Signal Processing on the Permutahedron: Tight Spectral Frames for Ranked Data Analysis

Yilin (Ellen) Chen, Jennifer DeJong, Tom Halverson, David Shuman

Ranked data example: 2017 Minneapolis City Council Ward 3 election

Four candidates:

- 1. Ginger Jentzen (Socialist-Alternative)
- 2. Samantha Pree-Stinson (Green)
- 3. Steven Fletcher (Democratic-Farmer-Labor, elected)
- 4. Tim Bildsoe (Democratic-Farmer-Labor)

source: https://streets.mn/2019/05/20/how-the-2017-ward-3-electi on-in-minneapolis-foreshadows-our-local-political-future/

	1st	2nd	3rd	4th	Count	
	4	3	2	1	574	
	4	3	1	2	201	
	4	2	3	1	131	
	4	2	1	3	32	
	4	1	3	2	89	
	4	1	2	3	46	
	3	4	2	1	422	
	3	4	1	2	271	
	3	2	4	1	159	
	3	2	1	4	243	
	3	1	4	2	156	
	3	1	2	4	204	
	2	4	3	1	111	
	2	4	1	3	30	
	2	3	4	1	161	SP>GJ>SF>TF
	2	3	1	4	145	/
_	2	1	4	3	56	
	2	1	3	4	153	
_	1	4	3	2	255	
	1	4	2	3	77	
	1	3	4	2	376	
	1	3	2	4	421	
	1	2	4	3	204	
	1	2	3	4	538	

Ranked data lives on the permutahedron

1st	2nd	3rd	4th	Count
4	3	2	1	574
4	3	1	2	201
4	2	3	1	131
4	2	1	3	32
4	1	3	2	89
4	1	2	3	46
3	4	2	1	422
3	4	1	2	271
3	2	4	1	159
3	2	1	4	243
3	1	4	2	156
3	1	2	4	204
2	4	3	1	111
2	4	1	3	30
2	3	4	1	161
2	3	1	4	145
2	1	4	3	56
2	1	3	4	153
1	4	3	2	255
1	4	2	3	77
1	3	4	2	376
1	3	2	4	421
1	2	4	3	204
1	2	3	4	538
M	AC	AL	ES	TER

The permutahedron is the Cayley graph of the symmetric group generated by adjacent transpositions

 $\mathbf{X}\mathbf{\Pi}$

 Rankings that differ by a single swap of neighboring candidates are close from a voter's viewpoint

Applications and main research questions

- Applications
 - Political elections
 - Computer vision
 - Recommender systems
 - Bioinformatics
- Main research questions: How do we identify, interpret, and exploit structure in ranked data?

Data transforms

- Transforms and their inverses allow us to represent the same data in two different domains
- Potential benefits of mathematical transforms:
 - Easier/faster/more robust computations
 - e.g., polar coordinate transform for integration
 - New interpretations
 - e.g., representing a vector as a linear combination of eigenvectors for dynamical systems analysis
 - Structural patterns in the new coefficients can yield new data processing algorithms

How can we compress the information in this signal down to just a few numbers?

Image source: https://diy.dunnlumber.com/projects/how-tobuild-a-picnic-table

See also: <u>http://tinyurl.com/wits-wavelets-starlet</u>

Dictionaries

- For finite dimensional spaces, any spanning set of vectors is a frame
- Shared properties of orthonormal bases and tight Parseval frames: (1) $\Phi \Phi^{\top} = I$, (2) $f = \sum_{k} \langle f, \varphi_k \rangle \varphi_k$ (3) $||f||^2 = ||\Phi^{\top}f||^2 = ||\alpha||^2$ (energy preservation)

Decompositions

Graph signal processing approach: Spectral decomposition

- Graph Laplacian matrix: L=D-A
- Graph Laplacian eigenvectors are the analog of complex exponentials
- Values of the eigenvectors associated with low eigenvalues change less rapidly across connected vertices: $f^{\top}Lf = \sum_{(i,j)\in\mathcal{E}} [f(i) f(j)]^2$

Graph signal processing approach: Spectral decomposition / Graph Fourier transform $\mathbb{R}[\mathbb{S}_n] \cong \bigoplus U_{\lambda}$

Group representation theory approach: Symmetry decomposition

- Represent the signal as the sum of projections onto each of the isotypic components
- $\mathbb{R}[\mathbb{S}_n] \cong \bigoplus_{\gamma \vdash n} W_{\gamma}$

Our approach: Combine the spectral and symmetry decompositions

•
$$\mathbb{R}[\mathbb{S}_n] \cong \bigoplus_{\gamma \vdash n} \bigoplus_{\lambda \in \Lambda_{\gamma}} Z_{\gamma,\lambda}, \text{ where } Z_{\gamma,\lambda} = W_{\gamma} \cap U_{\lambda}.$$

