive
procedure to choose K based on the magnitudes of the
computed Chebyshev coefficients, by increasing K until these
magnitudes decay below some pre-specified tolerance level.
Such a procedure is implemented in the Chebfun package [50].
For ideal filters, [52, Section 4.3] presents a similar method for
choosing K. See Section IV-E for more details on theoretical
bounds on the approximation error.

B. Distributed Computation of Φ̃f

We now discuss the second benefit of the Chebyshev poly-
nomial approximation: it is easily distributable. We consider
the following scenario. There is a network of N nodes, and
each node n begins with the following knowledge:
• fn, the nth component of the signal f
• The identity of its neighbors, and the weights of the graph

edges connecting itself to each of its neighbors
• The Chebyshev coefficients, cj,k, for j ∈ {1, 2, . . . , η}

and k ∈ {0, 1, 2, . . . ,K}. These can either be computed
centrally according to (14) and then transmitted through-
out the network, or each node can begin with knowledge
of the multipliers, {gj(·)}j=1,2,...,η , and precompute the
Chebyshev coefficients according to (14)

• An upper bound λmax on λmax, the largest eigenvalue of
P. This bound need not be tight. For example, when P
is the graph Laplacian L, we can precompute a bound
such as λmax ≤ max{d(m) +d(n);m ∼ n}, where d(n)
is the degree of node n [53][54, Corollary 3.2]. More
generally, an upper bound can be generated from a few
steps of the Lanczos algorithm [55]

The task is for each network node n to compute{(
Φ̃f
)(

(j − 1)N + n
)}

j=1,2,...,η
(18)

by iteratively exchanging messages with its local neighbors in
the network and performing some computations.4

As a result of (17), for node n to compute the desired se-
quence in (18), it suffices to learn

{(
T k(P)f

)
(n)
}
k=1,2,...,K

.
Note that

(
T 1(P)f

)
(n) =

(
1
α (P− αI)f

)
(n) and Pn,m = 0

for all nodes m that are not neighbors of node n. Thus, to
compute

(
T 1(P)f

)
(n), node n just needs to receive f(m)

from all neighbors m. So once all nodes send their component

4In practical implementations, it is important to ensure that the nodes remain
in sync and/or the computations are robust to synchronization errors. These
synchronization issues fall outside the scope of this work, but are considered
in detail elsewhere [56]-[58].
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Algorithm 1 Distributed Computation of Φ̃f

Inputs at node n: fn, Pn,m ∀m, {ck,j}j=1,2,...,η; k=0,1,...,K ,
and λmax

Outputs at node n:
{(

Φ̃f
)

((j − 1)N + n)
}
j=1,2,...,η

1: Set α = λmax

2

2: Set
(
T 0(P)f

)
(n) = f(n)

3: Transmit fn to all neighbors Nn := {m : Pn,m 6= 0}
4: Receive fm from all neighbors Nn
5: Compute and store(

T 1(P)f
)

(n) =

[ ∑
m∈Nn∪n

1

α
Pn,mf(m)

]
− f(n)

6: for k = 2, . . . ,K do
7: Transmit

(
T k−1(P)f

)
(n) to all neighbors Nn

8: Receive
(
T k−1(P)f

)
(m) from all neighbors Nn

9: Compute and store(
T k(P)f

)
(n)

=
∑

m∈Nn∪n

2

α
Pn,m

(
T k−1(P)f

)
(m)

− 2
(
T k−1(P)f

)
(n)−

(
T k−2(P)f

)
(n)

10: end for
11: for j ∈ {1, 2, . . . , η} do
12: Output(

Φ̃f
)

((j − 1)N + n)

=
1

2
cj,0f(n) +

K∑
k=1

cj,k
(
T k(P)f

)
(n)

13: end for

of the signal to their neighbors, they are able to compute their
respective components of T 1(P)f . In the next step, each node
n sends the newly computed quantity

(
T 1(P)f

)
(n) to all of its

neighbors, enabling the distributed computation of T 2(P)f ac-
cording to (15). The iterative process of local communication
and computation continues for K rounds until each node n has
computed the required sequence

{(
T k(P)f

)
(n)
}
k=1,2,...,K

.
In all, since each edge results in one message passed in
each direction in each iteration, 2K|E| messages of length
1 are required for every node n to compute its sequence of
coefficients in (18) in a distributed fashion. This distributed
computation process is summarized in Algorithm 1.

