Signal Processing on the Permutahedron: Tight Spectral Frames for Ranked Data Analysis

Yilin (Ellen) Chen, Jennifer DeJong, Tom Halverson, David Shuman

Ranked data example: 2017 Minneapolis City Council Ward 3 election

Four candidates:

1. Ginger Jentzen
(Socialist-Alternative)
2. Samantha Pree-Stinson (Green)
3. Steven Fletcher
(Democratic-Farmer-Labor, elected)
4. Tim Bildsoe
(Democratic-Farmer-Labor)

source:
https://streets.mn/2019/05/20/how-the-2017-ward-3-electi on-in-minneapolis-foreshadows-our-local-political-future/

1st 2nd 3rd 4 th
4 3 2 1 Count 4 3 1 2 574 4 2 3 1 201 4 2 1 3 131 4 1 3 2 32 4 1 2 3 89 3 4 2 1 46 3 4 1 2 422 3 2 4 1 151 3 2 1 4 243 3 1 4 2 156 3 1 2 4 204 2 4 3 1 111 2 4 1 3 30 2 3 4 1 161 2 3 1 4 145 2 1 4 3 56 2 1 3 4 153 1 4 3 2 255 1 4 2 3 77 1 3 4 2 376 1 3 2 4 421 1 2 4 3 204 1 2 3 4 538\quad SP $>$ GJ $>$ SF $>$ TB

Ranked data lives on the permutahedron

1st	2nd	3rd	4th	Count
4	3	2	1	574
4	3	1	2	201
4	2	3	1	131
4	2	1	3	32
4	1	3	2	89
4	1	2	3	46
3	4	2	1	422
3	4	1	2	271
3	2	4	1	159
3	2	1	4	243
3	1	4	2	156
3	1	2	4	204
2	4	3	1	111
2	4	1	3	30
2	3	4	1	161
2	3	1	4	145
2	1	4	3	56
2	1	3	4	153
1	4	3	2	255
1	4	2	3	77
1	3	4	2	376
1	3	2	4	421
1	2	4	3	204
1	2	3	4	538

- The
permutahedron
X:! is the Cayley graph of the ixi! symmetric group generated by adjacent transpositions
- Rankings that differ by a single swap of neighboring candidates are close from a voter's viewpoint

Applications and main research questions

- Applications
- Political elections
- Computer vision
- Recommender systems
- Bioinformatics
- Main research questions: How do we identify, interpret, and exploit structure in ranked data?

Data transforms

- Transforms and their inverses allow us to represent the same data in two different domains
- Potential benefits of mathematical transforms:
- Easier/faster/more robust computations
- e.g., polar coordinate transform for integration
- New interpretations
- e.g., representing a vector as a linear combination of eigenvectors for dynamical systems analysis
- Structural patterns in the new coefficients can yield new data processing algorithms

See also:
http://tinyurl.com/wits-wavelets-starlet

Image source: https://diy.dunnlumber.com/projects/how-to-build-a-picnic-table

Dictionaries

- For finite dimensional spaces, any spanning set of vectors is a frame
- Shared properties of orthonormal bases and tight Parseval frames: (1) $\Phi \Phi^{\top}=I$, (2) $f=\sum_{k}\left\langle f, \varphi_{k}\right\rangle \varphi_{k}$
(3) $\|f\|^{2}=\left\|\Phi^{\top} f\right\|^{2}=\|\alpha\|^{2}$ (energy preservation)

Decompositions

Graph signal processing approach: Spectral decomposition

- Graph Laplacian matrix: L=D-A
- Graph Laplacian eigenvectors are the analog of complex exponentials
- Values of the eigenvectors associated with low eigenvalues change less rapidly across connected vertices: $f^{\top} L f=\sum_{(i, j) \in \mathcal{E}}[f(i)-f(j)]^{2}$

$\lambda=0$

$\lambda=0.586$

$\lambda=1.268$

$\lambda=4.732$

Graph signal processing approach:

 Spectral decomposition / Graph Fourier transform $\mathbb{R}\left[\mathbb{S}_{n}\right] \cong \bigoplus U_{\lambda}$

Group representation theory approach: Symmetry decomposition

- Represent the signal as the sum of projections onto each of the isotypic components
- $\mathbb{R}\left[\mathbb{S}_{n}\right] \cong \bigoplus_{\gamma \vdash n} W_{\gamma}$

Our approach: Combine the spectral and symmetry decompositions

- $\mathbb{R}\left[\mathbb{S}_{n}\right] \cong \bigoplus_{\gamma \vdash n} \bigoplus_{\lambda \in \Lambda_{\gamma}} Z_{\gamma, \lambda}, \quad$ where $\quad Z_{\gamma, \lambda}=W_{\gamma} \cap U_{\lambda}$.
- Objective: For each space $Z_{\gamma, \lambda}$, find a spanning set of dictionary atoms (vectors) with interpretable patterns that captures both smoothness and structural information of the ranked data on the permutahedron