• **Objective:** For each space $Z_{\gamma,\lambda}$, find a spanning set of dictionary atoms (vectors) with interpretable patterns that captures both **smoothness** and **structural** information of the ranked data on the permutahedron

Tight Spectral Frames for Ranked Data

Background: Equitable partitions & Schreier graphs

Schreier graph: $\mathbb{P}_{[2,2]}$

_		_					
	$\frac{1}{3} \frac{2}{4}$	$\frac{1}{2} \frac{3}{4}$	$\begin{array}{c}2 & 3\\1 & 4\end{array}$	$\frac{1}{2} \frac{4}{3}$	$\begin{array}{c}2 \\ 1 \\ 3\end{array}$	$\frac{3}{1}\frac{4}{2}$	
1234	•	1	•				1
1243	•			1	•		l
1324	1	•	•		•	•	l
1342	1				•	•	
1423	•		•	1	٠		l
1432		1	•		•		l
2134	•		1		•	•	l
2143	•	•	•	•	1		l
2314	•	•	1	•	•	•	l
2341	•		•	•	1		
2413	•	•		•		1	
2431	•	2.00	•	•	•	1	
3124	1		•	•	•		
3142	1	•	•	•			
3214	•	1			•		
3241	•			1	•		
3412	•	1	•	•	٠		l
3421			•	1			I
4123	•	•	•	•	1		I
4132		•	1	·	•	•	I
4213		•	•		٠	1	I
4231			·	•	•	1	
4312			1	•	•		
4321	•		•	•	1		

Tight frame construction

Note: We can also interpret each rotated frame vector as lifting by a different grouping of candidates

Example of a tight frame for $\mathbb{R}[S_4]$

The Connection to Representation Theory

Representation Theory \leftrightarrow **Spectral Graph Theory**

• The graph **Laplacian** of \mathbb{P}_n is the matrix of

1-1

acting on IR[Sn] on the right ΠП $[\mathbb{R}[s_n] \cong \bigoplus_{\aleph \vdash n} d_{\aleph} \vee_{\aleph}$ H \sim

• Laplacian eigenvalues fall into irreducible submodules (symmetry classes)

Quotient Groups and Quotient Graphs

 $\pi = \{1, 5, 7, 9 \mid 3, 4, 8 \mid 2, 6\} \text{ set parts bin of } \{1, ..., n\}$ shape (π) : $\Im = [4, 3, 2] \vdash n$

Young Subgroup: $S_{\pi} = S_{\varepsilon_1, \varepsilon_7, q_3} \times S_{\varepsilon_3, q, g_3} \times S_{\varepsilon_{2,6}}$

Frame Construction

$$\pi = \{1, 5, 7, 9 \mid 3, 4, 8 \mid 2, 6\} \text{ set partition of } \{1, ..., n\}$$
$$M_{\mathcal{X}} \cong \mathbb{R}\left[\sum_{s_{T}}^{s_{T}}\right] \xrightarrow{\text{right coset representation}}$$

		V*	$V_{}^{*}$	V^*_{\blacksquare}		V^*_{\blacksquare}	V^*_{\blacksquare}
		1	5	9	10	5	16
$\mathbb{R}[\Pi_{\square\square\square}]$	1	1					
$\mathbb{R}[\Pi_{\text{constant}}]$	6	1	1				
$\mathbb{R}[\Pi_{\blacksquare}]$	15	1	1	1			
$\mathbb{R}[\Pi_{\text{H}}]$	30	1	2	1	1		
$\mathbb{R}[\Pi_{\bigoplus}]$	20	1	1	1	0	1	
$\mathbb{R}^{[\Pi]}$	60	1	2	2	1	1	1

 $\stackrel{\simeq}{=} \bigvee_{\mathcal{X}} \bigoplus \bigoplus_{\mathcal{V} \supset \mathcal{Y}} K_{\mathcal{X}, \mathcal{V}} \bigvee_{\mathcal{V}} \text{ Young's rule (Kostka numbers)}$ $\\ \vee \leftarrow Laplacian eigenvector$ $\left[\left\{ \nabla_{\mathbf{V}_{\overline{\mathbf{T}}}} \left[\left\{ \overline{\mathbf{T}} \in S_{n} \right\} \right\} \right] \underbrace{\text{Lift}}_{\text{Lift}} \text{ to } \mathbb{R}[S_{n}] \text{ or bit under group action}$ $(sum over cosets) }$