An important point to emphasize again is that although
the operator Φ and its approximation Φ̃ are defined through
the eigenvectors of P, the Chebyshev polynomial approx-
imation helps the nodes apply the operator to the signal
without explicitly computing (individually or collectively)
the eigenvalues or eigenvectors of P, other than the upper
bound on its spectrum. Rather, they initially communicate
their component of the signal to their neighbors, and then
communicate simple weighted combinations of the messages
received in the previous stage in subsequent iterations. In this

Algorithm 2 Distributed Computation of Φ̃∗a

Inputs at node n: {aj(n)}j=1,2,...,η , Pn,m ∀m, λmax,
and {ck,j}j=1,2,...,η; k=0,1,...,K ,

Output at node n:
(
Φ̃
∗
a
)

(n)

1: Set α = λmax

2
2: for j = 1, 2, . . . , η do
3: Set

(
T 0(P)aj

)
(n) = aj(n)

4: end for
5: Transmit {aj(n)}j=1,2,...,η to all neighbors Nn := {m :
Pn,m 6= 0}

6: Receive {aj(m)}j=1,2,...,η from all neighbors Nn
7: for j = 1, 2, . . . , η do
8: Compute and store(

T 1(P)aj

)
(n) =

[ ∑
m∈Nn∪n

2

α
Pn,maj(m)

]
− 2aj(n)

9: end for
10: for k = 2, . . . ,K do
11: Transmit

{(
T k−1(P)aj

)
(n)
}
j=1,2,...,η

to all neighbors
Nn

12: Receive
{(
T k−1(P)aj

)
(m)

}
j=1,2,...,η

from all neigh-
bors Nn

13: for j = 1, 2, . . . , η do
14: Compute and store(

T k(P)aj

)
(n)

=
∑

m∈Nn∪n

2

α
Pn,m

(
T k−1(P)aj

)
(m)

− 2
(
T k−1(P)aj

)
(n)−

(
T k−2(P)aj

)
(n)

15: end for
16: end for
17: Output(

Φ̃
∗
a
)

(n)

=

η∑
j=1

{
1

2
cj,0aj(n) +

K∑
k=1

cj,k
(
T k(P)aj

)
(n)

}
.

way, information about each component of the signal f diffuses
through the network without direct communication between
non-neighboring nodes.

C. Distributed Computation of Φ̃∗a and Φ̃∗Φ̃f

In some tasks, such as the distributed lasso presented in
Section VI, we not only need to apply unions of graph
multiplier operators, but we also need to apply their adjoints.
The application of the adjoint Φ̃∗ of the Chebyshev polynomial
approximate operator Φ̃ can also be computed in a distributed
manner. Let a = [a1; a2; . . . ; aη] ∈ RηN , where aj ∈ RN .
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Then it is straightforward to show that(
Φ̃
∗
a
)

(n) =

η∑
j=1

(
1

2
cj,0aj +

K∑
k=1

cj,kT k(P)aj

)
(n). (19)

We assume each node n starts with knowledge of aj(n) for all
j ∈ {1, 2, . . . , η}. For each j ∈ {1, 2, . . . , η}, the distributed
computation of the corresponding term on the right-hand side
of (19) is done in an analogous manner to the distributed
computation of Φ̃f discussed above. Since this has to be
done for each j, 2K|E| messages, each a vector of length
η, are required for every node n to compute (Φ̃

∗
a)(n). The

distributed computation of Φ̃∗a is summarized in Algorithm
2.

Using the property of the Chebyshev polynomials that
Tk(x)Tk′(x) = 1

2

[
Tk+k′(x) + T|k−k′|(x)

]
, we can write

(
Φ̃
∗
Φ̃f
)

(n) =

(
1

2
d0f +

2K∑
k=1

dkT k(P)f

)
(n).

See [25, Section 6.1] for a similar calculation and an explicit
formula for the coefficients {dk}k=0,1,...,2K . Thus, with each
node n starting with f(n) as in Section IV-B, Φ̃∗Φ̃f can be
distributedly computed using 4K|E| messages of length 1,
with each node n finishing with knowledge of

(
Φ̃
∗
Φ̃f
)

(n).

D. Numerical Example

We place 500 sensors randomly in the [0, 1]× [0, 1] square.
We then construct a weighted graph according to a thresholded
Gaussian kernel weighting function based on the physical
distance between nodes. The weight of edge e connecting
nodes i and j that are a distance d(i, j) apart is

w(e) =

{
exp

(
− [d(i,j)]2

2σ2

)
if d(i, j) ≤ κ

0 otherwise
,

with parameters σ = 0.074 and κ = 0.075. We create a
smooth 500-dimensional signal with the nth component given
by hn = n2

x + n2
y − 1, where nx and ny are node n’s x

and y coordinates in [0, 1] × [0, 1]. Next, we corrupt each
component of the signal h with uncorrelated additive Gaussian
noise with mean zero and standard deviation 0.5, resulting in
a noisy signal y. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 2, with τ = r = 1 and K = 20. The original
signal h, noisy signal y, and denoised signal R̃y are shown
in Figure 1(a)-(c). The Chebyshev polynomial approximation
errors are shown in Figure 1(d), and the resulting approxi-
mation errors for the graph Fourier multiplier operator and
denoised signal are shown in Figure 1(e). We repeated this
entire experiment 1000 times, with a new random graph and
random noise each time, and the average mean square error for
the denoised signals was 0.013, as compared to 0.250 average
mean square error for the noisy signals.5

