
1

Learning Parametric Dictionaries for
Signals on Graphs

Dorina Thanou, David I Shuman, and Pascal Frossard

Abstract—In sparse signal representation, the choice of a
dictionary often involves a tradeoff between two desirable prop-
erties – the ability to adapt to specific signal data and a fast
implementation of the dictionary. To sparsely represent signals
residing on weighted graphs, an additional design challenge is to
incorporate the intrinsic geometric structure of the irregular data
domain into the atoms of the dictionary. In this work, we propose
a parametric dictionary learning algorithm to design data-
adapted, structured dictionaries that sparsely represent graph
signals. In particular, we model graph signals as combinations
of overlapping local patterns. We impose the constraint that
each dictionary is a concatenation of subdictionaries, with each
subdictionary being a polynomial of the graph Laplacian matrix,
representing a single pattern translated to different areas of the
graph. The learning algorithm adapts the patterns to a training
set of graph signals. Experimental results on both synthetic and
real datasets demonstrate that the dictionaries learned by the
proposed algorithm are competitive with and often better than
unstructured dictionaries learned by state-of-the-art numerical
learning algorithms in terms of sparse approximation of graph
signals. In contrast to the unstructured dictionaries, however, the
dictionaries learned by the proposed algorithm feature localized
atoms and can be implemented in a computationally efficient
manner in signal processing tasks such as compression, denoising,
and classification.

Index Terms—Dictionary learning, graph signal processing,
graph Laplacian, sparse approximation.

I. INTRODUCTION

Graphs are flexible data representation tools, suitable for
modeling the geometric structure of signals that live on topo-
logically complicated domains. Examples of signals residing
on such domains can be found in social, transportation, energy,
and sensor networks [1]. In these applications, the vertices
of the graph represent the discrete data domain, and the
edge weights capture the pairwise relationships between the
vertices. A graph signal is then defined as a function that
assigns a real value to each vertex. Some simple examples
of graph signals are the current temperature at each location
in a sensor network and the traffic level measured at predefined
points of the transportation network of a city. An illustrative
example is given in Fig. 1.

We are interested in finding meaningful graph signal repre-
sentations that (i) capture the most important characteristics
of the graph signals, and (ii) are sparse. That is, given a

D. Thanou, D. I Shuman and P. Frossard are with Ecole Polytech-
nique Fédérale de Lausanne (EPFL), Signal Processing Laboratory-LTS4,
CH-1015, Lausanne, Switzerland (e-mail:{dorina.thanou, david.shuman, pas-
cal.frossard}@epfl.ch).

This work has been partialy funded by the Swiss National Science Foun-
dation under Grant 200021 135493.

Part of the work reported here was presented at the IEEE Glob. Conf. Signal
and Inform. Process., Austin, Texas, Dec. 2013.

weighted graph and a class of signals on that graph, we
want to construct an overcomplete dictionary of atoms that
can sparsely represent graph signals from the given class as
linear combinations of only a few atoms in the dictionary.
An additional challenge when designing dictionaries for graph
signals is that in order to identify and exploit structure in the
data, we need to account for the intrinsic geometric structure
of the underlying weighted graph. This is because signal
characteristics such as smoothness depend on the topology of
the graph on which the signal resides (see, e.g., [1, Example
1]).

For signals on Euclidean domains as well as signals on
irregular data domains such as graphs, the choice of the
dictionary often involves a tradeoff between two desirable
properties – the ability to adapt to specific signal data and
a fast implementation of the dictionary [2]. In the dictionary
learning or dictionary training approach to dictionary design,
numerical algorithms such as K-SVD [3] and the Method
of Optimal Directions (MOD) [4] (see [2, Section IV] and
references therein) learn a dictionary from a set of realizations
of the data (training signals). The learned dictionaries are
highly adapted to the given class of signals and therefore
usually exhibit good representation performance. However, the
learned dictionaries are highly non-structured, and therefore
costly to apply in various signal processing tasks. On the other
hand, analytic dictionaries based on signal transforms such as
the Fourier, Gabor, wavelet, curvelet and shearlet transforms
are based on mathematical models of signal classes (see [5]
and [2, Section III] for a detailed overview of transform-
based representations in Euclidean settings). These structured
dictionaries often feature fast implementations, but they are
not adapted to specific realizations of the data. Therefore, their
ability to efficiently represent the data depends on the accuracy
of the mathematical model of the data.

The gap between the transform-based representations and
the numerically trained dictionaries can be bridged by impos-
ing a structure on the dictionary and learning the parameters of
this structure. The structure generally reveals various desirable
properties of the dictionary such as translation invariance [6],
minimum coherence [7] or efficient implementation [8] (see
[2, Section IV.E] for a complete list of references). Structured
dictionaries represent a good trade-off between approximation
performance and efficiency of the implementation.

In this work, we build on our previous work [9] and
capitalize on the benefits of both numerical and analytical
approaches by learning a dictionary that incorporates the graph
structure and can be implemented efficiently. We model the
graph signals as combinations of overlapping local patterns,
describing localized events or causes on the graph, that can

2

(a) Day 1 (b) Day 2 (c) Day 3
Fig. 1. Illustrative example: The three signals on the graph are the minutes of bottlenecks per day at different detector stations in Alameda County, California,
on three different days. The detector stations are the nodes of the graph and the connectivity is defined based on the GPS coordinates of the stations. The size
and the color of each ball indicate the value of the signal in each vertex of the graph. Note that all signals consist of a set of localized features positioned
on different nodes of the graph.

appear in different vertices. That could be the case in graph
signals for traffic data, brain data, or other type of networks.
For example, the evolution of traffic on a highway might be
similar to that on a different highway, at a different position
in the transportation network. We incorporate the underlying
graph structure into the dictionary through the graph Laplacian
operator, which encodes the connectivity. In order to ensure
the atoms are localized in the graph vertex domain, we
impose the constraint that our dictionary is a concatenation
of subdictionaries that are polynomials of the graph Lapla-
cian [10]. We then learn the coefficients of the polynomial
kernels via numerical optimization. As such, our approach
falls into the category of parametric dictionary learning [2,
Section IV.E]. The learned dictionaries are adapted to the
training data, efficient to store, and computationally efficient
to apply. Experimental results demonstrate the effectiveness
of our scheme in the approximation of both synthetic signals
and graph signals collected from real world applications. In
addition to signal approximation, the localization of the atoms
in the graph domain leads to an easier interpretation of the
data throughout their atomic representation.

The structure of the paper is as follows. We first highlight
some related work on the representation of graph signals in
Section II. In Section III, we recall basic definitions related
to graphs that are necessary to understand our dictionary
learning algorithm. The polynomial dictionary structure and
the dictionary learning algorithms are described in Section IV.
In Section V, we evaluate the performance of our algorithm
on the approximation of both synthetic and real world graph
signals. Finally, the benefits of the polynomial structure are
discussed in Section VI.

II. RELATED WORK

The design of overcomplete dictionaries to sparsely repre-
sent signals has been extensively investigated in the past few
years. We restrict our focus here to the literature related to the
problem of designing dictionaries for graph signals. Generic
numerical approaches such as K-SVD [3] and MOD [4] can
certainly be applied to graph signals, with these signals viewed
as vectors in RN . However, the learned dictionaries will nei-
ther feature a fast implementation, nor explicitly incorporate
the underlying graph structure.

Meanwhile, several transform-based dictionaries for graph
signals have recently been proposed (see [1] for an overview
and complete list of references). For example, the graph
Fourier transform has been shown to sparsely represent smooth
graph signals [11]; wavelet transforms such as diffusion
wavelets [12], spectral graph wavelets [10], and critically sam-
pled two-channel wavelet filter banks [13] target piecewise-
smooth graph signals; the multiscale wavelets of [21], the
critically sampled, generalized tree-based wavelets transform
of [20] and its extension to a redundant wavelet transform in
[19] exploit the tree structure of the data to represent signals
defined on weighted graphs; and vertex-frequency frames
[14]–[16] can be used to analyze signal content at specific
vertex and frequency locations. These dictionaries feature pre-
defined structures derived from the graph and some of them
can be efficiently implemented; however, they generally are
not adapted to the signals at hand. Some exceptions are the
diffusion wavelet packets of [17], the wavelets on graphs via
deep learning [18], and the tree-based wavelets [19], [20],
which feature extra adaptivity.

The recent work in [22] tries to bridge the gap between
the graph-based transform methods and the purely numerical
dictionary learning algorithms by proposing an algorithm to
learn structured graph dictionaries. The learned dictionaries
have a structure that is derived from the graph topology, while
its parameters are learned from the data. This work is the
closest to ours in a sense that both graph dictionaries consist
of subdictionaries that are based on the graph Laplacian. How-
ever, it does not necessarily lead to efficient implementations
as the obtained dictionary is not necessarily a smooth matrix
function (see, e.g., [23] for more on matrix functions) of the
graph Laplacian matrix.

