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In applications such as social, energy, transportation, sensor, 
and neuronal networks, high-dimensional data naturally 
reside on the vertices of weighted graphs. The emerging field 
of signal processing on graphs merges algebraic and spectral 
graph theoretic concepts with computational harmonic anal-

ysis to process such signals on graphs. In this tutorial overview, 
we outline the main challenges of the area, discuss different ways 
to define graph spectral domains, which are the analogs to the 
classical frequency domain, and highlight the importance of 
incorporating the irregular structures of graph data domains 
when processing signals on graphs. We then review methods to 
generalize fundamental operations such as filtering, translation, 
modulation, dilation, and downsampling to the graph setting 
and survey the localized, multiscale transforms that have 

been proposed to efficiently extract information from high-
dimensional data on graphs. We conclude with a brief discussion 
of open issues and possible extensions.

INTRODUCTION
Graphs are generic data representation forms that are useful 
for describing the geometric structures of data domains in 
numerous applications, including social, energy, transporta-
tion, sensor, and neuronal networks. The weight associated 
with each edge in the graph often represents the similarity 
between the two vertices it connects. The connectivities and 
edge weights are either dictated by the physics of the problem 
at hand or inferred from the data. For instance, the edge 
weight may be inversely proportional to the physical distance 
between nodes in the network. The data on these graphs can 
be visualized as a finite collection of samples, with one sample 
at each vertex in the graph. Collectively, we refer to these 
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samples as a graph signal. An example of a graph signal is 
shown in Figure 1.

We find examples of graph signals in many different engi-
neering and science fields. In transportation networks, we may 
be interested in analyzing epidemiological data describing the 
spread of disease, census data describing human migration pat-
terns, or logistics data describing inventories of trade goods 
(e.g., gasoline or grain stocks). In brain imaging, it is now pos-
sible to noninvasively infer the anatomical connectivity of dis-
tinct functional regions of the cerebral cortex [1], and this 
connectivity can be represented by a weighted graph with the 
vertices corresponding to the functional regions of interest. 
Thus, noisy functional magnetic resonance imaging images can 
be viewed as signals on weighted graphs. Weighted graphs are 
also commonly used to represent similarities between data 
points in statistical learning problems for applications such as 
machine vision [2] and automatic text classification [3]. In fact, 
much of the literature on graph-based data analysis techniques 
emanates from the statistical learning community, as graph-
based methods became especially popular for the semisuper-
vised learning problem where the objective is to classify 
unknown data with the help of a few labeled samples (e.g., 
[4]–[9]). In image processing, there has been a recent spike in 
graph-based filtering methods that build nonlocal and semilocal 
graphs to connect the pixels of the image based not only on 
their physical proximity, but also on noisy versions of the image 
to be processed (e.g., [10]–[12] and references therein). Such 
methods are often able to better recognize and account for 
image edges and textures.

Common data processing tasks in these applications include 
filtering, denoising, inpainting, and compressing graph signals. 
How can data be processed on irregular data domains such as 
arbitrary graphs? What are the best ways to efficiently extract 
information, either statistically or visually, from this high-
dimensional data, for the purposes of storage, communication, 
and analysis? Is it possible to use operators or algorithms from 
the classical digital signal processing toolboxes? These are just a 

few of the questions that underlie the field of signal processing 
on graphs.

THE MAIN CHALLENGES OF SIGNAL 
PROCESSING ON GRAPHS
The ability of wavelet, time-frequency, curvelet, and other local-
ized transforms to sparsely represent different classes of high-
dimensional data such as audio signals and images that lie on 
regular Euclidean spaces has led to a number of resounding suc-
cesses in the aforementioned signal processing tasks (see, e.g., [13, 
Sec. II] for a recent survey of transform methods).

Both a signal on a graph with N  vertices and a classical 
discrete-time signal with N  samples can be viewed as vectors 
in .RN  However, a major obstacle to the application of the classical 
signal processing techniques in the graph setting is that process-
ing the graph signal in the same ways as a discrete-time signal 
ignores key dependencies arising from the irregular data domain. 
(Throughout this article, we refer to signal processing concepts for 
analog or discrete-time signals as “classical,” to differentiate them 
from concepts defined in the graph signal framework.) Moreover, 
many extremely simple yet fundamental concepts that underlie 
classical signal processing techniques become significantly more 
challenging in the graph setting.

 ■ To translate an analog signal ( )f t  to the right by 3, we simply 
perform a change of variable and consider ( ).f t 3-  However, it 
is not immediately clear what it means to translate a graph sig-
nal “to the right by 3.” The change of variable technique will 
not work as there is no meaning to ( )f 3-%  in the graph set-
ting. One naive option would be to simply label the vertices 
from 1 to N and define ( ) : ( ( , )),modf f N3 3- = -% %  but it is 
not particularly useful to define a generalized translation that 
depends heavily on the order in which we (arbitrarily) label the 
vertices. The unavoidable fact is that weighted graphs are 
irregular structures that lack a shift-invariant notion of trans-
lation. (The exception is the class of highly regular graphs such 
as a ring graph that have circulant graph Laplacians. Grady 
and Polimeni [14, p. 158] refer to such graphs as shift invari-
ant graphs.) 

 ■ Modulating a signal on the real line by multiplying by a 
complex exponential corresponds to translation in the Fourier 
domain. However, the analogous spectrum in the graph setting 
is discrete and irregularly spaced, and it is therefore nontrivial 
to define an operator that corresponds to translation in the 
graph spectral domain.

 ■ We intuitively downsample a discrete-time signal by delet-
ing every other data point, for example. Yet, what does it mean 
to downsample the signal on the vertices of the graph shown 
in Figure 1? There is not an obvious notion of “every other ver-
tex” of a weighted graph.

 ■ Even when we do fix a notion of downsampling, to create a 
multiresolution on graphs, we need a method to generate a 
coarser version of the graph that somehow captures the struc-
tural properties embedded in the original graph.
In addition to dealing with the irregularity of the data domain, 

the graphs in the previously mentioned applications can feature a 

[FIG1] A random positive graph signal on the vertices of the 
Petersen graph. The height of each blue bar represents the 
signal value at the vertex. 
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large number of vertices and therefore many data samples. To 
scale well with the size of the data, signal processing techniques 
for graph signals should employ localized operations that compute 
information about the data at each vertex by using data from a 
small neighborhood of vertices close to it in the graph.

Therefore, the overarching challenges of processing signals on 
graphs are 1) in cases where the graph is not directly dictated to us 
by the application, deciding how to construct a weighted graph 
that captures the geometric structure of the underlying data 
domain; 2) incorporating the graph structure into localized trans-
form methods; 3) at the same time, leveraging invaluable intu-
itions developed from years of signal processing research on 
Euclidean domains; and 4) developing computationally efficient 
implementations of the localized transforms, to extract informa-
tion from high-dimensional data on graphs and other irregular 
data domains.

To address these challenges, the emerging field of signal pro-
cessing on graphs merges algebraic and spectral graph theoretic 
concepts with computational harmonic analysis. There is an 
extensive literature in both algebraic graph theory (e.g., [15]) and 
spectral graph theory (e.g., [16] and [17] and references therein); 
however, the bulk of the research prior to the past decade focused 
on analyzing the underlying graphs, as opposed to signals 
on graphs.

Finally, we should note that researchers have also designed 
localized signal processing techniques for other irregular data 
domains such as polygonal meshes and manifolds. This work 
includes, for example, low-pass filtering as a smoothing operation 
to enhance the overall shape of an object [18], transform coding 
based on spectral decompositions for the compression of geome-
try data [19], and multiresolution representations of large meshes 
by decomposing one surface into multiple levels with different 
details [20]. There is no doubt that such work has inspired and 
will continue to inspire new signal processing techniques in the 
graph setting.

THE GRAPH SPECTRAL DOMAINS
Spectral graph theory has historically focused on constructing, 
analyzing, and manipulating graphs, as opposed to signals on 
graphs. It has proved particularly useful for the construction of 
expander graphs [21], graph visualization [17, Sec. 16.7], spectral 
clustering [22], graph coloring [17, Sec. 16.9], and numerous 
other applications in chemistry, physics, and computer science 
(see, e.g., [23] for a recent review).

In the area of signal processing on graphs, spectral graph the-
ory has been leveraged as a tool to define frequency spectra and 
expansion bases for graph Fourier transforms. In this section, we 
review some basic definitions and notations from spectral graph 
theory, with a focus on how it enables us to extend many of the 
important mathematical ideas and intuitions from classical 
Fourier analysis to the graph setting.