5The reported errors are averaged over the 441 random graph realizations
that were connected.
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Fig. 1. Distributed denoising example. (a) The original signal with hn =
n2
x + n2

y − 1, where nx and ny are the x and y coordinates of sensor
node n. (b) The noisy signal y. (c) The denoised signal R̃y, the Chebyshev

polynomial approximation (order K = 20) to Ry =
N−1∑̀
=0

1
1+2λ`

ŷ(`)χ`(n).

(d) Approximation errors of shifted Chebyshev polynomial expansions of
different orders for the filter ĝ(λ`) = 1

1+2λ`
. (e) Resulting approximation

errors for the graph Fourier multiplier operator and graph filtered signal, along
with the upper bound on ||R− R̃||2 from (21)-(23).

E. Approximation Error

We use the following result, which bounds the spectral norm
of the difference between a union of graph multiplier operators
and its Chebyshev polynomial approximation, to analyze the
distributed lasso problem in Section VI.

Proposition 4: Let Φ be a union of η graph multiplier
operators; i.e., it has the form given in (2) for a real sym-
metric positive semi-definite matrix P. Let Φ̃ be the order K
Chebyshev polynomial approximation of Φ. Define

B(K) := max
j=1,2,...,η

{
sup

λ∈[0,λmax]

{∣∣gj(λ)− pKj (λ)
∣∣}} , (20)

where λmax is the largest eigenvalue of P, and pKj (·) is the
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order K Chebyshev polynomial approximation of gj(·). Then

‖Φ− Φ̃‖2 := max
f 6=0

‖(Φ− Φ̃)f‖2
‖f‖2

≤ B(K)
√
η. (21)

The proof of Proposition 4 is included in the Appendix of
[44].

When the multipliers gj(·) are smooth, the Chebyshev
approximations pKj (·) converge to the multipliers rapidly as
K increases. The following proposition characterizes this
convergence for continuously differentiable multipliers.

Proposition 5 (Theorem 5.14 in [46]): If gj(·) has M + 1
continuous derivatives for all j, then B(K) = O

(
K−M

)
.

When each multiplier gj(·) is real analytic on [0, λmax], we
can make a stronger statement about the convergence. Using
the parametrization λ = λmax

2 (x + 1) with x ∈ [−1, 1] and
setting hj(x) := gj(

λmax

2 (x+1)), the function hj(·) admits an
analytic extension to an open Bernstein ellipse of radius ρj >
1. Setting ρ = min{ρ1, . . . , ρη} > 1 and letting C denote the
supremum of all |hj(·)| on the open Bernstein ellipse of radius
ρ > 1, we have

B(K) ≤ 2C

ρ− 1
ρ−K = O

(
ρ−K

)
; (22)

see, e.g., [46, Theorem 5.16], [49, Theorem 8.2]. For example,
for g(λ) = 1

1+2λ , using the formula in [49, Equation 8.4] for
computing ρ when there is a real singularity,

ρ = 1 +
1

λmax

(
1 +

√
1 + 2λmax

)
. (23)

This upper bound on B(K) (and in turn by (21) on ||R−R̃||2)
is shown in Figure 1(e).

V. OTHER DISTRIBUTED METHODS FOR COMPUTING
g(P)y

In this section, we discuss some other methods for comput-
ing g(P)y in a distributed setting. Most of these variations
are not distributed computation methods per se, but rather
centralized computational methods that can be distributed in
the context of the applications mentioned above.

Higham [39, Chapter 13], as well as Frommer and Si-
moncini [59] provide excellent introductory overviews of cen-
tralized methods to compute g(P)y for large, sparse P. Of the
methods mentioned there, we do not consider contour integral
or Krylov subspace methods, which are not readily amenable
to distributed computation. For example, in a distributed set-
ting, the Lanczos method [26], [60] would require a significant
amount of extra communication at each iteration to compute
vector norms. We also do not consider conjugate gradient or
algebraic multigrid methods, which could be used for a few
specific choices of g(·). For example, if g(λ) = 1

1+2λ , then
we can compute x = g(P)f by solving the linear system of
equations g−1(P)x = (I + 2P)x = f via these methods.