Finally, we remark that the graph structure is taken into
consideration in [24], not explicitly into the dictionary but
rather in the sparse coding coefficients. The authors use the
graph Laplacian operator as a regularizer in order to impose
that the obtained sparse coding coefficients vary smoothly
along the geodesics of the manifold that is captured by the
graph. However, the obtained dictionary does not have any par-
ticular structure. None of the previous works are able to design
dictionaries that provide sparse representations, particularly
adapted to a given class of graph signals, and have efficient

3

implementations. This is exactly the objective of our work,
where a structured graph signal dictionary is composed of
multiple polynomial matrix functions of the graph Laplacian.

III. PRELIMINARIES

In this section, we briefly overview a few basic definitions
for signals on graphs. A more complete description of the
graph signal processing framework can be found in [1]. We
consider a weighted and undirected graph G = (V, E ,W)
where V and E represent the vertex and edge sets of the
graph, and W represents the matrix of edge weights, with
Wij = Wji denoting the positive weight of an edge con-
necting vertices i and j; otherwise Wij = 0. We assume
that the graph is connected. The graph Laplacian operator is
defined as L = D − W , where D is the diagonal degree
matrix whose ith diagonal element is equal to the sum of
the weights of all the edges incident to vertex i [25]. The
normalized graph Laplacian is defined as L = D−

1
2LD−

1
2 .

Both operators are real symmetric and positive semidefinite
matrices and they have a complete set of real orthonormal
eigenvectors with corresponding nonnegative eigenvalues. We
denote the eigenvectors of the normalized graph Laplacian by
χ = [χ0, χ1, ..., χN−1], and the spectrum of eigenvalues by

σ(L) :=
{

0 = λ0 < λ1 ≤ λ2 ≤ ... ≤ λN−1 ≤ 2
}
.

A graph signal y in the vertex domain is a real-valued
function defined on the vertices of the graph G, such that
y(v) is the value of the function at vertex v ∈ V . The spectral
domain representation can also provide significant information
about the characteristics of graph signals. In particular, the
eigenvectors of the Laplacian operators can be used to perform
harmonic analysis of signals that live on the graph, and the
corresponding eigenvalues carry a notion of frequency [1]. The
normalized Laplacian eigenvectors are a Fourier basis, so that
for any function y defined on the vertices of the graph, the
graph Fourier transform ŷ at frequency λ` is defined as

ŷ (λ`) = 〈y, χ`〉 =

N∑
n=1

y(n)χ∗` (n),

while the inverse graph Fourier transform is

y(n) =

N−1∑
`=0

ŷ (λ`)χ`(n), ∀n ∈ V.

Besides its use in harmonic analysis, the graph Fourier
transform is also useful in defining the translation of a signal
on the graph. The generalized translation operator can be
defined as a generalized convolution with a Kronecker δ
function centered at vertex n [10], [14], [15]:

Tng =
√
N(g ∗ δn)

(a)
=
√
N

N−1∑
`=0

ĝ(λ`)χ
∗
` (n)χ`, (1)

where the normalizing constant
√
N ensures that the trans-

lation operator preserves the mean of a signal. Moreover,
(a) follows from the property that convolution in the vertex
domain is equivalent to multiplication in the graph spectral
domain, where the eigenvectors of the Laplacian are used as

the Fourier basis in graph settings. The right-hand side of (1)
allows us to interpret the generalized translation as an operator
acting on the kernel ĝ(·), which is defined directly in the graph
spectral domain. The localization of Tng around the center
vertex n is controlled by the smoothness of the kernel ĝ(·)
[10], [15]. One can thus design atoms Tng that are localized
around n in the vertex domain by taking the kernel ĝ(·) in (1)
to be a smooth polynomial function of degree K:

ĝ(λ`) =

K∑
k=0

αkλ
k
` , ` = 0, ..., N − 1. (2)

Combining (1) and (2), we can translate a polynomial kernel
g to a vertex n in the graph as

Tng =
√
N(g ∗ δn) =

√
N

N−1∑
`=0

K∑
k=0

αkλ
k
`χ
∗
` (n)χ`

=
√
N

K∑
k=0

αk

N−1∑
`=0

λk`χ
∗
` (n)χ` =

√
N

K∑
k=0

αk(Lk)n,

(3)

where (Lk)n denotes the nth column of the matrix Lk. The
concatenation of N such columns allows us to generate a set
of N localized atoms, which are the columns of

Tg =
√
Nĝ(L) =

√
Nχĝ(Λ)χT =

√
N

K∑
k=0

αkLk, (4)

where Λ is the diagonal matrix of the eigenvalues. In short,
if ĝ(·) is a degree K polynomial, then (Tng)(i) = 0 for all
vertices i more than K hops from the center vertex n; that is,
in the vertex domain, the support of the kernel translated to
center vertex n is contained in a ball of K hops from vertex
n [10, Lemma 5.2], [15, Lemma 2]. Furthermore, within this
ball, the smoothness properties of the polynomial kernel can
be used to estimate the decay of the magnitude |(Tng)(i)| as
the distance from n to i increases [15, Section 4.4].

IV. PARAMETRIC DICTIONARY LEARNING ON GRAPHS

Given a set of training signals on a weighted graph, our
objective is to learn a structured dictionary that sparsely
represents classes of graph signals. We consider a general class
of graph signals that are linear combinations of (overlapping)
graph patterns positioned at different vertices on the graph.
The latter implies that the signal model is not necessarily the
same across all the vertices but it can differ across the different
neighborhoods. We aim to learn a dictionary that is capable
of capturing all possible translations of a set of patterns. We
use the definition (1) of generalized translation, and we learn
a set of polynomial generating kernels (i.e., patterns) of the
form (2) that capture the main characteristics of the signals in
the spectral domain. Learning directly in the spectral domain
enables us to detect spectral components that exist in our
training signals, such as atoms that are supported on selected
frequency components. In this section, we describe in detail
the structure of our dictionary and the learning algorithm.

4

A. Dictionary Structure

We design a structured graph dictionary D =
[D1,D2, ...,DS] that is a concatenation of a set of S
subdictionaries of the form

Ds = ĝs(L) = χ

(
K∑

k=0

αskΛk

)
χT =

K∑
k=0

αskLk, (5)

where ĝs(·) is the generating kernel or pattern of the sub-
dictionary Ds. Note that the atom given by column n of
subdictionary Ds is equal to 1√

N
Tngs; i.e., the polynomial

ĝs(·) of order K translated to the vertex n. The polynomial
structure of ĝs(·) ensures that the resulting atom given by
column n of subdictionary Ds has its support contained in
a K-hop neighborhood of vertex n [10, Lemma 5.2].

The polynomial constraint guarantees the localization of
the atoms in the vertex domain, but it does not provide any
information about the spectral representation of the atoms.
In order to control their frequency behavior, we impose
two constraints on the spectral representation of the kernels
{ĝs(·)}s=1,2,...,S . First, we require that the kernels are nonneg-
ative and uniformly bounded by a given constant c. In other
words, we impose that 0 ≤ ĝs(λ) ≤ c for all λ ∈ [0, λmax],
or, equivalently,

0 � Ds � cI, ∀s ∈ {1, 2, ..., S}, (6)

where I is the N × N identity matrix. Each subdictionary
Ds has to be a positive semi-definite matrix whose maximum
eigenvalue is upper bounded by c.

Second, since the classes of signals under consideration usu-
ally contain frequency components that are spread across the
entire spectrum, the learned kernels {ĝs(·)}s=1,2,...,S should
also cover the full spectrum. We thus impose the constraint
c − ε1 ≤

∑S
s=1 ĝs(λ) ≤ c + ε2, for all λ ∈ [0, λmax], or

equivalently

(c− ε1)I �
S∑

s=1

Ds � (c+ ε2)I, (7)

where ε1, ε2 are small positive constants. Note that both (6)
and (7) are quite generic and do not assume any particular
prior on the spectral behavior of the atoms. If we have
additional prior information, we can incorporate that prior into
our optimization problem by modifying these constraints. For
example, if we know that our signals’ frequency content is
restricted to certain parts of the spectrum, by choosing ε1 close
to c, we relax the constraint on the coverage of the entire
spectrum, and we give the flexibility to our learning algorithm
to learn filters covering only part of it.

Finally, the spectral constraints increase the stability of the
dictionary. From the constants c, ε1 and ε2, we can derive
frame bounds for D, as shown in the following proposition.

Proposition 1. Consider a dictionary D = [D1,D2, ...,DS],
where each Ds is of the form of Ds =

∑K
k=0 αskLk. If the

kernels {ĝs(·)}s=1,2,...,S satisfy the constraints 0 ≤ ĝs(λ) ≤ c
and c− ε1 ≤

∑S
s=1 ĝs(λ) ≤ c+ ε2, for all λ ∈ [0, λmax] then

the set of atoms {ds,n}s=1,2,...,S,n=1,2,...,N of D form a frame.