WEIGHTED GRAPHS AND GRAPH SIGNALS
We are interested in analyzing signals defined on an undirected, 
connected, weighted graph { , , },G V E W=  which consists of a 

finite set of vertices V  with | | ,V N=  a set of edges ,E  and a 
weighted adjacency matrix .W  If there is an edge ( , )e i j=  con-
necting vertices i and ,j  the entry W ,i j represents the weight of 
the edge; otherwise, .W 0,i j =  If the graph G is not connected and 
has M connected components ( ),M 12  we can separate signals 
on G into M pieces corresponding to the M connected compo-
nents, and independently process the separated signals on each of 
the subgraphs.

When the edge weights are not naturally defined by an appli-
cation, one common way to define the weight of an edge connect-
ing vertices i and j is via a thresholded Gaussian kernel 
weighting function 
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for some parameters i and .l  In (1), ( , )i jdist  may represent a 
physical distance between vertices i and ,j  or the Euclidean dis-
tance between two feature vectors describing i and ,j  the latter of 
which is especially common in graph-based semisupervised learn-
ing methods. A second common method is to connect each vertex 
to its k-nearest neighbors based on the physical or feature space 
distances. For other graph construction methods, see, e.g., [14, 
Ch. 4].

A signal or function :Vf R"  defined on the vertices of the 
graph may be represented as a vector ,f RN!  where the ith com-
ponent of the vector f represents the function value at the ith ver-
tex in .V  The graph signal in Figure 1 is one such example.

THE GRAPH LAPLACIAN
The (unnormalized) graph Laplacian, also called the combinato-
rial graph Laplacian, is defined as : ,L D W= -  where the degree 
matrix D is a diagonal matrix whose ith diagonal element di is 
equal to the sum of the weights of all the edges incident to vertex 
.i  The graph Laplacian is a difference operator, as, for any signal 

,f RN!  it satisfies

( ) ( ) [ ( ) ( )],L f i W f i f j,
Nj

i j

i

= -
!

/

where the neighborhood Ni is the set of vertices connected 
to vertex i by an edge. More generally, we denote by ( , )N i k  
the set of vertices connected to vertex i by a path of k or 
fewer edges.

Because the graph Laplacian L is a real symmetric matrix, it 
has a complete set of orthonormal eigenvectors, which we denote 
by .u , , ,N0 1 1, , f= -" ,  Note that there is not necessarily a unique set 
of graph Laplacian eigenvectors, but we assume throughout that a 
set of eigenvectors is chosen and fixed. These eigenvectors have 
associated real, nonnegative eigenvalues , , ,N0 1 1m, , f= -" ,  satisfying 

,Lu um=, , ,  for , , , .N0 1 1, f= -  Zero appears as an eigenvalue 
with multiplicity equal to the number of connected components 
of the graph [16], and thus, since we consider connected graphs, 
we assume that the graph Laplacian eigenvalues are ordered as 

: .0 maxN0 1 2 1g1 # #m m m m m= =-  We denote the entire spec-
trum by ( ) : { , , , } .L N0 1 1fv m m m= -
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A GRAPH FOURIER TRANSFORM 
AND NOTION OF FREQUENCY
The classical Fourier transform

( ) : , ( )f f e f t e dti t i t2 2

R

G Hp = =r p r p-t #

is the expansion of a function f  in terms of the complex exponen-
tials, which are the eigenfunctions of the one-dimensional (1-D) 
Laplace operator 

 ( ) ( ) .e
t

e e2i t i t i t2
2

2
2 2 2

2
2 rpD- =- =r p r p r p  (2)

Analogously, we can define the graph Fourier transform ft of any 
function f RN!  on the vertices of G as the expansion of f in terms 
of the eigenvectors of the graph Laplacian:

 ( ) : , ( ) ( ).f f i u if u *

i

N

1
G Hm = =, , ,

=

t /  (3)

The inverse graph Fourier transform is then given by

 ( ) ( ) ( ).f i f u i
N

0

1

m= , ,

,=

-
t/  (4)

In classical Fourier analysis, the eigenvalues {( ) }2 2
Rrp !p  in 

(2) carry a specific notion of frequency: for p close to zero (low 
frequencies), the associated complex exponential eigenfunctions 
are smooth, slowly oscillating functions, whereas for p far from 
zero (high frequencies), the associated complex exponential 
eigenfunctions oscillate much more rapidly. In the graph setting, 
the graph Laplacian eigenvalues and eigenvectors provide a simi-
lar notion of frequency. For connected graphs, the Laplacian 
eigenvector u0 associated with the eigenvalue 0 is constant and 
equal to / N1  at each vertex. The graph Laplacian eigenvec-
tors associated with low frequencies m, vary slowly across the 
graph, i.e., if two vertices are connected by an edge with a 
large weight, the values of the eigenvector at those locations 
are likely to be similar. The eigenvectors associated with 
larger eigenvalues oscillate more rapidly and are more likely 
to have dissimilar values on vertices connected by an edge 
with high weight. This is demonstrated in both Figure 2, 
which shows different graph Laplacian eigenvectors for 
a random sensor network graph, and Figure 3, which 
shows the number | ( )|ZG $  of zero crossings of each graph 
Laplacian eigenvector. The set of zero crossings of a signal f 

u0

(a) (b) (c)

u1 u50

[FIG2] (a)–(c) Three graph Laplacian eigenvectors of a random sensor network graph. The signals’ component values are 
represented by the blue (positive) and black (negative) bars coming out of the vertices. Note that u50 contains many more zero 
crossings than the constant eigenvector u0 and the smooth Fiedler vector .u1
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[FIG3] The number of zero crossings, | ( ) |Z uG ,  in (a) and | ( ) |Z uG ,u  in (b), of the unnormalized and normalized graph Laplacian 
eigenvectors for the random sensor network graph of Figure 2, respectively (the latter of which is defined in the section “Other Graph 
Matrices”). In both cases, the Laplacian eigenvectors associated with larger eigenvalues cross zero more often, confirming the 
interpretation of the graph Laplacian eigenvalues as notions of frequency.
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on a graph G  is defined as the set of 
edges connecting a vertex with a positive 
signal to a vertex with a negative signal: 

( ) : ( , ) : ( ) ( ) .Z Ee i j f i f j 0fG 1!= =" ,
GRAPH SIGNAL REPRESENTATIONS 
IN TWO DOMAINS
The graph Fourier transform (3) and its 
inverse (4) give us a way to equivalently 
represent a signal in two different 
domains: the vertex domain and the graph 
spectral domain. While we often start with 
a signal g in the vertex domain, it may also 
be useful to define a signal gt  directly in 
the graph spectral domain. We refer to 
such signals as kernels. In Figure 4(a) and 
(b), one such signal, a heat kernel, is 
shown in both domains. Analogously to 
the classical analog case, the graph 
Fourier coefficients of a smooth signal such as the one shown 
in Figure 4 decay rapidly. Such signals are compressible as 
they can be closely approximated by just a few graph Fourier 
coefficients (see, e.g., [24]–[26] for ways to exploit this 
compressibility).

DISCRETE CALCULUS AND SIGNAL 
SMOOTHNESS WITH RESPECT TO THE 
INTRINSIC STRUCTURE OF THE GRAPH
When we analyze signals, it is important to emphasize that 
properties such as smoothness are with respect to the intrinsic 
structure of the data domain, which in our context is the 
weighted graph. Whereas differential geometry provides tools 
to incorporate the geometric structure of the underlying mani-
fold into the analysis of continuous signals on differentiable 
manifolds, discrete calculus provides a “set of definitions and 
differential operators that make it possible to operate the 
machinery of multivariate calculus on a finite, discrete space” 
[14, p. 1].

To add mathematical precision to the notion of smoothness 
with respect to the intrinsic structure of the underlying graph, 
we briefly present some of the discrete differential operators 
defined in [4], [6]–[8], [14], and [28]–[30]. Note that the names 
of many of the discrete calculus operators correspond to the 
analogous operators in the continuous setting. In some prob-
lems, the weighted graph arises from a discrete sampling of a 
smooth manifold. In that situation, the discrete differential 
operators may converge—possibly under additional assump-
tions—to their namesake continuous operators as the density of 
the sampling increases. For example, [31]–[34] examine the 
convergence of discrete graph Laplacians (normalized and 
unnormalized) to continuous manifold Laplacians. 