A. Jacobi’s Iterative Method

For S = P = Lnorm, Zhou et al. [15] propose to solve
the semi-supervised classification problem (10) through the

iteration

F(t+1) =
1

1 + τ

[
(IN −P) F(t) + τY

]
,

t = 0, 1, . . . , T − 1, (24)

where F(0) is arbitrary (set to Y in [15]).6 The iteration (24)
is in fact just a particular instance of Jacobi’s iterative method
(see, e.g., [61, Chapter 4]) to solve the set of linear equations

(τIN + P) Fopt = τY. (25)

So one alternative distributed semi-supervised classification
method with S = P = Lnorm is to compute the iterations
(24) in a distributed manner, with each node starting with
knowledge of its row of P and Y. In fact, the communication
cost of one iteration of (24) is the same as the communication
cost of one iteration of the distributed computation of R̃Y
(lines 6 and 7 of Algorithm 1).

For graph multiplier operators whose multipliers have the
property g(λ`) 6= 0 for all `, the Jacobi method generalizes as
follows. Suppose we wish to compute Ry, where R is a graph
multiplier operator with respect to P and with multiplier g(·).
This is equivalent to solving the linear system of equations
g(P)−1x = y. Assuming that the entries of the matrix Q =
g(P)−1 are convenient to evaluate (e.g., for certain rational
functions g), let Q = QD − QO, where QD contains the
diagonal part of Q. Then the Jacobi iteration is

x(t+1) = Q−1
D QOx(t) + Q−1

D y, t = 0, 1, . . . , T − 1. (26)

One immediate drawback of Jacobi’s method, as compared
with the Chebyshev polynomial method of Section IV, is that
it does not always converge. The iterations in (26) converge
for any x(0) if and only if the spectral radius of Q−1

D QO is less
than one [61, Theorem 4.1]. One sufficient condition for the
latter to be true is that Q is strictly diagonally dominant, as
is the case for example when P = L and g(λ`) = τ

τ+λ`
.

Additionally, it may be too expensive computationally to
evaluate the matrix Q, or it may be a dense matrix, in which
case the communication cost of a distributed method becomes
prohibitive. For example, if g = e−tλ, it is not efficient to
fully evaluate Q and so this method is not applicable.

B. Jacobi’s Iterative Method with Chebyshev Acceleration

When Jacobi’s method does converge, we can accelerate
(26) using the following algorithm [62, Algorithm 6.7]. Let
ρ be an upper bound on the spectral radius of Q−1

D QO, and
define ξ(0) := 1, ξ(1) := ρ, and x(1) := Q−1

D QOx(0) +Q−1
D y.

Then for t ≥ 1, let

ξ(t+1) =
1

2
ρξ(t)

− 1
ξ(t−1)

, and

x(t+1) =
2ξ(t+1)

ρξ(t)
Q−1
D QOx(t) − ξ(t+1)

ξ(t−1)
x(t−1)

+
2ξ(t+1)

ρξ(t)
Q−1
D y. (27)

6In [17, Chapter 11], similar iterative label propagation methods from [12]
and [16] are also compared with the method of [15].
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To distribute (27), each node n must first learn Qnn and the
nth row of QO. For example, when P = Lnorm and g(λ`) =
τ

τ+λ`
, as in (24), Qnn = τ+1

τ for all n, and the nth row of QO

is just − 1
τ times the nth row of Lnorm. An additional challenge

in a distributed setting may be to calculate the bound ρ.
Note that while this method and the method of Section IV

share the same namesake, the use of the Chebyshev polyno-
mials in the two is different. In Section IV, we use Cheby-
shev polynomials to approximate the multiplier, whereas this
method improves the convergence speed of the Jacobi method
by using Chebyshev polynomials to choose the weights it uses
to form the iterates in (27) as weighted linear combinations of
the iterates in (26). See Section 6.5.6 of [62] for more details.

C. Polynomial Approximation Variants

When a graph spectral filter g(·) is a polynomial, it is often
referred to as a finite impulse response (FIR) filter [11], and
we can write

g(P) = β0I +

K∑
k=1

βkP
k. (28)

In this case, we can compute g(P)f in a distributed fashion
through a nested multiplication iteration [63, Section 9.2.4],
letting x(0) = βKf , and then iterating

x(l) = βK−lf + Px(l−1), l = 1, 2, . . . ,K. (29)

The result is x(K) = g(P)f . Since each iteration of (29)
requires the distributed computation of Px, this method re-
quires the same amount of communication as the Chebyshev
polynomial approximation of Algorithm 1.

When a graph spectral filter g(·) is not a polynomial
(or a polynomial of order greater than K), any polynomial
approximation method can be used to generate an order K
polynomial approximation g̃(·) such that g̃(P) is of the form
(28). Sandryhaila and Moura suggest in [11] to find an order K
polynomial g̃(·) such that the (usually overdetermined) system
of equations {g̃(λ`) = g(λ`)}`=0,1,...,N−1 is approximately
solved in the least squares sense. The drawback of this
approach is that one needs access to all eigenvalues of P.
The continuous analog of this discrete approach is to compute
an order K Legendre polynomial approximation g̃(·) to g(·)
on the interval [0, λmax]. Then g̃(P)f can be computed in a
distributed manner via (29) or through a three-term recurrence
similar to step 9 of Algorithm 1 (c.f., [49, Equation 17.6]).