For every signal y ∈ RN ,

(c− ε1)2

S
‖y‖22 ≤

N∑
n=1

S∑
s=1

|〈y, ds,n〉|2 ≤ (c+ ε2)2‖y‖22.

Proof: From [16, Lemma 1], which is a slight general-
ization of [10, Theorem 5.6], we have

N∑
n=1

S∑
s=1

|〈y, ds,n〉|2 =

N−1∑
`=0

|ŷ(λ`)|2
S∑
s=1

|ĝs(λ`)|2, ∀λ ∈ σ(L).

(8)

From the constraints on the spectrum of kernels
{ĝs(·)}s=1,2,...,S we have

S∑
s=1

|ĝs(λ`)|2 ≤

(
S∑

s=1

ĝs(λ`)

)2

≤ (c+ ε2)2, ∀λ ∈ σ(L). (9)

Moreover, from the left side of (7) and the Cauchy-Schwarz
inequality, we have

(c− ε1)2

S
≤

(∑S
s=1 ĝs(λ`)

)2
S

≤
S∑

s=1

|ĝs(λ`)|2, ∀λ ∈ σ(L).

(10)
Combining (8), (9) and (10) yields the desired result.

We remark that if we alternatively impose that∑S
s=1 |ĝs(λ)|2 is constant for all λ ∈ [0, λmax], the

resulting dictionary D would be a tight frame. However,
such a constraint leads to a dictionary update step that is
non-convex and requires optimization techniques that are
different from the one described in the next section.

To summarize, the polynomial dictionary D is a
parametric dictionary that depends on the parameters
{αsk}s=1,2,...,S; k=1,2,...,K , and the constraints (6) and (7) can
be viewed as constraints on these parameters. They provide
some control on the spectral representation of the atoms and
the stability of signal reconstruction with the learned dictio-
nary. Finally, we note here that for the design of the dictionary,
we have used the normalized graph Laplacian eigenvectors
as the Fourier basis. Given the polynomial structure of our
dictionary, the upper bound of λN−1 ≤ 2 of spectrum of
the normalized Laplacian makes it more appropriate for our
framework. The unnormalized Laplacian contains eigenvectors
that have similar interpretation in terms of frequency. However,
its eigenvalues can have a large magnitude, causing some
numerical instabilities when taking large powers.

B. Dictionary Learning Algorithm

Given a set of training signals Y = [y1, y2, ..., yM] ∈
RN×M , all living on the weighted graph G, our objective is
to learn a graph dictionary D ∈ RN×NS with the structure
described in Section IV-A that can efficiently represent all of
the signals in Y as linear combinations of only a few of its
atoms. Since D has the form (5), this is equivalent to learning
the parameters {αsk}s=1,2,...,S; k=1,2,...,K that characterize the
set of generating kernels, {ĝs(·)}s=1,2,...,S . We denote these
parameters in vector form as α = [α1; ...;αS], where αs is a
column vector with (K + 1) entries.

5

Therefore, the dictionary learning problem can be cast as
the following optimization problem:

argmin
α∈R(K+1)S , X∈RSN×M

{
||Y −DX||2F + µ‖α‖22

}
(11)

subject to ‖xm‖0 ≤ T0, ∀m ∈ {1, ...,M},

Ds =

K∑
k=0

αskLk,∀s ∈ {1, 2, ..., S}

0 � Ds � c, ∀s ∈ {1, 2, ..., S}

(c− ε1)I �
S∑
s=1

Ds � (c+ ε2)I,

where D = [D1,D2, . . . ,DS], xm corresponds to column m
of the coefficient matrix X , and T0 is the sparsity level of
the coefficients of each signal. Note that in the objective of
the optimization problem (11), we penalize the norm of the
polynomial coefficients α in order to (i) promote smoothness
in the learned polynomial kernels, and (ii) improve the nu-
merical stability of the learning algorithm. In practice, a small
value of µ is enough to guarantee the stability of the solution
while preserving large values in the polynomial coefficients.
The value of the parameter c does not affect the frequency
behavior nor the localization of the atoms. It simply scales
the magnitude of the kernel coefficients. Finally, the values
of ε1, ε2 are generally chosen to be arbitrarily small, unless
prior information, like frequency spread information, indicates
otherwise.

The optimization problem (11) is not convex, but it can
be approximately solved in a computationally efficient man-
ner by alternating between the sparse coding and dictionary
update steps. In the first step, we fix the parameters α (and
accordingly fix the dictionary D via the structure (5)) and solve

argmin
X
||Y −DX||2F subject to ‖xm‖0 ≤ T0, (12)

for all m ∈ {1, ...,M}, using orthogonal matching pursuit
(OMP) [26], [27], which has been shown to perform well in
the dictionary learning literature. Before applying OMP, we
normalize the atoms of the dictionary so that they all have
a unit norm. This step is essential for the OMP algorithm in
order to treat all of the atoms equally. After computing the
coefficients X , we renormalize the atoms of our dictionary to
recover our initial polynomial structure [28, Chapter 3.1.4] and
the sparse coding coefficients in such a way that the product
DX remains constant.

In the second step, we fix the coefficients X and update the
dictionary by finding the vector of parameters, α, that solves

argmin
α∈R(K+1)S

{
||Y −DX||2F + µ‖α‖22

}
(13)

subject to Ds =

K∑
k=0

αskLk, ∀s ∈ {1, 2, ..., S}

0 � Ds � cI, ∀s ∈ {1, 2, ..., S}

(c− ε1)I �
S∑
s=1

Ds � (c+ ε2)I.

The optimization problem (13) is a quadratic program [29] as
it consists of a quadratic objective function and a set of affine
constraints. In particular, the objective function is written as

||Y −DX||2F + µ‖α‖22 =

N∑
n=1

M∑
m=1

(Y −DX)2nm + µαTα

=

N∑
n=1

M∑
m=1

(
Y −

S∑
s=1

K∑
k=0

αskLkXs

)2

nm

+ µαTα,

(14)

where Xs ∈ RN×M denotes the rows of the matrix X
corresponding to the atoms in the subdictionary Ds. Let
us define the column vector P snm ∈ R(K+1) as P snm =
[(L0)(n,:)Xs(:,m); (L1)(n,:)Xs(:,m); ...; (LK)(n,:)Xs(:,m)],
where (Lk)(n,:) is the nth row of the kth power of the
Laplacian matrix and Xs(:,m) is the mth column of the
matrix Xs. We then stack these column vectors into the
column vector Pnm ∈ RS(K+1), which is defined as
Pnm = [P 1

nm;P 2
nm; ...;PSnm]. Using this definition of Pnm,

(14) can be written as

||Y −DX||2F + µ‖α‖22 =

N∑
n=1

M∑
m=1

(Ynm − PT
nmα)2 + µαTα

=

N∑
n=1

M∑
m=1

Y 2
nm − 2YnmP

T
nmα+ αTPnmP

T
nmα+ µαTα

= ‖Y ‖2F − 2

(
N∑

n=1

M∑
m=1

YnmP
T
nm

)
α

+ αT

(
N∑

n=1

M∑
m=1

PnmP
T
nm + µIS(K+1)

)
α,

where IS(K+1) is the S(K + 1)× S(K + 1) identity matrix.
The matrix

∑N
n=1

∑M
m=1 PnmP

T
nm + µI is positive definite,

which implies that our objective is quadratic.
Finally, the optimization constraints (6), (7) can be ex-

pressed as affine functions of α with

0 ≤ IS ⊗Bα ≤ c1,

(c− ε)1 ≤ 1T ⊗Bα ≤ (c+ ε)1 ,

where the inequalities are component-wise inequalities, 1 is
the vector of ones, ⊗ is the Kronecker product, IS is the
S × S identity matrix, and B is the Vandermonde matrix

B =

1 λ0 λ20 . . . λ

K
0

1 λ1 λ21 . . . λ
K
1

...
...

...
1 λN−1 λ2N−1 . . . λ

K
N−1

 .
Thus, the coefficients of the polynomials can be found by
solving the following quadratic optimization problem:

argmin
α∈R(K+1)S

αT

(
N∑
n=1

M∑
m=1

PnmP
T
nm + µIS(K+1)

)
α (15)

− 2

(
N∑
n=1

M∑
m=1

YnmP
T
nm

)
α

subject to 0 ≤ IS ⊗Bα ≤ c1
(c− ε)1 ≤ 1T ⊗Bα ≤ (c+ ε)1.