The edge derivative of a signal f with respect to edge ( , )e i j=  
at vertex i is defined as
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provides a measure of local smoothness of f around vertex ,i  as it is 
small when the function f has similar values at i and all neighbor-
ing vertices of .i

For notions of global smoothness, the discrete p-Dirichlet 
form of f is defined as

 ( ) : ( ) ( ) .S p p W f j f i1 1f f ,
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When ,p 1=  ( )S f1  is the total variation of the signal with respect 
to the graph. When ,p 2=  we have
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( )S f2  is known as the graph Laplacian quadratic form [17], and 
the seminorm Lf< <  is defined as

: ( ).L L Sf f f f fL 2
1

2 2
T< < < <= = =

Note from (6) that the quadratic form ( )S f2  is equal to zero if 
and only if f  is constant across all vertices (which is why 
f L is only a seminorm), and, more generally, ( )S f2  is small 

when the signal f has similar values at neighboring vertices 
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[FIG4] Equivalent representations of a graph signal in the vertex and graph spectral 
domains. (a) A signal g that resides on the vertices of the Minnesota road graph [27] 
with Gaussian edge weights as in (1). The signal’s component values are represented by 
the blue (positive) and black (negative) bars coming out of the vertices. (b) The same 
signal in the graph spectral domain. In this case, the signal is a heat kernel, which is 
actually defined directly in the graph spectral domain by ( ) .g e 5m =, m- ,t  The signal plotted 
in (a) is then determined by taking an inverse graph Fourier transform (4) of .gt
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connected by an edge with a large weight, i.e., when it 
is smooth.

Returning to the graph Laplacian eigenvalues and eigenvec-
tors, the Courant-Fischer Theorem [35, Theorem 4.2.11] tells us 
they can also be defined iteratively via the Rayleigh quotient as

 , , , , ,N1 2 1, f= -

L
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where the eigenvector u, is the minimizer of the th,  problem. 
From (6) and (7), we see again why u0 is constant for connected 
graphs. Equation (8) explains why the graph Laplacian eigenvec-
tors associated with lower eigenvalues are smoother, and provides 
another interpretation for why the graph Laplacian spectrum 
carries a notion of frequency.

In summary, the connectivity of the underlying graph is 
encoded in the graph Laplacian, which is used to define both a 
graph Fourier transform (via the graph Laplacian eigenvectors) 
and different notions of smoothness. “Example 1 (Importance of 
the Underlying Graph)” demonstrates how both the smoothness 
and the graph spectral content of a graph signal depend on the 
underlying graph.

OTHER GRAPH MATRICES
The basis { }u , , , N0 1 1, , f= -  of graph Laplacian eigenvectors is just 
one possible basis to use in the forward and inverse graph Fourier 
transforms (3) and (4). A second popular option is to normalize 
each weight W ,i j by a factor of / .d d1 i j  Doing so leads to the nor-
malized graph Laplacian, which is defined as :L =u  ,LD D/ /1 2 1 2- -  
or, equivalently,

( ) ( ) ( ) ( ) .L f i
d

W
d

f i
d

f j1
,

Ni
i j

i jj i

= -
!

u = G/

EXAMPLE 1 (IMPORTANCE OF THE UNDERLYING GRAPH) 
In Figure S1, we plot the same signal f on three different 
unweighted graphs with the same set of vertices, but differ-
ent edges. The smoothness and graph spectral content of the 
signal both depend on the underlying graph structure. In particu-
lar, the signal f is smoothest with respect to the intrinsic structure 
of ,G1  and least smooth with respect to the intrinsic structure of 

.G3  This can be seen 1) visually; 2) through the Laplacian qua-
dratic form, as . ,f fL 0 141

T =  . ,f fL 1 312
T =  and . ;f fL 1 81T

3 =  
and 3) through the graph spectral representations, where the 
signal has all of its energy in the low frequencies in the graph 
spectral plot of ft on ,G1  and more energy in the higher frequen-
cies in the graph spectral plot of ft on .G3
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[FIGS1] The same graph signal plotted on three different unweighted graphs. (a) The signal in the vertex domains. (b) The 
signal in the respective graph spectral domains.
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The eigenvalues { } , , ,N0 1 1m, , f= -
u  of the normalized graph Laplacian 

of a connected graph G satisfy

,0 2max0 1 g1 # # #m m m= u u u

with 2maxm =u  if and only if G  is bipartite, i.e., the set of verti-
ces V  can be partitioned into two subsets V1 and V2 such that 
every edge Ee !  connects one vertex in V1 and one vertex in 

.V2  We denote the normalized graph Laplacian eigenvectors 
by { } .u , , ,N0 1 1, , f= -u  As seen in Figure 3(b), the spectrum of Lu  
also carries a notion of frequency, with the eigenvectors asso-
ciated with higher eigenvalues generally having more zero 
crossings. However, unlike ,u0  the normalized graph Laplacian 
eigenvector u0u  associated with the zero eigenvalue is not a 
constant vector.

The normalized and unnormalized graph Laplacians are both 
examples of generalized graph Laplacians [36, Sec. 1.6], also 
called discrete Schrödinger operators. A generalized graph 
Laplacian of a graph G  is any symmetric matrix whose ,i jth 
entry is negative if there is an edge connecting vertices i and ,j  
equal to zero if i j!  and i is not connected to ,j  and may be 
anything if .i j=

A third popular matrix that is often used in dimensional-
ity-reduction techniques for signals on graphs is the random 
walk matrix .:P D W1= -  Each entry P ,i j describes the probabil-
ity of going from vertex i to vertex j in one step of a Markov 
random walk on the graph .G  For connected, aperiodic graphs, 
each row of Pt converges to the stationary distribution of the 
random walk as t goes to infinity. Closely related to the ran-
dom walk matrix is the asymmetric graph Laplacian, which is 
defined as : ,L I Pa N= -  where IN is the N N#  identity matrix. 
(La  is not a generalized graph Laplacian due to its asymme-
try.) Note that La has the same set of eigenvalues as ,Lu  and if 
u,u  is an eigenvector of Lu  associated with ,m,u  then D u/1 2

,
- u  is an 

eigenvector of La associated with the eigenvalue .m,u

As discussed in detail in the next section, both the normal-
ized and unnormalized graph Laplacian eigenvectors can be 
used as filtering bases. There is not a clear answer as to when 
to use the normalized graph Laplacian eigenvectors, when to 
use the unnormalized graph Laplacian eigenvectors, and when 
to use some other basis. The normalized graph Laplacian has 
the nice properties that its spectrum is always contained in the 
interval [ , ]0 2  and, for bipartite graphs, the spectral folding phe-
nomenon [37] can be exploited. However, the fact that the 
unnormalized graph Laplacian eigenvector associated with the 
zero eigenvalue is constant is a useful property in extending 
intuitions about the direct current (dc) components of signals 
from classical filtering theory.

GENERALIZED OPERATORS FOR SIGNALS ON GRAPHS
In this section, we review different ways to generalize funda-
mental operations such as filtering, translation, modulation, 
dilation, and downsampling to the graph setting. These gener-
alized operators are the ingredients used to develop the local-
ized, multiscale transforms described in a later section.

FILTERING
The first generalized operation we tackle is filtering. We start by 
extending the notion of frequency filtering to the graph setting, 
and then discuss localized filtering in the vertex domain.