Frame for Vy in R[Sn]

interpretability

Ranked Data Analysis: Interpretation of the Analysis Coefficients

2017 Minneapolis City Council Ward 3 election data

Four candidates:

- 1. Ginger Jentzen (Socialist-Alternative)
- 2. Samantha Pree-Stinson (Green)
- 3. Steven Fletcher (Democratic-Farmer-Labor, elected)
- 4. Tim Bildsoe (Democratic-Farmer-Labor)

Candidate	First Choice	Second Choice	Third Choice	Fourth Choice
Ginger Jentzen	1871	704	922	1558
Samantha Pree-Stinson	656	1307	1744	1348
Steve Fletcher	1455	1878	1277	445
Tim Bildsoe	1073	1166	1112	1704

Analysis coefficients: Inner products between the signal on the permutahedron and each frame vector

 $\frac{2}{1}\frac{3}{4}$

γ			₽		E	⊞		F		
λ	0	0.586	2	3.414	1.268	4.732	2.586	4	5.414	6
$\sum_{ar{\pi}} \langle \mathbf{g}, oldsymbol{arphi}_{\gamma,\lambda,ar{\pi}} angle ^2$	1064709.4	147617.5	192845.1	14739.0	98412.8	39162.5	13878.0	32979.6	1085.0	1820.0

2017 Minneapolis City Council Ward 3 election data

Four candidates:

- 1. Ginger Jentzen (Socialist-Alternative)
- 2. Samantha Pree-Stinson (Green)
- 3. Steven Fletcher (Democratic-Farmer-Labor, elected)
- 4. Tim Bildsoe (Democratic-Farmer-Labor)

Candidate	First Choice	Second Choice	Third Choice	Fourth Choice
Ginger Jentzen	1871	704	922	1558
Samantha Pree-Stinson	656	1307	1744	1348
Steve Fletcher	1455	1878	1277	445
Tim Bildsoe	1073	1166	1112	1704

Sushi preference data (n=10)

Index	Sushi Type						-xe
1	Shrimp		9	2	3		5
2	Sea eel						
3	Tuna		Shrimp	Sea eel	Tuna	Squid	Sea urchin
4	\mathbf{Squid}		onnip	000 001	Turia	oquia	
5	Sea urchin						
6	Salmon roe		08333			A STAR	er-
7	Egg	9	0	7	0	0	41M
8	Fatty tuna				O		
9	Tuna roll		and the second s				
10(0)	Cucumber roll		Salmon roe	Egg	Fatty tuna	Tuna roll	Cucumber roll

- n=10: 10!=3.6 million permutations, 25.2 million frame vectors, ...
- This necessitated more efficient computation which drove interesting theoretical questions
 - 1. Recursively build permutahedron/eigenvectors
 - 2. Work in lower dimensional spaces when possible (do all computations on Schreiers)
 - 3. Rotate data instead of using different projection matrices

Analysis coefficients with the largest magnitudes

γ	$\bar{\pi}$	λ	$\langle \mathbf{h}, oldsymbol{arphi}_{\gamma,\lambda,ar{\pi}} angle$	$ \langle \mathbf{h}, oldsymbol{arphi}_{\gamma,\lambda,ar{\pi}} angle ^2$
	$\{1234567890\}$	0	2.6248	6.8893
H	$\{123456789 0\}$	0.0979	-2.1513	4.6280
8	$\{123456790 8\}$	0.0979	1.9978	3.9912
	$\{12345679 80\}$	0.2047	-1.7150	2.9413
Шшт	$\{12345689 70\}$	0.2047	1.6543	2.7369
	$\{12345679 8 0\}$	0.4799	1.3471	1.8147
Шшт	$\{12456790 38\}$	0.2047	1.3304	1.7699
8	$\{123456890 7\}$	0.0979	-1.1896	1.4150
8	$\{123456780 9\}$	0.3820	-1.1006	1.2112
	$\{1234569 780\}$	0.3227	1.0659	1.1362
Шппп	$\{12345690 78\}$	0.2047	-1.0400	1.0817
8	$\{123456790 8\}$	0.3820	1.0392	1.0800
Шшт	$\{12345689 70\}$	0.4700	-1.0046	1.0093
8	$\{123467890 5\}$	0.3820	0.9604	0.9223