6

Algorithm 1 contains a summary of the basic steps of
our dictionary learning algorithm. We can initialize the dic-
tionary by either generating a set of polynomial kernels
that satisfy the constraints imposed in the learning or sim-
ply generating for each kernel ĝs, a set of discrete val-
ues ĝs(λ0), ĝs(λ1), . . . , ĝs(λN−1) uniformly distributed in the
range between 0 and c. Each subdictionary is then set to
be Ds = χĝs(Λ)χT . Since the optimization problem (11)
is solved by alternating between the two steps, the poly-
nomial dictionary learning algorithm is not guaranteed to
converge to the optimal solution; practically, we observed in
most of our experiments that the total representation error
||Y − DX||2F either reduced or remained constant over the
iterations which implies that the algorithm tends to converge
to a local optimum. Finally, the overall complexity of the
algorithm at each iteration depends on the complexity of both
the sparse coding algorithm, and the quadratic program for
the dictionary update step. In the dictionary update step, the
quadratic program (line 10 of Algorithm 1) can be efficiently
solved in polynomial time using optimization techniques such
as interior point methods [29] or operator splitting methods
(e.g., Alternating Direction Method of Multipliers [30]). The
former methods lead to more accurate solutions, while the
latter are better suited to solve large scale problems. In
applications where the computational time is crucial and the
graph is sparse, it would be interesting to employ an optimized
OMP implementation, or rely on first order methods such as
the iterative soft thresholding, by exploiting the polynomial
structure of the dictionary, as described in Section VI. For the
numerical examples in this paper, we generally use OMP and
interior point methods to solve the sparse coding step and the
quadratic optimization problem respectively.

V. EXPERIMENTAL RESULTS

In the following experiments, we quantify the performance
of the proposed dictionary learning method in the approxi-
mation of both synthetic and real data. First, we study the
behavior of our algorithm in the synthetic scenario where the
signals are linear combinations of a few localized atoms that
are placed on different vertices of the graph. Then, we study
the performance of our algorithm in the approximation of
graph signals collected from real world applications. In all
experiments, we compare the performance of our algorithm
to the performance of (i) graph-based transform methods
such as the spectral graph wavelet transform (SGWT) [10],
(ii) purely numerical dictionary learning methods such as K-
SVD [3] that treat the graph signals as vectors in RN and
ignore the graph structure, and (iii) the graph-based dictionary
learning algorithm presented in [22]. The kernel bounds in
(11), if not otherwise specified, are chosen as c = 1 and
ε1 = ε2 = 0.01, and the number of iterations in the learning
algorithm is fixed to 25. Moreover, we set µ = 10−4 and we
initialize the dictionary by generating for each kernel ĝs, a
set of discrete values ĝs(λ0), ĝs(λ1), . . . , ĝs(λN−1) uniformly
distributed in the range between 0 and c. Each subdictionary is
then set to Ds = χĝs(Λ)χT . The sparsity level in the learning
phase is set to T0 = 4 for all the synthetic experiments.

Algorithm 1 Parametric Dictionary Learning on Graphs

1: Input: Signal set Y , initial dictionary D(0), target signal
sparsity T0, polynomial degree K, number of subdictionar-
ies S, number of iterations iter

2: Output: Sparse signal representations X , polynomial co-
efficients α

3: Initialization: D = D(0)

4: for i = 1, 2, ..., iter do:
5: Sparse Approximation Step:
6: (a) Scale each atom in D to a unit norm
7: (b) Update X using (12)
8: (c) Rescale X , D to recover the polynomial structure
9: Dictionary Update Step:

10: Compute the polynomial coefficients α by solving
(15), and update the dictionary according to (5)

11: end for

We use the sdpt3 solver [31] in the yalmip optimization
toolbox [32] to solve the quadratic problem (13) in the learning
algorithm. In order to directly compare the methods mentioned
above, we always use orthogonal matching pursuit (OMP)
for the sparse coding step in the testing phase, where we
first normalize the dictionary atoms to a unit norm. Finally,
the average normalized approximation error is defined as

1
|Ytest|

∑|Ytest|
m=1 ‖Ym − DXm‖22/‖Ym‖2, where |Ytest| is the

cardinality of the testing set.

A. Synthetic Signals

We first study the performance of our algorithm for the
approximation of synthetic signals. We generate a graph by
randomly placing N = 100 vertices in the unit square. We
set the edge weights based on a thresholded Gaussian kernel

function so that W (i, j) = e−
[dist(i,j)]2

2θ2 if the physical distance
between vertices i and j is less than or equal to κ, and zero
otherwise. We fix θ = 0.9 and κ = 0.5 in our experiments,
and ensure that the graph is connected.

1) Polynomial Generating Dictionary: In our first set of
experiments, to construct a set of synthetic training signals
consisting of localized patterns on the graph, we use a generat-
ing dictionary that is a concatenation of S = 4 subdictionaries
that comply with the constraints of our dictionary learning
algorithm. Each subdictionary is a fifth order (K = 5) poly-
nomial of the graph Laplacian according to (5) and captures
one of the four constitutive components of our signal class.
The generating kernels {ĝs(·)}s=1,2,...,S of the dictionary are
shown in Fig. 2(a). We generate the graph signals by linearly
combining T0 ≤ 4 random atoms from the dictionary with
random coefficients. We then learn a dictionary from the
training signals, and we expect this learned dictionary to be
close to the known generating dictionary.

We first study the influence of the size of the training set
on the dictionary learning outcome. Collecting a large number
of training signals can be infeasible in many applications.
Moreover, training a dictionary with a large training set
significantly increases the complexity of the learning phase,

7

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Eigenvalues of the Laplacian (λ)

G
en

er
a
ti
n
g
k
er
n
el
s
ĝ(
λ
)

(a) Kernels of the generating dictionary

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Eigenvalues of the Laplacian (λ)

G
en

er
a
ti
n
g
k
er
n
el
s
ĝ(
λ
)

(b) Learned kernels with M = 400

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Eigenvalues of the Laplacian (λ)

G
en

er
a
ti
n
g
k
er
n
el
s
ĝ(
λ
)

(c) Learned kernels with M = 600

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Eigenvalues of the Laplacian (λ)

G
en

er
a
ti
n
g
k
er
n
el
s
ĝ(
λ
)

(d) Learned kernels with M = 2000

Fig. 2. Comparison of the kernels learned by the polynomial dictionary learning algorithm to the generating kernels {ĝs(·)}s=1,2,...,S (shown in (a)) for
M = 400, M = 600 and M = 2000 training signals.

leading to intractable optimization problems. Using our poly-
nomial dictionary learning algorithm with training sets of
M = {400, 600, 2000} signals, we learn a dictionary of S = 4
subdictionaries. To allow some flexibility into our learning
algorithm, we fix the degree of the learned polynomials to
K = 20. Comparing Fig. 2(a) to Figs. 2(b), 2(c), and 2(d), we
observe that our algorithm is able to recover the shape of the
kernels used for the generating dictionary, even with a very
small number of training signals. However, the accuracy of the
recovery improves as we increase the size of the training set.
To quantify the improvement, we define the mean SNR of the
learned kernels as 1

S

∑S
s=1−20 log(‖ĝs(Λ)−ĝs

′
(Λ)‖2), where

ĝs(Λ) is the true pattern of Fig. 2(a) for the subdictionary
Ds and ĝs

′
(Λ) is the corresponding pattern learned with

our learning algorithm. The SNR values that we obtain are
{4.9, 5.3, 14.9} for M = {400, 600, 2000}, respectively.

Next, we generate 2000 testing signals using the same
method as for the the construction of the training signals.
We then study the effect of the size of the training set on
the approximation of the testing signals with atoms from
our learned dictionary. Fig. 3 illustrates the results for three
different sizes of the training set and compares the approx-
imation performance to that of other learning algorithms.
Each point in the figure is the average of 20 random runs
with different realizations of the training and testing sets.
We first observe that the approximation performance of the

polynomial dictionary is always better than that of SGWT,
which demonstrates the benefits of the learning process. The
improvement is attributed to the fact that the SGWT kernels
are designed a priori, while our algorithm learns the shape of
the kernels from the data.

We also see that the performance of K-SVD depends on
the size of the training set. Recall that K-SVD is blind to the
graph structure, and is therefore unable to capture translations
of similar patterns. In particular, we observe that when the
size of the training set is relatively small, as in the case
of M = {400, 600}, the approximation performance of K-
SVD significantly deteriorates. It improves when the number
of training signals increases (i.e., M = 2000). Our polynomial
dictionary however shows much more stable performance with
respect to the size of the training set. We note three reasons
that may explain the better performance of our algorithm,
as compared to K-SVD. First, we recall that the number of
unknowns parameters for K-SVD is N2S = 40000, while
for the polynomial dictionary this number is reduced to
(K + 1)S = 84. Thus, due to the lack of structure, K-
SVD needs a much larger number of training signals that
usually grows linearly with the size of the dictionary. This fact
explains the improved performance of K-SVD with M = 2000
training signals. Second, due to the limited size of the training
set, K-SVD tends to learn atoms that sparsely approximate
the signal on the whole graph, rather than to extract common

8

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

Number of atoms used in the representation

A
va

ra
ge

 n
or

m
al

iz
ed

 re
pr

es
en

ta
tio

n
er

ro
r

Polynomial Dictionary
Structured Graph Dictionary [19]
K−SVD [3]
SGWT [10]