Other orthogonal polynomials can also be used to generate
approximations via truncated expansions. For example, [64]
uses Laguerre polynomials to approximate matrix exponen-
tials. One advantage of this method is that Laguerre polyno-
mials are orthonormal on [0,∞), so no upper bound on the
spectrum is required. However, in the applications we consider,
it is usually not hard to generate the upper bound λmax, as
discussed earlier in Section IV-B.

In [65], Chen et al. first approximate the filter g by a
polynomial spline, and then compute orthogonal expansion
coefficients of the spline in order to avoid the numerical
integration involved in computing, e.g., the Chebyshev coef-
ficients {ck} in (14). The conjugate residual-type algorithm

of [66] also uses the spline approach. However, in [66], the
order K + 1 polynomial approximation of a highpass filter
g takes the form g̃(λ) = λϕ(λ), where ϕ is an order K
polynomial, forcing g̃(0) to be equal to zero. If g is a lowpass
filter such as g(λ) = e−τλ, then [66] takes the approximation
to be of the form g̃(λ) = 1 − λϕ(λ), with ϕ an order K
polynomial, once again guaranteeing zero approximation error
at λ = 0. This technique can be extended to bandpass filters
by splitting the spectrum up into separate intervals, eventually
leading to a three term recurrence with new weights that
can be computed offline. A distributed implementation then
carries the same communication cost as the single Chebyshev
polynomial approximation.

This discussion begs the question of which polynomial
approximation is best to use in these distributed signal process-
ing tasks. Broadly speaking, the numerical analysis literature
demonstrates that different families of orthogonal polynomials
have similar approximation properties. For example, [49, p.
21] reports “Legendre points and polynomials are neither
much better than Chebyshev for approximating functions, nor
much worse; they are essentially the same.” However, the
main advantages of the Chebyshev polynomials are the ability
to use the fast Fourier transform to compute the Chebyshev
coefficients [49, p. 21 and p. 125], and the good conditioning
of the Chebyshev polynomial basis [46, Section 6.3.4], [67].

D. Rational Approximations

An alternative to a polynomial approximation is a rational
approximation (see, e.g., [59, Section 3.4]) of the form

g(λ) ≈ Nµ(λ)

Dν(λ)
=: ˜̃g(λ), (30)

where Nµ and Dν are polynomials of degree µ and ν, respec-
tively. In the graph signal processing literature, references such
as [36], [37] refer to filters of the form (30) as infinite impulse
response filters, since we can not write them in the form of
(28) for any choice of the order K and series of coefficients
{βk}.

One benefit of rational approximations of the form (30) is
that they tend to provide better approximations than polyno-
mials of lower orders, especially when g features a singularity
close to the spectrum of P. However, a major drawback is
they tend to require extra subiterations, resulting in increased
communication cost. For example, to compute x = D−1

ν (P)y,
[36] uses gradient descent to iteratively solve

argmin
x
||Dν(P)x− y||2. (31)

Yet, [36] estimates the number of iterations required to solve
(31) as max`=0,1,...,N−1{Dν(λ`)

2}
min`=0,1,...,N−1{Dν(λ`)2} . Each of these iterations re-

quires twice as much communication as the full distributed
computation of an order ν matrix polynomial computation
via Algorithm 1 (with η = 1). So even when Nµ and Dν
are taken to be lower order polynomials, the communication
requirements may still be significantly higher than a higher
order polynomial approximation (where Dν(λ) = 1).
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Fig. 2. Five different distributed methods to approximately compute Ry, where R is a graph multiplier operator with respect to P for different choices of
P. In all cases, the multiplier is g(λ`) = τ

τ+h(λ`)
. In (a), the error shown is ‖f (K) − f‖2, where f (K) is either R̃y with an order K approximation for

our distributed Chebyshev approximation method, or the result of the Kth iteration for the Jacobi and ARMA methods. In (b) and (c), since iterations of the
different algorithms have different computation and communication complexities, we normalize to a common scale.