FREQUENCY FILTERING
In classical signal processing, frequency filtering is the process 
of representing an input signal as a linear combination of com-
plex exponentials and amplifying or attenuating the contribu-
tions of some of the component complex exponentials 

 ( ) ( ) ( ),f f hout inp p p=t t t  (9)

where ( )h $t  is the transfer function of the filter. Taking an 
inverse Fourier transform of (9), multiplication in the Fourier 
domain corresponds to convolution in the time domain 
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Once we fix a graph spectral representation, and thus our 
notion of a graph Fourier transform (in this section, we use 
the eigenvectors of ,L  but Lu  can also be used), we can directly 
generalize (9) to define frequency filtering, or graph spectral 
filtering, as

 ( ) ( ) ( ),f f hout inm m m=, , ,
t t t  (12)

or, equivalently, taking an inverse graph Fourier transform,

 ( ) ( ) ( ) ( ).f i f h u i
N

0

1

out in m m= , , ,

,=

-
t t/  (13)

Borrowing notation from the theory of matrix functions [38], 
we can also write (12) and (13) as ( ) ,Lhf fout in= t  where
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( )

( )
.Lh

h

h0

0
UU

N

0

1

j
m

m

= )

-

t
t

t

R

T

S
S
SS

V

X

W
W
WW

 (14)

The basic graph spectral filtering (12) can be used to imple-
ment discrete versions of well-known continuous filtering 
techniques such as Gaussian smoothing, bilateral filtering, 
total variation filtering, anisotropic diffusion, and nonlocal 
means filtering (see, e.g., [39] and references therein). In par-
ticular, many of these filters arise as solutions to variational 
problems to regularize ill-posed inverse problems such as 
denoising, inpainting, and super resolution. One example is 
the discrete regularization framework

 ( ) ,min Sf y fp2
2

f
c- +" ,  (15)

where ( )S fp  is the p-Dirichlet form of (5). References [4]–[11], 
[14, Ch. 5], and [28]–[30] discuss (15) and other energy mini-
mization models in detail, as well as specific filters that arise 
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as solutions, relations between these discrete graph spectral 
filters and filters arising out of continuous partial differential 
equations, and applications such as graph-based image pro-
cessing, mesh smoothing, and statistical learning. In 
“Example 2 (Tikhonov Regularization),” we show one particu-
lar image denoising application of (15) with .p 2=

FILTERING IN THE VERTEX DOMAIN
To filter a signal in the vertex domain, we simply write the 
output ( )f iout  at vertex i as a linear combination of the compo-
nents of the input signal at vertices within a K -hop local 
neighborhood of vertex i

 ( ) ( ) ( ),f i b f i b f j,
( , )

,
N

i i
j i K

i jout in in= +
!

/  (16)

for some constants { } .b , , Vi j i j!  Equation (16) just says that 
filtering in the vertex domain is a localized linear transform.

We now briefly relate filtering in the graph spectral domain 
(frequency filtering) to filtering in the vertex domain. When the fre-
quency filter in (12) is an order K polynomial ( )h ak

K
k

k
0m m=, ,=/t  

for some constants { } ,a , ,k k K0 1f=  we can also interpret the filtering 
equation (12) in the vertex domain. From (13), we have
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EXAMPLE 2 (TIKHONOV REGULARIZATION)
We observe a noisy graph signal ,y f0 h= +  where h is uncorre-
lated additive Gaussian noise, and we wish to recover .f0  To 
enforce a priori information that the clean signal f0 is smooth 
with respect to the underlying graph, we include a regularization 
term of the form ,f fLT  and, for a fixed ,02c  solve the optimiza-
tion problem

 .f y f fLargmin
f

2
2 T< < c- +" ,  (S1)

The first-order optimality conditions of the convex objective func-
tion in (S1) show that (see, e.g., [4], [29, Sec. III-A], and [40, Prop. 1]) 
the optimal reconstruction is given by

 ( ) ( ) ( ),f i y u i1
1

*

N

0

1

cm
m=

+
,

,
, ,

=

-

/ t; E  (S2)

or, equivalently, ( ) ,f Lh y= t  where ( ) : /h 1 1m cm= +t ^ h can be 
viewed as a low-pass filter.

As an example, in Figure S2, we take the 512 512#  cameraman 
image as f0 and corrupt it with additive Gaussian noise with mean 
zero and standard deviation 0.1 to get a noisy signal y. We then 
apply two different filtering methods to denoise the signal. In the 
first method, we apply a symmetric two-dimensional Gaussian 

low-pass filter of size 2 27 7#  with two different standard devia-
tions: 1.5 and 3.5. In the second method, we form a semilocal 
graph on the pixels by connecting each pixel to its horizontal, ver-
tical, and diagonal neighbors, and setting the Gaussian weights (1) 
between two neighboring pixels according to the similarity of the 
noisy image values at those two pixels; i.e., the edges of the 
semilocal graph are independent of the noisy image, but the dis-
tances in (1) are the differences between the neighboring pixel 
values in the noisy image. For the Gaussian weights in (1), we take 

.0 1i =  and .0l =  We then perform the low-pass graph filtering 
(S2) with 10c =  to reconstruct the image. This method is a variant 
of the graph-based anisotropic diffusion image smoothing 
method of [11].

In all image displays in Figure S2, we threshold the values to 
the [0,1] interval. The images in (b) comprise zoomed-in versions 
of the images in (a). Comparing the results of the two filtering 
methods, we see that to smooth sufficiently in smoother areas 
of the image, the classical Gaussian filter also smooths across the 
image edges. The graph spectral filtering method does not 
smooth as much across the image edges, as the geometric struc-
ture of the image is encoded in the graph Laplacian via the 
noisy image.

Original Image Noisy Image
Gaussian Filtered
(Std. Dev. = 1.5)

Gaussian Filtered
(Std. Dev. = 3.5) Graph Filtered

[FIGS2] Image denoising via classical Gaussian filtering and graph spectral filtering.
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Yet, L 0,
k

i j =^ h  when the shortest-path distance ( , )d i jG  
between vertices i and j (i.e., the minimum number of edges 
comprising any path connecting i and j) is greater than k [41, 
Lemma 5.2]. Therefore, we can write (17) exactly as in (16), 
with the constants defined as

: .Lb a,
( , )

,i j
k d i j

K

k
k

i j
G

=
=

/ ^ h
So when the frequency filter is an order K polynomial, the fre-
quency filtered signal at vertex ,i  ( )f iout , is a linear combination 
of the components of the input signal at vertices within a K-hop 
local neighborhood of vertex .i  This property can be quite useful 
when relating the smoothness of a filtering kernel to the local-
ization of filtered signals in the vertex domain.

CONVOLUTION
We cannot directly generalize the definition (11) of a convolu-
tion product to the graph setting, because of the term ( ).h t x-  
However, one way to define a generalized convolution product 
for signals on graphs is to replace the complex exponentials in 
(10) with the graph Laplacian eigenvectors [42] 

 ( ) ( ) : ( ) ( ) ( ),f h i f h u i
N

0

1

) m m= , , ,

,=

-
t t/  (18)

which enforces the property that convolution in the vertex 
domain is equivalent to multiplication in the graph spec-
tral domain.

TRANSLATION
The classical translation operator is defined through the change 
of variable ( ) ( ) : ( ),T f t f t y= -y  which, as discussed earlier, we can-
not directly generalize to the graph setting. However, we can also 
view the classical translation operator Ty as a convolution with a 
delta centered at ,y  i.e., ( ) ( ) ( ) ( )T f t f t) d=y y  in the weak sense. 
Thus, one way to define a generalized translation operator 

:T R Rn
N N"  is via generalized convolution with a delta centered 

at vertex n [41], [42]:

 ( ) : ( ) ( ) ( ) ( ) ( ),T g i N g i N g u n u i
( )

n n

N20

0

1

) d m= = )
, , ,

,=

-

t^ h /  (19)

where

 ( ) .i
i n1

0
if 
otherwisend =
='  (20)

A few remarks about the generalized translation (19) are in order. 
First, we do not usually view it as translating a signal g defined in 
the vertex domain, but rather as a kernelized operator acting on a 
kernel ( )g $t  defined directly in the graph spectral domain. To trans-
late this kernel to vertex ,n  the th,  component of the kernel is 
multiplied by ( ),u n),  and then an inverse graph Fourier transform 
is applied. Second, the normalizing constant N  in (19) ensures 
that the translation operator preserves the mean of a signal, i.e., 

( ) ( ) ( ).T g i g in i
N

i
N

11 =
==
//  Third, the smoothness of the kernel 

( )g $t  controls the localization of T gn  around the center vertex ;n  
that is, the magnitude ( ) ( )T g in  of the translated kernel at vertex i 
decays as the distance between i and n increases [41]. This prop-
erty can be seen in Figure 5, where we translate a heat kernel 
around to different locations of the Minnesota graph. Finally, 
unlike the classical translation operator, the generalized transla-
tion operator (19) is not generally an isometric operator 
( ),T g gn 2 2!  due to the possible localization of the graph 
Laplacian eigenvectors ( / ) .N12n

MODULATION AND DILATION
In addition to translation, many classical transform methods rely 
on modulation or dilation to localize signals’ frequency content. 
The classical modulation operator

 ( ) ( ) : ( )M f t e f ti t2=~
r ~  (21)

represents a translation in the Fourier domain:

 ( ) ( ), .M f f R6 !p p ~ p= -~
t\

One way to define generalized modulation in the graph setting is 
to replace the multiplication by a complex exponential (an eigen-
function of the 1-D Laplacian operator) in (21) with a multiplica-
tion by a graph Laplacian eigenvector:

 ( ) : ( ) ( ).M g i N u i g ik k=^ h  (22)

(a) (b) (c)

[FIG5] The translated signals (a) ,T g100  (b) ,T g200  and (c) ,T g,2 000  where g is the heat kernel shown in Figure 4(a) and (b).
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The generalized modulation (22) is not exactly a translation in the 
graph spectral domain due to the discrete and irregular nature of 
the spectrum; however, as shown in [42, Fig. 3], if a kernel ( )g $t  is 
localized around 0 in the graph spectral domain, then M gk\ is 
localized around .km

For ,s 02  dilation or scaling of an analog signal f  in the 
time domain is given by

 ( ) ( ) : .D f t s f s
t1

s = ` j  (23)

We cannot directly generalize (23) to the graph setting, because /i s 
is not likely to be in the domain V  for all .Vi !  Instead, we can 
take the Fourier transform of (23)

 ( ) ( ) ( ),D f f ss p p= t\  (24)

and generalize (24) to the graph setting. Assuming we start 
with a kernel : ,g RR "+t  we can define a generalized graph 
dilation by [41]

 ( ) ( ) : ( ) .D g g ss m m= t\  (25)

Note that, unlike the generalized modulation (22), the general-
ized dilation (25) requires the kernel ( )g $t  to be defined on the 
entire real line, not just on ( )Lv  or [ , ].0 maxm

GRAPH COARSENING, 
DOWNSAMPLING, AND REDUCTION
Many multiscale transforms for signals on graphs require suc-
cessively coarser versions of the original graph that preserve 
properties of the original graph such as the intrinsic geometric 
structure (e.g., some notion of distance between vertices), con-
nectivity, graph spectral distribution, and sparsity. The process 
of transforming a given (fine scale) graph { , , }G V E W=  into a 
coarser graph { , , }G V E Wreduced reduced reduced reduced=  with fewer 
vertices and edges, while also preserving the aforementioned 
properties, is often referred to as graph coarsening or coarse-
graining [46].

This process can be split into two separate but closely related 
subtasks: 1) identifying a reduced set of vertices ,V reduced  and 2) 
assigning edges and weights, E reduced and ,Wreduced  to connect the 
new set of vertices. When an additional constraint that 
V Vreduced 1  is imposed, the first subtask is often referred to as 
graph downsampling. The second subtask is often referred to as 
graph reduction or graph contraction.

In the special case of a bipartite graph, two subsets can be cho-
sen so that every edge connects vertices in two different subsets. 
Thus, for bipartite graphs, there is a natural way to downsample 
by a factor of two, as there exists a notion of “every other vertex.”

For nonbipartite graphs, the situation is far more complex, and 
a wide range of interesting techniques for the graph coarsening 
problem have been proposed by graph theorists, and, in particular, 
by the numerical linear algebra community. To mention just a few, 
Lafon and Lee [46] downsample based on diffusion distances and 
form new edge weights based on random walk transition 

probabilities; the greedy seed selection algorithm of Ron et al. [47] 
leverages an algebraic distance measure to downsample the verti-
ces; recursive spectral bisection [48] repeatedly divides the graph 
into parts according to the polarity (signs) of the Fiedler vectors u1 
of successive subgraphs; Narang and Ortega [49] minimize the 
number of edges connecting two vertices in the same downsam-
pled subset; and another generally applicable method that yields 
the natural downsampling on bipartite graphs ([36, Ch. 3.6]) is to 
partition V  into two subsets according to the polarity of the com-
ponents of the graph Laplacian eigenvector uN 1-  associated with 
the largest eigenvalue .maxm  We refer readers to [47] and [50] and 
references therein for more thorough reviews of the graph coars-
ening literature.

There are also many interesting connections between graph 
coarsening, graph coloring [51], spectral clustering [22], and 
nodal domain theory [36, Ch. 3]. Finally, in a closely related topic, 
Pesenson (e.g., [52]) has extended the concept of bandlimited sam-
pling to signals defined on graphs by showing that certain classes 
of signals can be downsampled on particular subgraphs and then 
stably reconstructed from the reduced set of samples.

LOCALIZED, MULTISCALE  
TRANSFORMS FOR SIGNALS ON GRAPHS
The increasing prevalence of signals on graphs has triggered a 
recent influx of localized transform methods specifically designed 
to analyze data on graphs. These include wavelets on unweighted 
graphs for analyzing computer network traffic [53], diffusion 
wavelets and diffusion wavelet packets [24], [44], [45], the “top-
down” wavelet construction of [54], graph dependent basis func-
tions for sensor network graphs [55], lifting based wavelets on 
graphs [49], [56], multiscale wavelets on balanced trees [57], spec-
tral graph wavelets [41], critically sampled two-channel wavelet fil-
ter banks [37], [58], and a windowed graph Fourier transform [42].

Most of these designs are generalizations of the classical wave-
let filter banks used to analyze signals on Euclidean domains. The 
feature that makes the classical wavelet transforms so useful is 
their ability to simultaneously localize signal information in both 
time (or space) and frequency, and thus exploit the time-frequency 
resolution tradeoff better than the Fourier transform. In a similar 
vein, the desired property of wavelet transforms on graphs is to 
localize graph signal contents in both the vertex and graph spec-
tral domains. In the classical setting, locality is measured in terms 
of the “spread” of the signal in time and frequency, and uncer-
tainty principles (see [59, Sec. 2.6.2]) describe the tradeoff 
between time and frequency resolution. Whether such a tradeoff 
exists for graph signals remains an open question. However, some 
recent works have begun to define different ways to measure the 
“spread” of graph signals in both domains. For example, [60] 
defines the spatial spread of any signal f around a center vertex i 
on a graph G as

 ( ) : [ ( , )] [ ( )] .d i j f j1f
f,G G

V

i
j

2

2
2

2 2D =
!

/  (26)

Here, {[ ( )] / }f j f , , ,j N
2 2

1 2 f=  can be interpreted as a probability 
mass function (pmf) of signal ,f  and ( )f\ ,G i

2D  is the variance of the 
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geodesic distance function ( , .):Vd i RG "  at node ,i  in terms of 
this spatial pmf. The spatial spread of a graph signal can then be 
defined as

V
( ) : ( ) .minf f,G G i

i

2 2D D=
!
" ,

Similarly, the spectral spread of a graph signal can be 
defined as 

 ( ) : ( ) ,min f1f
f ( )L

2

2
2

2 2

R
m n mD = -

!
!

v
n

m v
+

/ t6 6@ @' 1  (27)

where {[ ( )] / }f f , , ,
2

2
2

max0 1m fm m m m=
t  is the pmf of f across the spec-

trum of the Laplacian matrix, and n  and ( )f2Dv  are the mean and 
variance of ,m  respectively, in the distribution given by this spec-
tral pmf. Note that the definitions of spread presented here are 
heuristically defined and do not have a well-understood theoretical 
background. If the graph is not regular, the choice of which Lapla-
cian matrix (L  or Lu ) to use for computing spectral spreads also 
affects the results. The purpose of these definitions and the subse-
quent examples is to show that a tradeoff exists between spatial 
and spectral localization in graph wavelets. If we do not minimize 
over all n but rather fix 0n =  and also use the normalized graph 
Laplacian matrix Lu  instead of ,L  the definition of spectral spread 
in (27) reduces to the one proposed in [60].

Depending on the application under consideration, other desir-
able features of a graph wavelet transform may include perfect 
reconstruction, critical sampling, orthogonal expansion, and a 
multiresolution decomposition [37].

In the remainder of this section, we categorize the existing 
graph transform designs and provide simple examples. The graph 
wavelet transform designs can broadly be divided into two types: 
vertex domain designs and graph spectral domain designs.

VERTEX DOMAIN DESIGNS
The vertex domain designs of graph wavelet transforms are based 
on the spatial features of the graph, such as node connectivity and 
distances between vertices. Most of these localized transforms can 
be viewed as particular instances of filtering in the vertex domain, 
as in (16), where the output at each node can be computed from 
the samples within some K-hop neighborhood around the node. 
The graph spectral properties of these transforms are not explicitly 
designed. Examples of vertex domain designs include random 
transforms [55], graph wavelets [53], lifting-based wavelets [49], 
[61], [62], and tree wavelets [57].