(a) M=400

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

Number of atoms used in the representation

A
va

ra
ge

 n
or

m
al

iz
ed

 re
pr

es
en

ta
tio

n
er

ro
r

Polynomial Dictionary
Structured Graph Dictionary [19]
K−SVD [3]
SGWT [10]

(b) M=600

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

Number of atoms used in the representation

A
va

ra
ge

 n
or

m
al

iz
ed

 re
pr

es
en

ta
tio

n
er

ro
r

Polynomial Dictionary
Structured Graph Dictionary [19]
K−SVD [3]
SGWT [10]

(c) M=2000
Fig. 3. Comparison of the learned polynomial dictionary to the SGWT [10], K-SVD [3] and the graph structured dictionary [22] in terms of approximation
performance on test data generated from a polynomial generating dictionary, for different sizes of the training set.

features that appear in different neighborhoods. As a result,
the atoms learned by K-SVD tend to have a global support on
the graph, and K-SVD shows poor performance in the datasets
containing many localized signals. Third, even when K-SVD
does learn a localized pattern appearing in the training data,
it does not take into account that similar patterns may appear
at other areas of the graph. Of course, as we increase the
number of training signals, translated instances of the pattern
are more likely to appear in other areas of the graph in the
training data, and K-SVD is then more likely to learn atoms
containing such patterns in different areas of the graph. On
the other hand, our polynomial dictionary learning algorithm
learns the patterns in the graph spectral domain, and then
includes translated versions of the patterns to all locations
in the graph in the learned dictionary, even if some specific
instances of the translated patterns do not appear in the training
set. Thus, for a smaller number of training examples, our
polynomial dictionary shows significantly better performance
with respect to K-SVD due to reduced overfitting.

The algorithm proposed in [22] represents some sort
of intermediate solution between K-SVD and our algo-
rithm. It learns a dictionary that consists of subdictionar-
ies of the form χĝs(Λ)χT , where the specific values
ĝs(λ0), ĝs(λ1), . . . , ĝs(λN−1) are learned, rather than learning
the coefficients of a polynomial kernel ĝs(·) and evaluating
it at the N discrete eigenvalues as we do. Thus, the overall
number of unknowns of this algorithm is NS, which is usually
bigger than the one required by the polynomial dictionary
((K + 1)S) and smaller than that of K-SVD (N2S). The
obtained dictionary is adapted to the graph structure and it
contains atoms that are translated versions of the same pattern
on the graph. However, the obtained atoms are not in general
guaranteed to be well localized in the graph since the learned
discrete values of ĝs are not necessarily derived from a smooth
kernel. Moreover, the unstructured construction of the kernels
in the method of [22] leads to more complex implementations,
as discussed in Section VI.

2) Non-Polynomial Generating Dictionary: In the next set
of experiments, we depart from the idealistic scenario and
study the performance of our polynomial dictionary learn-
ing algorithm in the more general case when the signal
components are not exactly polynomials of the Laplacian

matrix. In order to generate training and testing signals, we
divide the spectrum of the graph into four frequency bands,
defined by the eigenvalues of the graph: [λ0 : λ24], [(λ25 :
λ39) ∪ (λ90 : λ99)], [λ40 : λ64], and [λ65 : λ89]. We then
construct a generating dictionary of J = 400 atoms, with
each atom having a spectral representation that is concentrated
exclusively in one of the four bands. In particular, atom j is
of the form

dj = ĥj(L)δn = χĥj(Λ)χT δn. (16)

Each atom is generated independently of the others as follows.
We randomly pick one of the four bands, randomly generate
25 coefficients uniformly distributed in the range [0, 1], and
assign these random coefficients to be the diagonal entries
of ĥj(Λ) corresponding to the indices of the chosen spectral
band. The rest of the values in ĥj(Λ) are set to zero. The atom
is then centered on a vertex n that is also chosen randomly.
Note that the obtained atoms are not guaranteed to be well
localized in the vertex domain since the discrete values of
ĥj(Λ) are chosen randomly and are not derived from a smooth
kernel. Therefore, the atoms of the generating dictionary do
not exactly match the signal model assumed by our dictionary
design algorithm while they are closer to the signal model
assumed by [22]. Finally, we generate the training signals by
linearly combining (with random coefficients) T0 ≤ 4 random
atoms from the generating dictionary.

We first verify the ability of our dictionary learning al-
gorithm to recover the spectral bands that are used in the
synthetic generating dictionary. We fix the number of training
signals to M = 600 and run our dictionary learning algorithm
for three different degree values of the polynomial, i.e.,
K = {5, 10, 20}. The kernels {ĝs(·)}s=1,2,3,4 obtained for the
four subdictionaries are shown in Fig. 4 and the boundaries
between the different frequency bands are indicated with the
vertical dashed lines. We observe that for higher values of K,
the learned kernels are more localized in the graph spectral
domain and each kernel approximates one of the four bands
defined in the generating dictionary, similarly to the behavior
of classical frequency filters

In Fig. 5, we illustrate the four learned atoms centered at
the vertex n = 1 (one atom for each subdictionary), with

9

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Eigenvalues of the Laplacian (λ)

G
en

er
a
ti
n
g
k
er
n
el
s
ĝ(
λ
)

(a) K = 5

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Eigenvalues of the Laplacian (λ)

G
en

er
a
ti
n
g
k
er
n
el
s
ĝ(
λ
)

(b) K = 10

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Eigenvalues of the Laplacian (λ)

G
en

er
a
ti
n
g
k
er
n
el
s
ĝ(
λ
)

(c) K = 20

Fig. 4. Kernels {ĝs(·)}s=1,2,3,4 learned by the polynomial dictionary algorithm for (a) K = 5, (b) K = 10, and (c) K = 20.

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(a) ĝ1(L)δ1

−0.1

−0.05

0

0.05

0.1

0.15

0.2

(b) ĝ2(L)δ1

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(c) ĝ3(L)δ1

−0.1

−0.05

0

0.05

0.1

0.15

0.2

(d) ĝ4(L)δ1

Fig. 5. Learned atoms centered on vertex n = 1, from each of the
subdictionaries.

K = 20. We can see that the support of the atoms adapts
to the graph topology. The atoms can be either smoother
around a particular vertex, as for example in Fig. 5(c), or
more localized, as in Fig. 5(a). Comparing Figs. 4, and 5, we
observe that the localization of the atoms in the graph domain
depends on the spectral behavior of the kernels. Note that the
smoothest atom on the graph (Fig. 5(c)) corresponds to the
subdictionary generated from the kernel that is concentrated
on the low frequencies (i.e., ĝ3(·)). This is because the graph
Laplacian eigenvectors associated with the lower frequencies
are smoother with respect to the underlying graph topology,
while those associated with the larger eigenvalues oscillate
more rapidly [1]. Apart from the polynomial degree, a second
parameter that influences the support of the atoms on the graph
is the sparsity level T0 imposed in the leaning phase. A large
T0 implies that the learning algorithm has the flexibility to
approximate the signals with many atoms. In the extreme case
where T0 is very big, the atoms of the dictionary tend to look
like impulse functions. On the other hand, if T0 is chosen to
be small, the algorithm learns a dictionary that approximate

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of atoms used in the representation

A
va

ra
ge

 n
or

m
al

iz
ed

 re
pr

es
en

ta
tio

n
er

ro
r

Polynomial Dictionary K = 5
Polynomial Dictionary K = 10
Polynomial Dictionary K = 20
Polynomial Dictionary K = 25

Fig. 6. Comparison of the average approximation performance of our
learned dictionary on test signals generated by the non-polynomial synthetic
generating dictionary, for K = {5, 10, 20, 25}.

the signals with only a few atoms. It implicitly guides the
algorithm to learn atoms that are more spread on the graph,
in order to cover it fully.

Next, we test the approximation performance of our learned
dictionary on a set of 2000 testing signals generated in exactly
the same way as the training signals, for four different degree
values of the polynomial, i.e., K = {5, 10, 20}. Fig. 6
shows that the approximation performance obtained with our
algorithm improves as we increase the polynomial degree.
This is attributed to two main reasons: (i) by increasing the
polynomial degree, we allow more flexibility in the learning
process; (ii) a small K implies that the atoms are localized
in a small neighborhood and thus more atoms are needed to
represent signals with support in different areas of the graph.
However, we have empirically observed, that in practice, the
improvement in the performance saturates after a big enough
value of K and K = 20 is usually enough to capture the
frequency characteristics of the signals.