Some filters of the form (30) with µ ≤ K and ν = K can
also be written as

˜̃g(λ) =

K∑
k=1

2rk
λmax − λmin − 2λ− 2pk

, (32)

for some coefficient sequences {rk} and {pk}. Loukas et al.
[37] refer to such filters as parallel autoregressive moving
average graph filters (ARMA) of order K, and show that
if for all k, |pk| > λmax−λmin

2 , then x = ˜̃g(P)y can be
computed by iterating the following recursion for each term
in the summation on the right-hand side of (32):

x
(t+1)
k =

1

pk

[(
λmax − λmin

2

)
I−P

]
x

(t)
k −

rk
pk

y,

t = 0, 1, . . . , T − 1 (33)

and then summing these results to find x =
∑K
k=1 xk. Once

again, these ARMA filters have the potential to yield a better
approximation than a finite impulse response filter of the form
on the right-hand side of (28) with the same order K; however,
they require T times the communication, where T is the
number of times one must iterate (33) to convergence.

E. Numerical Comparison

We consider the same random sensor network shown in
Figure 1, and we generate a signal f on the vertices of the
graph with the components of f independently and identically
sampled from a uniform distribution on [−10, 10]. For different
choices of h(·) and P = L or P = Lnorm, we define

y :=

(
I500 +

1

τ
h(P)

)
f = g(P)f ,

with τ = 0.5 and g(λ) = τ+h(λ)
τ . Then, starting with

y, we iteratively compute an approximation to f in five
different distributable ways: 1) R̃y, where R̃ is the Chebyshev
approximation to R = g(P)−1; 2) the same, but with the
Legendre approximation to the filter g−1(·); 3) with the Jacobi
iteration (26); 4) with the Jacobi iteration with Chebyshev
acceleration (27); and 5) the ARMA iteration (33).

When P = Lnorm and S = h(P) = Lnorm, the filter g−1(·)
is the ratio of a constant and a first order polynomial, so we
can take K = 1 in (32). Taking the initial guess x(0) to be y
and λmin = 0, the iteration (33) becomes

x(t+1) =
2

τ + λmax

[(
λmax

2
I−P

)
x(t) + τy

]
=

2τ

τ + λmax
y +

λmax

τ + λmax
x(t) − 2

τ + λmax
Px(t).

In this case, the communication requirements of the polyno-
mial methods with approximation order K are equal to the
communication requirements of T = K iterations of the latter
three methods, so we plot the errors ‖f (K)− f‖2 (where f (K)

corresponds to R̃y with an order K approximation in the first
two cases or the result of the Kth iteration in the latter three
cases) on the same axes in Figure 2(a).

When P = L and S = h(P) = L2, computing QOx(t)

in (26) and (27) requires computing Wx(t), which requires
twice the communication and computation of a single iteration
of Algorithm 1 for the polynomial approximations. For the
ARMA approach, we can write the filter g(λ) = τ

τ+λ2 exactly
in the form of (32) with p1 =

√
τi + λmax

2 , p2 = −
√
τi +

λmax

2 , r1 = −
√
τi
2 , and r2 =

√
τi
2 .

When P = Lnorm and S = h(P) = (2I500 − Lnorm)
−3 (a

three-step random walk process), the Jacobi method does not
converge. We have h(λ) = (2− λ)−3, and thus

g(λ) =
τ

τ + h(λ`)
= 1− 2

(2− λ)3 + 2
,

the last term of which can be written as a third order ARMA
filter.

Figure 2 compares the approximation error to the communi-
cation/computation complexity for each of these methods and
choices of S. In these experiments, not only do the polynomial
methods always converge, but they converge faster and with
less communication than the alternative methods we tested.
Not surprisingly, the errors resulting from the Chebyshev and
Legendre polynomial approximations are similar.
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VI. DISTRIBUTED LASSO

In Section III, we presented a number of distributed signal
processing tasks that could be represented as a single applica-
tion of a union of graph multiplier operators. In this section, we
present a distributed wavelet denoising example that requires
repeated applications of unions of graph multiplier operators
and their adjoints. Recall that the distributed Tikhonov reg-
ularization method from Section III-A is an efficient way to
denoise a signal when we have a priori information that the
underlying signal is globally smooth. The distributed wavelet
denoising method is better suited to situations where we start
with a prior belief that the signal is not globally smooth, but
rather piecewise smooth, which corresponds to the signal being
sparse in the spectral graph wavelet domain [25].

The spectral graph wavelet transform, defined in [25] is
precisely of the form of Φ in (3). Namely, it is composed
of one multiplier, h(·), that acts as a lowpass filter to stably
represent the signal’s low frequency content, and J wavelet
operators, defined by gj(λ`) = g(tjλ`), where {tj}j=1,2,...,J

is a set of scales and g(·) is the wavelet multiplier that acts
as a bandpass filter.