The random transforms [55] for unweighted graphs com-
pute either a weighted average or a weighted difference at each 
node in the graph with respect to a k-hop neighborhood around 
it. Thus, the filter at each node has a constant, nonzero weight 
c within the k-hop neighborhood and zero weight outside, 
where the parameter c is chosen so as to guarantee invertibility 
of the transform.

The graph wavelets of Crovella and Kolaczyk [53] are functions 
: ,V R,k i "}  localized with respect to a range of scale/location 

indices ( , ),k i  which at a minimum satisfy ( )j 0,V k ij } =
!
/  (i.e., 

a zero dc response). This graph wavelet transform is described in 
more detail later in the section.

Lifting-based transforms for graphs [49], [61], [62] are exten-
sions of the lifting wavelets originally proposed for 1-D signals by 
Sweldens [63]. In this approach, the vertex set is first partitioned 
into sets of even and odd nodes, .V V VO f= ,  Each odd node 
computes its prediction coefficient using its own data and data 
from its even neighbors. Then each even node computes its 
update coefficients using its own data and the prediction coeffi-
cients of its neighboring odd nodes.

In [57], Gavish et al. construct tree wavelets by building a bal-
anced hierarchical tree from the data defined on graphs, and then 
generating orthonormal bases for the partitions defined at each 
level of the tree using a modified version of the standard one-
dimensional wavelet filtering and decimation scheme.

GRAPH SPECTRAL DOMAIN DESIGNS
The graph spectral domain designs of graph wavelets are based on 
the spectral features of the graph, which are encoded, e.g., in the 
eigenvalues and eigenvectors of one of the graph matrices defined 
in the section “The Graph Spectral Domains.” Notable examples in 
this category include diffusion wavelets [24], [44], spectral graph 
wavelets [41], and graph quadrature mirror filterbanks (graph-
QMF) [37]. The general idea of the graph spectral designs is to 
construct bases that are localized in both the vertex and graph 
spectral domains.

The diffusion wavelets [24], [44], for example, are based on 
compressed representations of powers of a diffusion operator, such 
as the one discussed in “Example 3 (Diffusion Operators and Dila-
tion).” The localized basis functions at each resolution level are 
downsampled and then orthogonalized through a variation of the 
Gram-Schmidt orthogonalization scheme.

The spectral graph wavelets of [41] are dilated, translated ver-
sions of a bandpass kernel designed in the graph spectral domain 
of the unnormalized graph Laplacian .L  They are discussed fur-
ther in the next section.

Another graph spectral design is the two-channel graph-QMF 
filterbank proposed for bipartite graphs in [37]. The resulting 
transform is orthogonal and critically sampled and also yields per-
fect reconstruction. In this design, the analysis and synthesis fil-
ters at each scale are designed using a single prototype transfer 
function ( ),h mt u  which satisfies

 ( ) ( ) ,h h 2 22 2m m+ - =t u t u  (28)

where mu is an eigenvalue in the normalized graph Laplacian spec-
trum. The design extends to any arbitrary graph via a bipartite 
subgraph decomposition.

EXAMPLES OF GRAPH WAVELET DESIGNS
To build more intuition about graph wavelets, we present some 
examples using one vertex domain design and one graph spectral 
domain design.

For the vertex domain design, we use the graph wavelet 
transform of Crovella and Kolaczyk (CKWT) [53] as an example. 
These wavelets are based on the geodesic or shortest-path 
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distance ( , ).d i jG  Define ( , )N i2 x  to be the set of all vertices 
Nj !  such that ( , ) .d i jG x=  Then the wavelet function 

:V R,k i
CKWT

"}  at scale k and center vertex Vi !  can be 
written as

 ( )
| ( , )|

, ( , ),
N

Nj
i

a j i,
,

k i
kCKWT

2
6 2!}

x
x=

x  (29)

for some constants { } .a , , , ,k k0 1 fx x=  Thus, each wavelet is con-
stant across all vertices ( , )Nj i2! x  that are the same distance 
from the center vertex ,i  and the value of the wavelet at the ver-
tices in ( , )N i2 x  depends on the distance .x  If ,k2x  ,a 0,k =x  
so that for any ,k  the function ,k i

CKWT}  is exactly supported on a 
k-hop localized neighborhood around the center vertex .i  The 

EXAMPLE 3 (DIFFUSION OPERATORS AND DILATION)
The heat diffusion operator R e L= -  is an example of a discrete 
diffusion operator (see, e.g., [43] and [14, Sec. 2.5.5] for gen-
eral discussions of discrete diffusions and [24, Sec. 4.1] for a 
formal definition and examples of symmetric diffusion semi-
groups). Intuitively, applying different powers x of the heat 
diffusion operator to a signal f  describes the flow of heat over 
the graph when the rates of flow are proportional to the edge 
weights encoded in .L  The signal f  represents the initial 
amount of heat at each vertex, and R f fe L=x x-^ h  represents 
the amount of heat at each vertex after time .x  The time vari-
able x also provides a notion of scale. When x is small, the 
entry e ,

L
i j

x-^ h  for two vertices that are far apart in the graph is 
very small, and therefore ( )fe iLx-^^ h h  depends primarily on the 
values ( )f j  for vertices j close to i in the graph. As x increases, 

( )fe iLx-^^ h h  also depends on the values ( )f j  for vertices j far-
ther away from i in the graph. Zhang and Hancock [11] pro-
vide a more detailed mathematical justification behind this 
migration from domination of the local geometric structures 
to domination of the global structure of the graph as x 

increases, as well as a nice illustration of heat diffusion on a 
graph in [11, Fig. 1].

Using our notations from (14) and (25), we can see that apply-
ing a power x of the heat diffusion operator to any signal f RN!  
is equivalent to filtering the signal with a dilated heat kernel 

( ) ,R f f f fD L De g gL )= = =x x
x x

-^ ^ ^h h h\
where the filter is the heat kernel ( ) ,g em =, m- ,t  similar to the 
one shown in Figure 4(b).

In Figure S3, we consider the cerebral cortex graph described in 
[41], initialize a unit of energy at the vertex 100 by taking 

,f 100d=  allow it to diffuse through the network for different 
dyadic amounts of time, and measure the amount of energy that 
accumulates at each vertex. Note that dyadic powers of diffusion 
operators of the form { }R , ,k

2 1
1 2

k

f
-

=  are of central importance to 
diffusion wavelets and diffusion wavelet packets [24], [44], [45], 
which we discuss in the section “Localized, Multiscale Transforms 
for Signals on Graphs.”

[FIGS3] Applying different powers of the heat diffusion operator can be interpreted as graph spectral filtering with a dilated kernel. 
(a) Original signal f 100d=  on the cerebral cortex graph. Parts (b)–(e) show filtered signals D g R ff , , , , , ,k k2 1 1 2 3 4

2 1
1 2 3 4k

k
) =- =

-
=^ h" ", , . 

(f) Different dilated kernels corresponding to the dyadic powers of the diffusion operator.
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constants a ,k x in (29) also satisfy ,a 0,
k

k0 =
x x=/  and can be 

computed from any continuous wavelet function ( )[ , )0 1 $}  sup-
ported on the interval [ , )0 1  by taking a ,k x to be the average of 

( )[ , )0 1 $}  on the sub-intervals [ / ( ), ( ) / ( )] .I k k1 1 1,k x x= + + +x  
In our examples in Figures 6 and 7, we take ( )[ , )0 1 $}  to be the 
continuous Mexican hat wavelet. We denote the entire graph 
wavelet transform at a given scale k as : [ , ,, ,k k k1 2

CKWT CKWT CKWT} }W =  
].,k N

CKWTf}

For the graph spectral domain design, we use the spectral 
graph wavelet transform (SGWT) of [41] as an example. The SGWT 
consists of one scaling function centered at each vertex, and K  
wavelets centered at each vertex, at scales { , , , } .t t t RK1 2 f ! +  The 
scaling functions are translated low-pass kernels

: ( ) ,LT hh,i i iscal
SGWT} d= = t

where the generalized translation Ti is defined in (19), and the 
kernel ( )h mt  is a low-pass filter. The wavelet at scale tk and center 
vertex i is defined as

: ( ) ,D D LT gg,t i i t t i
SGWT

k k k} d= =\
where the generalized dilation Dtk is defined in (25), and ( )g mt  is a 
band-pass kernel satisfying ( ) ,g 0 0=t  ( ) ,lim g 0m ="3m t  and an 
admissibility condition [41]. We denote the SGWT transform at 
scale tk as