In Fig. 7, we fix K = 20, and compare the approximation
performance of our learned dictionary to that of other dictio-
naries, with exactly the same setup as we used in Figure 3. We
again observe that K-SVD is the most sensitive to the size of

10

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of atoms used in the representation

A
va

ra
ge

 n
or

m
al

iz
ed

 re
pr

es
en

ta
tio

n
er

ro
r

Polynomial Dictionary
Structured Graph Dictionary [19]
Polynomial Approximation of [19]
K−SVD [3]
SGWT [10]

(a) M = 400

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of atoms used in the representation

A
va

ra
ge

 n
or

m
al

iz
ed

 re
pr

es
en

ta
tio

n
er

ro
r

Polynomial Dictionary
Structured Graph Dictionary [19]
Polynomial Approximation of [19]
K−SVD [3]
SGWT [10]

(b) M = 600

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of atoms used in the representation

A
va

ra
ge

 n
or

m
al

iz
ed

 re
pr

es
en

ta
tio

n
er

ro
r

Polynomial Dictionary
Structured Graph Dictionary [19]
Polynomial Approximation of [19]
K−SVD [3]
SGWT [10]

(c) M = 2000

Fig. 7. Comparison of the learned polynomial dictionary to the SGWT [10], K-SVD [3] and the graph structured dictionary [22] in terms of approximation
performance on test data generated from a non-polynomial generating dictionary, for different sizes of the training set.

the training data, and it clearly achieves the best performance
when the size of the training set is large (M = 2000). Since
the kernels used in the generating dictionary in this case do not
match our polynomial model, the structured graph dictionary
learning algorithm of [22] has more flexibility to learn non-
smooth generating kernels and therefore generally achieves
better approximation. For a fairer comparison of approxima-
tion performance, we fit an order K = 20 polynomial function
to the discrete values ĝs learned with the algorithm of [22].
We observe that our polynomial dictionary outperforms the
polynomial approximation of the dictionary learned by [22]
in terms of approximation performance. An example of the
atomic decomposition of a graph testing signal with respect
to the K-SVD dictionary, the structured graph dictionary of
[22] and the polynomial graph dictionary is illustrated in Fig.
8. Note that the K-SVD atoms have a more global support
in comparison to the other two graph dictionaries while the
polynomial dictionary atoms are the most localized in specific
neighborhoods of the graph. Nonetheless, the approximation
performance of our learned dictionary is competitive, espe-
cially for smaller training sets.

3) Generating Dictionary Focused on Specific Frequency
Bands: In the final set of experiments, we study the behavior
of our algorithm in the case when we have the additional prior
information that the training signals do not cover the entire
spectrum, but are concentrated only in some bands that are
not known a priori. In order to generate the training signals,
we choose only two particular frequency bands, defined by
the eigenvalues of the graph: [λ0 : λ9] and [λ89 : λ99], which
correspond to the values [0 : 0.275] and [1.174 : 1.256],
respectively. We construct a generating dictionary of J = 400
atoms, with each atom concentrated in only one of the two
bands and generated according to (16). The training signals
(M = 600) are then constructed by linearly combining T0 ≤ 4
atoms from the generating dictionary. We set K = 20 and
ε1 = c in order to allow our polynomial dictionary learning
algorithm the flexibility to learn kernels that are supported only
on specific frequency bands. The learned kernels are illustrated
in Fig. 9. We observe that the algorithm is able to detect the
spectral components that exist in the training signals since
the learned kernels are concentrated only in the two parts of

−0.05

0

0.05

0.1

0.15

(a) Graph signal

−0.2

−0.1

0

0.1

0.2

0.3

0.4

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

−0.6

−0.4

−0.2

0

0.2

(b) K-SVD

−0.02

−0.01

0

0.01

0.02

−0.02

0

0.02

0.04

0.06

0.08

−0.02

0

0.02

0.04

0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

(c) Structured graph dictionary

0

0.1

0.2

0.3

−0.05

0

0.05

0.1

0.15

0.2

0.25

−0.05

0

0.05

0.1

0.15

0.2

0.25

−0.05

0

0.05

0.1

0.15

0.2

0.25

(d) Polynomial dictionary

Fig. 8. (a) An example of a graph signal from the testing set and its atomic
decomposition with respect to (b) the K-SVD dictionary, (c) the dictionary
learned by [22] and (d) the learned polynomial graph dictionary.

the spectrum to which the atoms of the generating dictionary
belong.

B. Approximation of Real Graph Signals

After examining the behavior of the polynomial dictio-
nary learning algorithm for synthetic signals, we illustrate
the performance of our algorithm in the approximation of
localized graph signals from real world datasets. In particular,
we examine the following three datasets.

Flickr Dataset: We consider the daily number of distinct
Flickr users that took photos at different geographical locations
around Trafalgar Square in London, between January 2010
and June 2012 [33]. Each vertex of the graph represents a
geographical area of 10 × 10 meters and it corresponds to
the centroid of the area. We measure the pairwise distance
between the nodes and we set the cutoff distance of the graph
to 30 meters. We assign an edge between two locations when
the distance between them is smaller than the cutoff distance,

11

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Number of atoms used in the representation

A
va

ra
ge

 n
or

m
al

iz
ed

 re
pr

es
en

ta
tio

n
er

ro
r

Polynomial Dictionary
Structured Graph Dictionary [19]
K−SVD [3]
SGWT [10]

(a)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Number of atoms used in the representation

A
va

ra
ge

 n
or

m
al

iz
ed

 re
pr

es
en

ta
tio

n
er

ro
r

Polynomial Dictionary
Structured Graph Dictionary [19]
K−SVD [3]
SGWT [10]

(b)

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of atoms used in the representation

A
va

ra
ge

 n
or

m
al

iz
ed

 re
pr

es
en

ta
tio

n
er

ro
r

Polynomial Dictionary
Structured Graph Dictionary [19]
K−SVD [3]
SGWT [10]

(c)

Fig. 10. Comparison of the learned polynomial dictionaries to the SGWT, K-SVD, and graph structured dictionaries [22] in terms of approximation
performance on testing data generated from the (a) Flickr, (b) traffic, and (c) brain datasets, for T0 = 6.

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Eigenvalues of the Laplacian (λ)

G
en

er
a
ti
n
g
k
er
n
el
s
ĝ(
λ
)

ĝ1(λ)

ĝ2(λ)

Fig. 9. Kernels {ĝs(·)}s=1,2 learned by the polynomial dictionary algorithm
from a set of training signals that are supported in only two particular bands
of the spectrum: [λ0 : λ9] and [λ89 : λ99], which correspond to the values
[0 : 0.275] and [1.174 : 1.256] respectively.

and we set the edge weight to be inversely proportional to
the distance. By following this procedure, we obtain a sparse
graph. The number of vertices of the graph is N = 245. The
signal on the graph is the total number of distinct Flickr users
that have taken photos at each location during a specific day.
We have a total of 913 signals, and we use 700 of them for
training and the rest for testing. We set S = 2 and K = 10 in
our learning algorithm.

Traffic Dataset: We consider the daily bottlenecks in
Alameda County in California between January 2007 and May
2013. The data are part of the Caltrans Performance Measure-
ment System (PeMS) dataset that provides traffic information
throughout all major metropolitan areas of California [34].1 In
particular, the nodes of the graph consist of N = 439 detector
stations where bottlenecks were identified over the period
under consideration. The graph is designed by connecting
stations when the distance between them is smaller than a
threshold of θ = 0.08 which corresponds to approximately 13
kilometres. The distance is set to be the Euclidean distance of
the GPS coordinates of the stations and the edge weights are
set to be inversely proportional to the distance. A bottleneck

1The data are publicly available at http://pems.dot.ca.gov.

could be any location where there is a persistent drop in speed,
such as merges, large on-ramps, and incidents. The signal on
the graph is the average length of the time in minutes that a
bottleneck is active for each specific day. In our experiments,
we fix the maximum degree of the polynomial to K = 10
and we learn a dictionary consisting of S = 2 subdictionaries.
We use the signals in the period between January 2007 and
December 2010 for training and the rest for testing. For
computational issues, we normalize all the signals with respect
to the norm of the signal with maximum energy.

Brain Dataset: We consider a set of fMRI signals acquired
on five different subjects [35], [36]. For each subject, the
signals have been preprocessed into timecourses of N = 88
brain regions of contiguous voxels, which are determined from
a fixed anatomical atlas, as described in [36]. The timecourses
for each subject correspond to 1290 different graph signals
that are measured while the subject is in different states, such
as completely relaxing, in the absence of any stimulation or
passively watching small movie excerpts. For the purpose of
this paper, we treat the measurements at each time as an
independent signal on the 88 vertices of the brain graph.
The anatomical distances between regions of the brain are
approximated by the Euclidean distance between the coor-
dinates of the centroids of each region, the connectivity of
the graph is determined by assigning an edge between two
regions when the anatomical distance between them is shorter
than 40 millimetres, and the edge weight is set to be inversely
proportional to the distance. We then apply our polynomial
dictionary learning algorithm in order to learn a dictionary of
atoms representing brain activity across the network at a fixed
point in time. We use the graph signals from the timecourses of
two subjects as our training signals and we learn a dictionary
of S = 2 subdictionaries and a maximum polynomial degree
of K = 15. We use the graph signals from the remaining
three timecourses to validate the performance of the learned
dictionary. As in the previous dataset, we normalize all of
the graph signals with respect to the norm of the signal with
maximum energy. A summary of the main parameters of the
three datasets are shown in Table I.