The most common way to incorporate a sparse prior in a
centralized setting is to regularize via a weighted version of the
least absolute shrinkage and selection operator (lasso) [68],
also called basis pursuit denoising [69]:

argmin
a

1

2
‖y −Φ∗a‖22 + ‖a‖1,µ , (34)

where ‖a‖1,µ :=
∑N(J+1)
i=1 µi |ai| and µi > 0 for all i. The

optimization problem in (34) can be solved for example by
iterative soft thresholding [70]. The initial estimate of the
wavelet coefficients a(0) is arbitrary, and at each iteration of
the soft thresholding algorithm, the update of the estimated
wavelet coefficients is given by

a(β)(i) = Sµiγ
((

a(β−1) + γΦ
[
y −Φ∗a(β−1)

])
(i)
)
,

i = 1, 2, . . . , N(J + 1); β = 1, 2, . . . (35)

where γ is the step size and Sµiγ is the shrinkage or soft
thresholding operator

Sµiγ(z) :=

{
0 , if | z |≤ µiγ
z − sgn(z)µiγ , o.w. .

The iterative soft thresholding algorithm converges to a∗, the
minimizer of (34), if γ < 2

‖Φ∗‖2 [71]. The final denoised
estimate of the signal is then given by Φ∗a∗.

We now turn to the issue of how to implement the above
algorithm in a distributed fashion by sending messages be-
tween neighbors in the network. One option would be to
use the distributed lasso algorithm of [31], [32], which is a
special case of the alternating direction method of multipliers
[72, p. 253]. In every iteration of that algorithm, each node
transmits its current estimate of all the wavelet coefficients to
its local neighbors. With the spectral graph wavelet transform,
that method requires 2|E| total messages at every iteration,
with each message being a vector of length N(J + 1). A
method where the amount of communicated information does

Algorithm 3 Distributed lasso
Inputs at node n: yn, Ln,m ∀m,

{
µ(j−1)N+n

}
j=1,2,...,J+1

,
λmax, γ, and {ck,j}j=1,2,...,J+1; k=0,1,...,K

Outputs at node n: y∗(n), the denoised estimate of f0
n

1: Arbitrarily initialize
{
ã(0)((j − 1)N + n)

}
j=1,2,...,J+1

2: Set β = 1
3: Compute and store {(Φy) ((j − 1)N + n)}j=1,2,...,J+1

via Algorithm 1
4: while stopping criterion not satisfied do
5: Compute and store{

(Φ̃Φ̃
∗
ã(β−1))((j − 1)N + n)

}
j=1,2,...,J+1

via Algorithm 2, followed by Algorithm 1
6: for j = 1, 2, . . . , J + 1 do
7: Compute and store

ã(β)((j − 1)N + n)

= S(µ(j−1)N+n)γ


ã(β−1)((j − 1)N + n)

+γ
(
Φ̃y
)

((j − 1)N + n)

−γ
(
Φ̃Φ̃

∗
ã(β−1)

)
((j − 1)N + n)


8: end for
9: Set β = β + 1

10: end while
11: for j = 1, 2, . . . , J + 1 do
12: Set (ã∗) ((j − 1)N + n) =

(
ã(β)

)
((j − 1)N + n)

13: end for
14: Compute and store y∗(n) = (Φ̃

∗
ã∗)(n) via Algorithm 2

15: Output y∗(n)

not grow with N (beyond the number of edges, |E|) would be
highly preferable.

The Chebyshev polynomial approximation of the spectral
graph wavelet transform allows us to accomplish this goal.
Our approach, which is summarized in Algorithm 3, is to ap-
proximate Φ by Φ̃, and use the distributed implementation of
the approximate wavelet transform and its adjoint to perform
iterative soft thresholding in order to solve

argmin
ã

1

2
‖y − Φ̃∗ã‖22 + ‖ã‖1,µ. (36)

In the first soft thresholding iteration, each node n must
learn (Φ̃y)((j − 1)N + n) at all scales j, via Algorithm 1.
These coefficients are then stored for future iterations. In the
βth iteration, each node n must learn the J + 1 coefficients
of Φ̃Φ̃∗ã(β−1) centered at n, by sequentially applying the
operators Φ̃∗ and Φ̃ in a distributed manner via Algorithms
2 and 1, respectively. When a stopping criterion for the soft
thresholding is satisfied, the adjoint operator Φ̃∗ is applied
again in a distributed manner to the resulting coefficients ã∗,
and node n’s denoised estimate of its signal is (Φ̃

∗
ã∗)(n). The

stopping criterion may simply be a fixed number of iterations,
or it may be when

∣∣∣(Φ̃∗ã(β))(n)− (Φ̃
∗
ã(β−1))(n)

∣∣∣ < ε,
for all n and some small ε. Finally, note that we could
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also optimize the weights µ by performing distributed cross-
validation, as discussed in [31], [32].