[ , , ],, , ,t t t t N1 2
SGWT SGWT SGWT SGWT

k k k kf} } }W =

so that the entire transform :R R ( )N N K 1SGWT "W +  is given by

[ ; ; ; ].t t
SGWT

scal
SGWT SGWT SGWT

K1 fW W W W=

We now compute the spatial and spectral spreads of the two 
graph wavelet transforms presented above. Unlike in the classical 
setting, the basis functions in a graph wavelet transform are not 
space-invariant, i.e., the spreads of two wavelets ,k i1}  and ,k i2}  at 
the same scale are not necessarily the same. Therefore, the spatial 
spread of a graph transform cannot be measured by computing 
the spreads of only one wavelet. In our analysis, we compute the 
spatial spread of a transform kW  at a given scale k by taking an 
average over all scale k wavelet (or scaling) functions of the spatial 
spreads (26) around each respective center vertex i. Therefore, we 
first compute

 | ( ) | : | ( ) | ,
N
1

,k
i

N

k i
2

1

2m } mW =
=

/t t  (30)

and then take | ( ) | | ( ) |f k
2 2m mW=t t  in (27) to compute the average 

spectral spread of kW .
The spatial and spectral spreads of both the CKWT and SGWT 

at different scales are shown in Figure 6. The graphs used in this 
example are random d-regular graphs. Observe that in Figure 6, 
the CKWT wavelets are located to the right of the SGWT wavelets 
on the horizontal (spectral) axis, and below them on the vertical 
(spatial) axis, which implies that, in this example, the CKWT 

wavelets are less localized spectrally and more localized spatially 
than the SGWT wavelets. This analysis provides an empirical 
understanding of the tradeoff between the spatial and spectral 
resolutions of signals defined on graphs.

Next, to empirically demonstrate the ability of these graph 
wavelet transforms to efficiently represent piecewise smooth sig-
nals on graphs, we compute the graph wavelet coefficients of the 
piecewise smooth signal with a sharp discontinuity shown in Fig-
ure 7(a) on the unweighted Minnesota road graph, where the 
color of a node represents the value of the signal at that vertex. We 
use the CKWT with scales , , , ,k 1 2 10f=  and the SGWT with 
five wavelet scales as well as a scaling kernel. The bandpass wavelet 
kernel, scaling kernel, and values of the scales , , ,t t t1 2 3  and t4 are 
all designed by the SGWT toolbox [41]. The CKWT wavelet coeffi-
cients as Scales 2 and 4 are shown in Figure 7(b) and (c), and the 
SGWT scaling coefficients and wavelet coefficients at scales t2 and 
t4 are shown in Figure 7(d)–(f), respectively. Observe that for both 
transforms, the high-magnitude output coefficients are concen-
trated mostly near the discontinuity. This implies that these graph 
wavelet transforms are able to localize the high-pass information 
of the signal in the spatial domain, which the graph Fourier trans-
form or other global transforms cannot do.

SUMMARY, OPEN ISSUES, AND EXTENSIONS
We presented a generic framework for processing data on 
graphs, and we surveyed recent developments in the area of graph 
signal processing. In particular, we reviewed ways to generalize 
elementary operators such as filtering, convolution, and transla-
tion to graph setting. Such operations represent the core of graph 
signal processing algorithms, and they underlie the localized, 
multiscale transforms we discussed. For many of the generalized 
operators and localized, multiscale transforms, classical signal 
processing intuition from Euclidean spaces can be fairly directly 
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extended to the graph setting. For example, we saw in the section 
“A Graph Fourier Transform and Notion of Frequency” how the 
notion of frequency extends nicely to the graph setting. However, 
signals and transforms on graphs can also have surprising prop-
erties due to the irregularity of the data domain. Moreover, these 
are by no means the only conceivable ways to generalize these 
operators and transforms to the graph setting. Thus, quite a few 
challenges remain ahead. In this section, we briefly mention a few 
important open issues and possible extensions.

OPEN ISSUES
 ■ Because all of the signal processing methods described in 

this article incorporate the graph structure in some way, con-
struction of the underlying graph is extremely important. 
Yet, relatively little is known about how the construction of 
the graph affects properties of the localized, multiscale trans-
forms for signals on graphs.

 ■ As mentioned in the section “Other Graph Matrices,” it is 
not always clear when or why we should use the normalized 
graph Laplacian eigenvectors, the unnormalized graph Lapla-
cian eigenvectors, or some other basis as the graph spectral 
filtering basis.

 ■ Similarly, in the vertex domain, a number of different dis-
tances, including the geodesic/shortest-path distance, the 
resistance distance [64], the diffusion distance [46], and alge-
braic distances [47], have useful properties, but it is not 

always clear which is the best to use in constructing or 
analyzing transform methods.

 ■ Transform operators are only useful in high-dimensional 
data analysis if the computational complexity of applying the 
operator and its adjoint scales gracefully with the size of the 
signal. This fact is confirmed, for example, by the prevalence of 
fast Fourier transforms and other efficient computational algo-
rithms throughout the signal processing literature. Most of 
the transforms for signals on graphs involve computations 
requiring the eigenvectors of the graph Laplacian or the nor-
malized graph Laplacian. However, it is not practical to explic-
itly compute these eigenvectors for extremely large graphs, as 
the computational complexity of doing so does not scale grace-
fully with the size of the graph. Thus, an important area of 
research is approximate computational techniques for signal 
processing on graphs. Efficient numerical implementations for 
certain classes of graph operators have been suggested using 
polynomial approximations [4], [40], [41] and Krylov methods 
[11], but plenty of numerical issues remain open, including, 
e.g., a fast graph Fourier transform implementation.

 ■ In Euclidean data domains, there is a deep mathematical 
theory of approximation linking properties of classes of sig-
nals to properties of their wavelet transform coefficients (see, 
e.g., [65]). A major open issue in the field of signal processing 
on graphs is how to link structural properties of graph sig-
nals and their underlying graphs to properties (such as 

[FIG7] (a) A piecewise smooth signal f with a severe discontinuity on the unweighted Minnesota graph. Parts (b) and (c) show wavelet 
coefficients of two scales of the CKWT. (d) Scaling coefficients of the SGWT. Parts (e) and (f) show wavelet coefficients of two scales of 
the SGWT. In both cases, the high-magnitude wavelet coefficients cluster around the discontinuity.
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sparsity and localization) of the generalized operators and 
transform coefficients. Such a theory could inform transform 
designs, and help identify which transforms may be better 
suited to which applications. One issue at the heart of the 
matter is the need to better understand localization of signals 
in both the vertex and graph spectral domains. As discussed 
briefly in the section “Localized, Multiscale Transforms for 
Signals on Graphs,” even defining appropriate notions of 
spreads in these domains is highly nontrivial. Moreover, 
unlike in the classical Euclidean settings, the graph Laplacian 
eigenvectors are often highly nonlocalized, making it more 
difficult to precisely identify the tradeoff between resolution 
in the vertex domain and resolution in the graph spectral 
domain. Agaskar and Lu [60] have begun to define such local-
ization notions and study the resolution tradeoff.

EXTENSIONS
The signal processing techniques we have described are focused on 
extracting information from a static signal on a static, weighted, 
undirected graph. Some clear extensions of this framework 
include: 1) considering directed graphs, as is done, for example, in 
[66], 2) considering time series of data on each vertex in a graph, 
and 3) considering a time-varying series of underlying graphs, as is 
done, for example, in [67], or any combination of these.

Finally, while the number of new analytic techniques for 
signals on graphs has been steadily increasing over the past 
decade, the application of these techniques to real science and 
engineering problems is still in its infancy. We believe the num-
ber of potential applications is vast, and hope to witness 
increased utilization of these important theoretical develop-
ments in the coming decade.

ACKNOWLEDGMENTS
This work was supported in part by the European Commission 
under FETOpen grant 255931 UNLocX and in part by the National 
Science Foundation under grant CCF-1018977. The authors 
would like to thank the anonymous reviewers and Dorina Thanou 
for their constructive comments on earlier versions of this article.