Fig. 10 shows the approximation performance of the learned
polynomial dictionaries for the three different datasets, for a

12

−0.2

0

0.2

−0.2

0

0.2

−0.2

−0.1

0

0.1

0.2

−0.4

−0.2

0

0.2

 −0.4

−0.2

0

0.2

−0.2

−0.1

0

0.1

0.2

(a) K-SVD

 0

0.2

0.4

0.6

0.8

 0

0.2

0.4

0.6

0.8

 0

0.2

0.4

0.6

0.8

 0

0.2

0.4

0.6

0.8

 0

0.2

0.4

0.6

0.8

 0

0.02

0.04

(b) Polynomial Dictionary

Fig. 11. Examples of atoms learned from training data from the brain dataset with (a) K-SVD and (b) the polynomial dictionary. The six atoms illustrated
here are the ones that were most commonly included by OMP in the sparse decomposition of the testing signals.

TABLE I
PARAMETERS OF REAL GRAPH SIGNALS

Dataset N S K Training set Testing set
Flickr 245 2 10 700 213
Traffic 439 2 10 1459 882
Brain 88 2 15 2580 3870

sparsity constraints in the learning phase of T0 = 6. The
behavior is similar in all three datasets, and also similar to
the results on the synthetic datasets in the previous section.
In particular, the data-adapted dictionaries clearly outperform
the SGWT dictionary in terms of approximation error on test
signals, and the localized atoms of the learned polynomial
dictionary effectively represent the real graph signals. It can
even achieve better performance than K-SVD when sparsity
increases. In particular, we observe that K-SVD outperforms
both graph structured algorithms for a small sparsity level as it
learns atoms that can smoothly approximate the whole signal.
Comparing our algorithm with the one of [22], we observe that
the performance of the latter is comparable. Apart from the
differences between the two algorithms that we have already
discussed in the previous subsections, one drawback of [22] is
the way the dictionary is updated. Specifically, the update of
the dictionary is performed block by block, which leads to a
local optimum in the dictionary update step. This can lead to
worse performance when compared to our algorithm, where
all subdictionaries are updated simultaneously.

In Fig. 11, we illustrate the six most used atoms after apply-
ing OMP for the sparse decomposition of the testing signals
from the brain dataset in the learned K-SVD dictionary and
our learned polynomial dictionary. Note that in Fig. 11(b), the
polynomial dictionary consists of localized atoms with support
concentrated on the close neighborhoods of different vertices.
These atoms capture the activation of particular regions of the
brain. Interestingly, we observe that one of the most frequently
chosen atoms is the one capturing the visual cortex, which
is found in the back of the brain (second figure in the third
row). The result of the sparse coding in this case is consistent
with the pattern that we expect to appear in the brain, as the
visual cortex is activated during visual stimuli. The price to

pay for the interpretability and the localization of the atoms,
is the poor approximation performance at low sparsity levels.
However, as the sparsity tolerance increases, the localization
property clearly becomes beneficial. Detecting the activated
patterns in the brain using our polynomial dictionary is a very
promising research direction.

C. Illustrative application: Image segmentation

As an illustrative application of the proposed dictionary, we
provide some results in image segmentation. We emphasize
that the particular application is provided just to illustrate
the use of structured graph dictionaries in different signal
processing tasks. We take the 128× 128 house and 128× 129
cameraman images and from each of them we extract overlap-
ping block patches of size 5×5 pixels, covering all the pixels
of the original image. Each patch is centered in one pixel and,
for the sake of simplicity, we ignore the pixels in the boundary
that do not have both horizontal and vertical neighbors. For
each of the two images, the training signals are constructed as
a collection of 15376 and 15625 such patches respectively. We
fix the number of subdictionaries to S = 4, the polynomial
degree to K = 15 and the sparsity level to T0 = 4. The
graph for each patch is the binary graph defined by connecting
each pixel to its horizontal and vertical neighbors. For each
of the images, we apply our polynomial dictionary learning
algorithm, training a dictionary of dimensionality 25 × 100.
Since the number of training signals is big, we apply ADMM
to solve the quadratic program in the learning phase.

In order to extract the features for the segmentation of
the image, we compute the inner product of each patch with
the atoms of the learned dictionary. If yj is the patch cor-
responding to pixel j, then DTs yj =

∑N−1
`=0 ŷj(λ`)ĝs(λ`)χ`,

which implies that we filter each patch with all the four filters
{ĝs(·)}s=1,2,3,4 in order to modify its frequency character-
istics. For each filtered version of the patch, we compute
the mean and the variance, and we define as features for
each patch the mean and the variance across all the different
filtered versions. Thus, each feature is a vector in R2S . The
features, and consequently the nodes, are then clustered in

13

S = 4 clusters, using K-means. The obtained segmentations
and some of the learned atoms are shown in Fig. 12. We
observe that the segmentation results in both images are quite
promising as the edges of the images are preserved most of
the time. This is mainly due to the localization of the atoms.
Further work and more extensive studies are required to deploy
the proposed algorithm in image segmentation applications.

VI. COMPUTATIONAL EFFICIENCY OF THE LEARNED
POLYNOMIAL DICTIONARY

The structural properties of the proposed class of dictio-
naries lead to compact representations and computationally
efficient implementations, which we elaborate on briefly in
this section. First, the number of free parameters depends on
the number S of subdictionaries and the degree K of the
polynomials. The total number of parameters is (K+1)S, and
since K and S are small in practice, the dictionary is compact
and easy to store. Second, contrary to the non-structured
dictionaries learned by algorithms such as K-SVD and MOD,
the dictionary forward and adjoint operators can be efficiently
applied when the graph is sparse, as is usually the case in prac-
tice. Recall from (5) that DT y =

∑S
s=1

∑K
k=0 αskLky. The

computational cost of the iterative sparse matrix-vector multi-
plication required to compute {Lky}k=0,2,...,K is O(K|E|),
where |E| is the cardinality of the edge set of the graph.
Therefore, the total computational cost to compute DT y is
O(K|E| + NSK). We further note that, by following a
procedure similar to the one in [10, Section 6.1], the term
DDT y can also be computed in a fast way by exploiting the
fact that DDT y =

∑S
s=1 ĝs

2(L)y. This leads to a polynomial
of degree K

′
= 2K that can be efficiently computed. Both

operators DT y and DDT y are important components of most
sparse coding techniques. In turn, these efficient implemen-
tations are therefore useful in numerous signal processing
tasks, and comprise one of the main advantages of learning
structured parametric dictionaries. For example, to find sparse
representations of different signals with the learned dictionary,
rather than using OMP, we can use iterative soft thresholding
[37] to solve the lasso regularization problem [38]. The two
main operations required in iterative soft thresholding, DT y
and DTDx, can both be approximated by the Chebyshev
approximation method of [10], as explained in more detail
in [39, Section IV.C]. The same procedure could be applied
to compute efficiently the forward and adjoint operators of
the dictionary learned in [22]. In that case however, we need
to first approximate the discrete values of the kernel with a
polynomial function, which as shown in Fig. 7, can deteriorate
the approximation performance.

Another benefit is that in settings where the data is dis-
tributed and communication between nodes of the graph is
costly (e.g., a sensor network), the polynomial structure of
the learned dictionary enables quantities such as DT y, Dx,
DDT y, and DTDx to be efficiently computed in a distributed
fashion using the techniques of [39]. We consider, as an
illustration, the distributed processing scenario where each
node n of the graph knows only its own component of a

Algorithm 2 Distributed computation of DT y
1: Inputs at node n: y(n),Ln,:, α = [α1; ...;αS]
2: Output at node n: {(DT y)(s−1)N+n}s=1,..,S

3: Transmit y(n) to all neighbors Nn
4: Receive y(m) from neighbors Nn
5: Compute and store c1n = (LT y)n.
6: for k = 2, ...,K do:
7: Transmit cl−1n = (LT cl−2)n to all the neighbors
8: Receive cl−1m from all the neighbors m ∈ Nn.
9: end for

10: for s = 1, .., S do
11: Compute (DT y)(s−1)N+n = α0sy(n) +

∑K
k=1 αksc

l
n

12: end for

signal y ∈ RN and the nth row of the corresponding weight
matrix L. The polynomial coefficients used in the dictionary
are further known to the nodes all over the network. Each
node n can communicate only with its neighbors and after
some simple computations, it can compute the components
{(DT y)(s−1)N+n}s=1,..,S . The basic steps of this operation
are shown in Algorithm 2. As discussed in [39], the concise
representation of the dictionary in terms of the polynomial
coefficients makes it possible to implement many signal pro-
cessing algorithms in a distributed fashion.