γ	#	λ	$\langle \mathbf{h}, \varphi_{\gamma,\lambda,\bar{\pi}} \rangle$	$ \langle \mathbf{h}, \varphi_{\gamma, \lambda, \bar{\pi}} \rangle ^2$
	$\{1234567890\}$	0	2.6248	6.8893
- Herringer	$\{123456789 0\}$	0.0979	-2.1513	4.6280
Humm	$\{123456790 8\}$	0.0979	1.9978	3.9912
<u>mum</u>	$\{12345679 80\}$	0.2047	-1.7150	2.9413
<u> </u>	$\{12345689 70\}$	0.2047	1.6543	2.7369
	$\{12345679 8 0\}$	0.4799	1.3471	1.8147
H mm	$\{12456790 38\}$	0.2047	1.3304	1.7699
B	$\{123456890 7\}$	0.0979	-1.1896	1.4150
hum	$\{123456780 9\}$	0.3820	-1.1006	1.2112
<u>⊞</u>	$\{1234569 780\}$	0.3227	1.0659	1.1362
<u> </u>	$\{12345690 78\}$	0.2047	-1.0400	1.0817
fumm	$\{123456790 8\}$	0.3820	1.0392	1.0800
H mm	$\{12345689 70\}$	0.4700	-1.0046	1.0093
fumm	$\{123467890 5\}$	0.3820	0.9604	0.9223

Individual Popularity

- Positive: popular
- Negative: unpopular

CALESTER

Candidate	Coefficient
9 (Tuna Roll)	-1.1006
8 (Fatty Tuna)	1.0392
5 (Sea Urchin)	0.9604

Polarization

- Positive: polarized
- Negative: ranked middle

γ	Ť	λ	$\langle \mathbf{h}, \varphi_{\gamma,\lambda,\pi} \rangle$	$ \langle \mathbf{h}, \varphi_{\gamma, \lambda, \pi} \rangle ^2$
	$\{1234567890\}$	0	2.6248	6.8893
fumm	$\{123456789 0\}$	0.0979	-2.1513	4.6280
fumm	$\{123456790 8\}$	0.0979	1.9978	3.9912
mmm.	$\{12345679 80\}$	0.2047	-1.7150	2.9413
<u> </u>	$\{12345689 70\}$	0.2047	1.6543	2.7369
8	$\{12345679 8 0\}$	0.4799	1.3471	1.8147
	$\{12456790 38\}$	0.2047	1.3304	1.7699
fumm	$\{123456890 7\}$	0.0979	-1.1896	1.4150
Bunno	$\{123456780 9\}$	0.3820	-1.1006	1.2112
<u>mm</u>	$\{1234569 780\}$	0.3227	1.0659	1.1362
- Hump	$\{12345690 78\}$	0.2047	-1.0400	1.0817
fumm	$\{123456790 8\}$	0.3820	1.0392	1.0800
- Hump	$\{12345689 70\}$	0.4700	-1.0046	1.0093
fumm	$\{123467890 5\}$	0.3820	0.9604	0.9223

Candidates	Coefficient	
8 (Fatty Tuna), 10 (Cucumber)	-1.7150	
7 (Egg), 10 (Cucumber)	1.6543	
3 (Tuna), 8 (Fatty Tuna)	1.3304	
7 (Egg), 8 (Fatty Tuna)	-1.0400	

Pairwise Co-occurrence

- Positive: ranked together
- Negative: ranked far apart

γ	7	λ	$\langle \mathbf{h}, \varphi_{\gamma,\lambda,\pi} \rangle$	$ \langle \mathbf{h}, \varphi_{\gamma, \lambda, \pi} \rangle ^2$
	$\{1234567890\}$	0	2.6248	6.8893
fum	$\{123456789 0\}$	0.0979	-2.1513	4.6280
fumm	$\{123456790 8\}$	0.0979	1.9978	3.9912
Hum	$\{12345679 80\}$	0.2047	-1.7150	2.9413
- Hump	$\{12345689 70\}$	0.2047	1.6543	2.7369
F	$\{12345679 8 0\}$	0.4799	1.3471	1.8147
B	$\{12456790 38\}$	0.2047	1.3304	1.7699
fumm	$\{123456890 7\}$	0.0979	-1.1896	1.4150
fum	$\{123456780 9\}$	0.3820	-1.1006	1.2112
	$\{1234569 780\}$	0.3227	1.0659	1.1362
Hum	$\{12345690 78\}$	0.2047	-1.0400	1.0817
fumm	$\{123456790 8\}$	0.3820	1.0392	1.0800
- Hump	$\{12345689 70\}$	0.4700	-1.0046	1.0093
fumm	$\{123467890 5\}$	0.3820	0.9604	0.9223

Ongoing Work and Photographic Evidence

Ongoing work

- Generalization of the tight spectral frame construction to other finite groups and combinatorial structures
- Extension to partial ranking (ties allowed) and incomplete rankings (voters rank a subset of the candidates)
- More signal processing concepts on the permutahedron: wavelets, uncertainty principles

S#/Spen Ss/Spen @ Ss/Smen