AUTHORS
David I Shuman (david.shuman@epfl.ch) received the 
B.A. degree in economics and the M.S. degree in engineering-eco-
nomic systems and operations research from Stanford University, 
Stanford, California, in 2001 and the M.S. degree in electrical 
engineering: systems, the M.S. degree in applied mathematics, 
and the Ph.D. degree in electrical engineering: systems from the 
University of Michigan, Ann Arbor, in 2006, 2009, and 2010, 
respectively. He is currently a postdoctoral researcher at the Insti-
tute of Electrical Engineering, Ecole Polytechnique Fédérale de 
Lausanne, Switzerland. His research interests include signal pro-
cessing on graphs, computational harmonic analysis, and sto-
chastic scheduling and resource allocation problems. 

Sunil K. Narang (kumarsun@usc.edu) is a postdoctoral 
research associate working with Dr. Antonio Ortega in the 
Department of Electrical Engineering, University of Southern 

California (USC), Los Angeles. He received the B.Tech. degree in 
electrical engineering from the Indian Institute of Technology 
Delhi, India, in 2005, and the Ph.D. degree in electrical engi-
neering from USC, Los Angeles, in 2012. His research interests 
involve distributed compression in networks, transform-based 
analysis in graphs, and image and video processing. 

Pascal Frossard (pascal.frossard@epfl.ch) received the M.S. 
and Ph.D. degrees, both in electrical engineering, from the 
Swiss Federal Institute of Technology (EPFL), Lausanne, 
Switzerland, in 1997 and 2000, respectively. Between 2001 and 
2003, he was a member of the research staff at the IBM T.J. 
Watson Research Center, Yorktown Heights, New York. He is 
now an associate professor at EPFL, where he heads the Signal 
Processing Laboratory (LTS4). His research interests include 
image representation and coding, visual information analysis, 
distributed image processing and communications, and media 
streaming systems. He is a Senior Member of the IEEE.

Antonio Ortega (antonio.ortega@sipi.usc.edu) received the 
telecommunications engineering degree from the Universidad 
Politecnica de Madrid, Spain, in 1989 and the Ph.D. degree in 
electrical engineering from Columbia University, New York, in 
1994. He is a professor of electrical engineering at the Univer-
sity of Southern California and has served as an associate chair 
of the Department of Electrical Engineering-Systems. He is a 
Fellow of the IEEE and a member of ACM and Asia-Pacific Sig-
nal and Information Processing Association. He received the 
NSF CAREER Award and several paper awards, including most 
recently at ICIP 2011 and Globecom 2012. His research inter-
ests are in the areas of multimedia compression, communica-
tions, signal analysis, and graph signal processing.

Pierre Vandergheynst (pierre.vandergheynst@epfl.ch) 
received the M.S. degree in physics and the Ph.D. degree in math-
ematical physics from the Université Catholique de Louvain, Lou-
vain-la-Neuve, Belgium, in 1995 and 1998, respectively. From 
1998 to 2001, he was a postdoctoral researcher with the Signal 
Processing Laboratory, Swiss Federal Institute of Technology 
(EPFL), Lausanne, Switzerland. From 2002 to 2007, he was an 
assistant professor at EPFL, where he is currently an associate 
professor. His research focuses on harmonic analysis, sparse 
approximations, and mathematical data processing, in general, 
with applications covering signal, image, and high-dimensional 
data processing; sensor networks; and computer vision.

REFERENCES
[1] P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. Honey, V. Wedeen, and 
O. Sporns, “Mapping the structural core of human cerebral cortex,” PLoS Biol., 
vol. 6, no. 7, pp. 1479–1493, 2008.

[2] D. Lowe, “Object recognition from local scale-invariant features,” in Proc. IEEE 
Int. Conf. Comput. Vis., 1999, vol. 2, pp. 1150–1157.

[3] C. Apté, F. Damerau, and S. Weiss, “Automated learning of decision rules for 
text categorization,” ACM Trans. Inf. Syst., vol. 12, no. 3, pp. 233–251, 1994.

[4] A. J. Smola and R. Kondor, “Kernels and regularization on graphs,” in Proc. 
Ann. Conf. Comp. Learn. Theory, 2003, LNCS, pp. 144–158.

[5] X. Zhu and Z. Ghahramani, “Semi-supervised learning using Gaussian fields 
and harmonic functions,” in Proc. Int. Conf. Mach. Learn., Washington, DC, 
Aug. 2003, pp. 912–919.

[6] D. Zhou and B. Schölkopf, “A regularization framework for learning from 
graph data,” in Proc. ICML Workshop Stat. Relat. Learn. and Its Connections to 
Other Fields, July 2004, pp. 132–137.



 IEEE SIGNAL PROCESSING MAGAZINE [98] MAY 2013

[7] D. Zhou and B. Schölkopf, “Regularization on discrete spaces,” in Pattern 
Recogn. (Lect. Notes Comp. Sci., vol. 3663), W. G. Kropatsch, R. Sablatnig, and 
A. Hanbury, Eds. Berlin, Germany: Springer, 2005, pp. 361–368.

[8] M. Belkin, I. Matveeva, and P. Niyogi, “Regularization and semi-supervised 
learning on large graphs,” in Learn. Theory (Lect. Notes Comp. Sci.). Berlin, 
Germany: Springer, 2004, pp. 624–638.

[9] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning with 
local and global consistency,” in Adv. Neural Inf. Process. Syst., vol. 16, S. Thrun, 
L. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT Press, 2004, pp. 321–328.

[10] G. Peyré, S. Bougleux, and L. Cohen, “Non-local regularization of inverse 
problems,” in Proc. ECCV’08, 2008, Lect. Notes Comp. Sci., pp. 57–68.

[11] F. Zhang and E. R. Hancock, “Graph spectral image smoothing using the heat 
kernel,” Pattern Recognit., vol. 41, pp. 3328–3342, Nov. 2008.

[12] S. K. Narang, Y. H. Chao, and A. Ortega, “Graph-wavelet filterbanks for 
edge-aware image processing,” in Proc. IEEE Stat. Signal Process. Workshop, 
Ann Arbor, MI, Aug. 2012, pp. 141–144.

[13] R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse rep-
resentation modeling,” Proc. IEEE, vol. 98, no. 6, pp. 1045–1057, June 2010.

[14] L. J. Grady and J. R. Polimeni, Discrete Calculus. Berlin, Germany: 
Springer, 2010.

[15] C. Godsil and G. F. Royle, Algebraic Graph Theory. Berlin, Germany: 
Springer, 2001.

[16] F. K. Chung, Spectral Graph Theory (CBMS Regional Conference Series in 
Mathematics, vol. 92). Providence, RI: AMS Bookstore, 1997.

[17] D. Spielman, “Spectral graph theory,” in Combinatorial Scientific 
Computing. Chapman and Hall/CRC Press, 2012.

[18] G. Taubin, “Geometric signal processing on polygonal meshes,” in Eurograph-
ics State of the Art Report. Aug. 2000.

[19] Z. Karni and C. Gotsman, “Spectral compression of mesh geometry,” in Proc. 
ACM SIG-GRAPH Conf., New Orleans, LA, July 2000, pp. 279–286.

[20] I. Guskov, W. Sweldens, and P. Schroder, “Multiresolution signal processing for 
meshes,” in Proc. ACM SIG-GRAPH Conf., Los Angeles, CA, Aug. 1999, pp. 325–334.

[21] S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their applica-
tions,” Bull. Amer. Math. Soc., vol. 43, pp. 439–561, Oct. 2006.

[22] U. von Luxburg, “A tutorial on spectral clustering,” Stat. Comput., vol. 17, 
no. 4, pp. 395–416, 2007.
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[59] M. Vetterli and J. Kovačević, Wavelets and Subband Coding. Englewood 
Cliffs, NJ: Prentice Hall, 1995.

[60] A. Agaskar and Y. M. Lu, “Uncertainty principles for signals defined on 
graphs: Bounds and characterizations,” in Proc. IEEE Int. Conf. Acc., Speech, 
and Signal Process., Kyoto, Japan, Mar. 2012, pp. 3493–3496.

[61] R. Wagner, V. Delouille, and R. Baraniuk, “Distributed wavelet de-noising for 
sensor networks,” in Proc. IEEE Int. Conf. Dec. and Contr., San Diego, CA, Dec. 
2006, pp. 373–379.

[62] G. Shen and A. Ortega, “Transform-based distributed data gathering,” IEEE. 
Trans. Signal Process., vol. 58, no. 7, pp. 3802–3815, July 2010.

[63] W. Sweldens, “The lifting scheme: A construction of second generation wave-
lets,” SIAM J. Math. Anal., vol. 29, no. 2, pp. 511–546, 1998.
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