VII. CONCLUSION

We proposed a parametric family of structured dictionaries
– namely, unions of polynomial matrix functions of the graph
Laplacian – to sparsely represent signals on a given weighted
graph, and an algorithm to learn the parameters of a dictionary
belonging to this family from a set of training signals on
the graph. When translated to a specific vertex, the learned
polynomial kernels in the graph spectral domain correspond to
localized patterns on the graph. The fact that we translate each
of these patterns to different areas of the graph led to sparse
approximation performance that was clearly better than that
of non-adapted graph wavelet dictionaries such as the SGWT,
and comparable to or better than that of dictionaries learned
by state-of-the art numerical algorithms such as K-SVD. The
approximation performance of our learned dictionaries was
also more robust to the size of training data. At the same time,
because our learned dictionaries are unions of polynomial
matrix functions of the graph Laplacian, they can be efficiently
stored and implemented in both centralized and distributed
signal processing tasks.

Although we have provided some preliminary results in
signal approximation, the potential of the proposed dictionary
structure is yet to be explored in other applications. Addi-
tional work is required to apply the polynomial structure in
other graph signal processing and data analysis tasks such
as classification, clustering, community detection, or source
localization where we expect that the localization properties
of the dictionary can be beneficial.

ACKNOWLEDGEMENTS

The authors would like to thank Prof. Dimitri Van De Ville
for providing the brain data, Prof. Antonio Ortega, Prof. Pierre

14

Polynomial Graph Dictionary

(a) (b) (c)

20 40 60 80 100 120

20

40

60

80

100

120

(d)

20 40 60 80 100 120

20

40

60

80

100

120

(e)

Fig. 12. Learned atoms (a) and segmentation results (d), (e) obtained using the polynomial dictionary on the (b) house and the (c) cameraman image.

Vandergheynst and Xiaowen Dong for their useful feedbacks
about this work, and Giorgos Stathopoulos for helpful discus-
sions about the optimization problem.

REFERENCES

[1] D. I Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,”
IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98, May 2013.

[2] R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse
representation modeling,” Proc. of the IEEE, vol. 98, no. 6, pp. 1045
–1057, Apr. 2010.

[3] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, 2006.

[4] K. Engan, S. O. Aase, and J. H. Husoy, “ Method of optimal directions
for frame design,” in Proc. IEEE Int. Conf. Acc., Speech, and Signal
Process., Washington, DC, USA, 1999, vol. 5, pp. 2443–2446.

[5] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way,
Academic Press, 3rd edition, 2008.

[6] P. Jost, P. Vandergheynst, S. Lesage, and R. Gribonval, “Motif: An
efficient algorithm for learning translation invariant dictionaries,” in
Proc. IEEE Int. Conf. Acc., Speech, and Signal Process., Toulouse,
France, 2006, vol. 5, pp. 857–860.

[7] M. Yaghoobi, L. Daudet, and M. E. Davies, “Parametric dictionary
design for sparse coding,” IEEE Trans. Signal Process., vol. 57, no. 12,
pp. 4800–4810, Dec. 2009.

[8] R. Rubinstein, M. Zibulevsky, and M. Elad, “Double sparsity: learning
sparse dictionaries for sparse signal approximation,” IEEE Trans. Signal
Process., vol. 58, no. 3, pp. 1553–1564, 2010.

[9] D. Thanou, D. I Shuman, and P. Frossard, “Parametric dictionary
learning for graph signals,” in Proc. IEEE Glob. Conf. Signal and Inform.
Process., Austin, Texas, Dec. 2013.

[10] D. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs
via spectral graph theory,” Appl. Comput. Harmon. Anal., vol. 30, no.
2, pp. 129–150, March 2010.

[11] X. Zhu and M. Rabbat, “Approximating signals supported on graphs,” in
Proc. IEEE Int. Conf. Acc., Speech, and Signal Process., Kyoto, Japan,
Mar. 2012, pp. 3921–3924.

[12] R. R. Coifman and M. Maggioni, “Diffusion wavelets,” Appl. Comput.
Harmon. Anal., vol. 21, pp. 53–94, March 2006.

[13] S. K. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet
filter banks for graph structured data,” IEEE Trans. Signal Process., vol.
60, no. 6, pp. 2786–2799, June 2012.

[14] D. I Shuman, B. Ricaud, and P. Vandergheynst, “A windowed graph
Fourier transform,” in Proc. IEEE Stat. Signal Process. Wkshp.,
Michigan, Aug. 2012.

[15] D. I Shuman, B. Ricaud, and P. Vandergheynst, “Vertex-frequency
analysis on graphs,” submitted to Appl. Comput. Harmon. Anal., July
2013.

[16] D. I Shuman, Christoph Wiesmeyr, Nicki Holighaus, and Pierre Van-
dergheynst, “Spectrum-adapted tight graph wavelet and vertex-frequency
frames,” submitted to IEEE Trans. Signal Process., Nov. 2013.

[17] J. C. Bremer, R. R. Coifman, M. Maggioni, and A. D. Szlam, “Diffusion
wavelet packets,” Appl. Comput. Harmon. Anal., vol. 21, no. 1, pp. 95–
112, 2006.

[18] R. M. Rustamov and L. Guibas, “Wavelets on graphs via deep learning,”
in Advances in Neural Information Processing Systems (NIPS), 2013.

[19] I. Ram, M. Elad, and I. Cohen, “Redundant wavelets on graphs and
high dimensional data clouds,” IEEE Signal Process. Lett., vol. 19, no.
5, pp. 291–294, May 2012.

[20] I. Ram, M. Elad, and I. Cohen, “Generalized tree-based wavelet
transform,” IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4199–4209,
Sep. 2011.

[21] M. Gavish, B. Nadler, and R. R. Coifman, “Multiscale wavelets on
trees, graphs and high dimensional data: Theory and applications to
semi supervised learning,” in Proc. Int. Conf. on Machine Learning,
Haifa, Israel, 2010.

[22] X. Zhang, X. Dong, and P. Frossard, “Learning of structured graph
dictionaries,” in Proc. IEEE Int. Conf. Acc., Speech, and Signal Process.,
Kyoto, Japan, Mar. 2012, pp. 3373 – 3376.

[23] N. J. Higham, Functions of Matrices, Society for Industrial and Applied
Mathematics, 2008.

[24] M. Zheng, J. Bu, C. Chen, C. Wang, L. Zhang, G. Qiu, and D. Cai,
“Graph regularized sparse coding for image representation,” IEEE Trans.
Image Process., vol. 20, no. 5, pp. 1327–1336, May 2011.

[25] F. Chung, Spectral Graph Theory, American Mathematical Society,
1997.

[26] J. A. Tropp, “Greed is good: Algorithmic results for sparse approxi-
mation,” IEEE Trans. Inform. Theory, vol. 50, no. 10, pp. 2231–2242,
2004.

[27] M. Bruckstein, D. Donoho, and M. Elad, “From sparse solutions of
systems of equations to sparse modeling of signals and images,” SIAM
Rev., vol. 51, no. 1, pp. 34–81, Feb. 2009.

[28] M. Elad, Sparse and Redundant Representations - From Theory to
Applications in Signal and Image Processing, Springer, 2010.

[29] S. Boyd and L. Vandenberghe, Convex Optimization, New York:
Cambridge University Press, 2004.

[30] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[31] K.C. Toh, M.J. Todd, and R.H. Tutuncu, “SDPT3 — a MATLAB
software package for semidefinite programming,” in Optimization
Methods and Software, 1999, vol. 11, pp. 545–581.

[32] J. Lofberg, “YALMIP: A toolbox for modeling and optimization in
MATLAB,” in Proc. CACSD Conf., Taipei, Taiwan, 2004.

[33] X. Dong, A. Ortega, P. Frossard, and P. Vandergheynst, “Inference of
mobility patterns via spectral graph wavelets,” in Proc. IEEE Int. Conf.
Acc., Speech, and Signal Process., Vancouver, Canada, May 2013.

[34] T. Choe, A. Skabardonis, and P. P. Varaiya, “Freeway performance
measurement system (PeMS): an operational analysis tool,” in Presented
at Annual Meeting of Transportation Research Board, Washington, DC,
USA, Jan. 2002.

[35] H. Eryilmaz, D. Van De Ville, S. Schwartz, and P. Vuilleumier, “Impact
of transient emotions on functional connectivity during subsequent
resting state: A wavelet correlation approach,” NeuroImage, vol. 54,
no. 3, pp. 2481–2491, 2011.

[36] J. Richiardi, H. Eryilmaz, S. Schwartz, P. Vuilleumier, and D. Van De
Ville, “Decoding brain states from fMRI connectivity graphs,” Neu-
roImage, vol. 56, no. 2, pp. 616–626, 2011.

[37] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint,” Com-
mun. Pure Appl. Math., vol. 57, no. 11, pp. 1413–1457, Nov. 2004.

[38] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. R.
Stat. Soc. Ser. B, vol. 58, pp. 267–288, 1994.

[39] D. I Shuman, P. Vandergheynst, and P. Frossard, “Chebyshev polynomial
approximation for distributed signal processing,” in Proc. Int. Conf.
Distr. Comput. Sensor Sys., Barcelona, Spain, June 2011.