We now examine the communication requirements of this
approach. Recall from Section IV-B that 2K|E| messages
of length 1 are required to compute Φ̃y in a distributed
fashion. Distributed computation of Φ̃Φ̃∗ã(β−1), the other
term needed in the iterative thresholding update (35), requires
2K|E| messages of length J + 1 and 2K|E| messages of
length 1. The final application of the adjoint operator Φ̃∗ to
recover the denoised signal estimates requires another 2K|E|
messages, each a vector of length J+1. Therefore, the Cheby-
shev polynomial approximation to the spectral graph wavelet
transform enables us to iteratively solve the weighted lasso
in a distributed manner where the communication workload
only scales with the size of the network through |E|, and is
otherwise independent of the network dimension N .

The reconstructed signal in Algorithm 3 is Φ̃∗ã∗, where ã∗
is the solution to the lasso problem (36). A natural question is
how good of an approximation Φ̃∗ã∗ is to Φ∗a∗, where a∗ is
the solution to the original lasso problem (34). The following
proposition bounds the squared distance between these two
quantities by a term proportional to the spectral norm of the
difference between the exact and approximate spectral graph
wavelet operators.

Proposition 6: ‖Φ̃∗ã∗ − Φ∗a∗‖22 ≤ C|||Φ̃ − Φ|||2, where
||| · |||2 is the spectral norm, and the constant C =

‖y‖32
mini µi

.
Combining Proposition 6, whose proof is included in the

Appendix of [44], with (21), we have

‖Φ̃∗ã∗ −Φ∗a∗‖22 ≤
‖y‖32

mini µi
B(K)

√
J + 1. (37)

Thus, as we increase the approximation order K, B(K) and
the right-hand side of (37) tend toward zero (at a speed
dependent on the smoothness of the graph wavelet multipliers
g(·) and h(·)).

Finally, to illustrate the distributed lasso, we consider a
numerical example. We use the same 500 node sensor network
as in Section IV-D. This time, however, the underlying signal
is piecewise smooth, but not globally smooth, with the nth

component given by

f0
n =

{
−2nx + 0.5, if ny ≥ 1− nx
n2
x + n2

y + 0.5, if ny < 1− nx
.

We corrupt each component of the signal f0 with uncorrelated
additive Gaussian noise with mean zero and standard deviation
0.5. We then solve problem (36) in a distributed manner using
Algorithm 3. We use a spectral graph wavelet transform with
6 wavelet scales, implemented by the Graph Signal Processing
Toolbox [51]. In Algorithm 3, we run 300 soft thresholding
iterations and take γ = 0.2, µi = 0.75 for all the wavelet
coefficients, and µi = 0.01 for all the scaling coefficients.7

We do not perform any distributed cross-validation to optimize
the weights µ. We repeated this entire experiment 1000 times,
with a new random graph and random noise each time.8

7The scaling coefficients in the spectral graph wavelet transform are not
expected to be sparse.

8The reported errors are averaged over the 441 random graph realizations
that were connected.

The average mean square errors were 0.250 for the noisy
signals, 0.098 for the estimates produced by the Tikhonov
regularization method (6), 0.088 for the denoised estimates
produced by the distributed lasso with the exact wavelet
operator, and 0.080 for the denoised estimates produced by
the distributed lasso with the approximate wavelet operator
with K = 15. Note that the approximate solution does not
necessarily result in a higher mean square error than the exact
solution.

VII. CONCLUDING REMARKS

We presented a novel method to distribute a class of linear
operators called unions of graph multiplier operators. The main
idea is to approximate the graph multipliers by Chebyshev
polynomials, whose recurrence relations make them readily
amenable to distributed computation. Key takeaways from the
discussion and application examples include:
• A number of distributed signal processing tasks can be

represented as distributed applications of unions of graph
multiplier operators (and their adjoints) to signals on
weighted graphs. Examples include distributed smooth-
ing, denoising, inverse filtering, and semi-supervised
learning.

• Graph Fourier multiplier operators are the graph analog
of filter banks, as they reshape functions’ frequencies
through multiplication in the Fourier domain.

• The amount of communication required to perform the
distributed computations only scales with the size of the
network through the number of edges of the communica-
tion graph, which is usually sparse. Therefore, the method
is well suited to large-scale networks.

• The approximate graph multiplier operators closely ap-
proximate the exact operators in practice, and for graph
multiplier operators with smooth multipliers, an upper
bound on the spectral norm of the difference of the
approximate and exact operators decreases rapidly as we
increase the Chebyshev approximation order.

While the focus in this paper has been on distributed
signal processing tasks, the methods we presented can also
be used to compute matrix function-vector products of the
form g(P)f in a distributed fashion for other applications.
Such computations are used, e.g., to solve ordinary and partial
differential equations [73]-[75], approximate spectral densities
of large matrices [76], estimate the numerical rank of large
matrices [52], [77], and approximate spectral sums such as
the log-determinant of a large matrix or the trace of a matrix
inverse for applications in physics, biology, information theory,
and other disciplines [78].
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