MACALESTER

Tight Spectral Frames for Ranked Data

Background: Equitable partitions \& Schreier graphs

Example equitable partition:
Group vertices (complete rankings) with candidates 1,3 in the same ranking slots and candidates 2,4 in the same ranking slots

Schreier graph: $\mathbb{P}_{[2,2]}$

Tight frame construction

1. Compute a Laplacian
eigenvector of a Schreier graph

$\gamma=[2,2], \lambda=1.2679$
2. Lift it to the permutahedron
by assignment of candidates

3. Rotate by group elements to obtain other frame vectors

Tight frame for $U_{1.2679}$

Note: We can also interpret each rotated frame vector as lifting by a different grouping of candidates

Example of a tight frame for $\mathbb{R}\left[S_{4}\right]$

The Connection to Representation Theory

Representation Theory \leftrightarrow Spectral Graph Theory

- The graph Laplacian of \mathbb{P}_{n} is the matrix of $\Phi_{n}=(n-1) 1-\sum_{i=1}^{n-1}(i, i+1)$ acting on $\mathbb{R}\left[S_{n}\right]$ on the right

$$
\mathbb{R}\left[S_{n}\right] \cong \underset{\gamma-n}{\oplus} d \gamma V_{\gamma}
$$

- Laplacian eigenvalues fall into irreducible submodules (symmetry classes)

Quotient Groups and Quotient Graphs

$\pi=\{1,5,7,9|3,4,8| 2,6\}$ set partition of $\{1, \ldots, n\}$
shape $(\pi): \quad \gamma=[4,3,2] \leftarrow n$

Young Subgroup: $S_{\pi}=S_{\{1,5,7,9\}} \times S_{\{3,4,8\}} \times S_{\{2,6\}}$
right coset representation

Example:

$$
\begin{aligned}
& \pi=\{1,3 \mid 2,4\} \\
& \text { shape }(\pi)=\square
\end{aligned}
$$

MACALESTER

Frame Construction
$\pi=\{1,5,7,9|3,4,8| 2,6\}$ set partition of $\{1, \ldots, n\}$
$M_{\gamma} \cong \mathbb{R}\left[S_{S_{n}}\right]$ right coset representation

$\cong V_{\gamma} \oplus \bigoplus_{\nu \triangleright \gamma} K_{\gamma, \nu} V_{\nu} \quad$ Young's rule (Kostka numbers)
v-Laplacian eigenvector
$\left\{\left\{\sigma_{v_{\pi}} \mid \sigma \in S_{n}\right\}\right\}$ Lift to $\mathbb{R}\left[S_{n}\right]$
orbit under group action (sum over cosets)

Frame for V_{γ} in $\mathbb{R}\left[S_{n}\right]$

$$
\sigma V_{\pi}=V_{\sigma(\pi)}
$$

Ranked Data Analysis:
 Interpretation of the Analysis Coefficients

2017 Minneapolis City Council Ward 3 election data

Four candidates:

1. Ginger Jentzen (Socialist-Alternative)
2. Samantha Pree-Stinson (Green)
3. Steven Fletcher (Democratic-Farmer-Labor, elected)
4. Tim Bildsoe (Democratic-Farmer-Labor)

Candidate	First Choice	Second Choice	Third Choice	Fourth Choice
Ginger Jentzen	1871	704	922	1558
Samantha Pree-Stinson	656	1307	1744	1348
Steve Fletcher	1455	1878	1277	445
Tim Bildsoe	1073	1166	1112	1704

Analysis coefficients: Inner products between the signal on the permutahedron and each frame vector

Signal
(shown three times)

Frame vectors

Interpretation of analysis coefficients

γ	سه	T			田		目			目
λ	0	0.586	2	3.414	1.268	4.732	2.586	4	5.414	6
$\sum_{\bar{\pi}}\left\|\left\langle\mathbf{g}, \boldsymbol{\varphi}_{\gamma, \lambda, \bar{\pi}}\right\rangle\right\|^{2}$	1064709.4	147617.5	192845.1	14739.0	98412.8	39162.5	13878.0	32979.6	1085.0	1820.0

γ	四							田		
λ	0.586			2				1.268		
\mathbf{v}_{λ}	Individual Popularity －Positive：popular －Negative：unpopular			Positive：polarized Negative：ranked middle					Pairw Co－oc	rrence
$\bar{\pi}$ $\begin{gathered} \boldsymbol{\varphi}_{\gamma, \lambda, \bar{\pi}} \\ \left\langle\mathbf{g}, \boldsymbol{\varphi}_{\gamma, \lambda, \bar{\pi}}\right\rangle \end{gathered}$	$\{234 \mid 1\}$ $\{134 \mid 2\}$ $\sqrt{5}+$ $-5-2$ 51.4 -201.6	$\begin{gathered} \{124 \mid 3\} \\ -52 \\ 290.8 \end{gathered}$	$\begin{gathered} \{123 \mid 4\} \\ 25 \\ -140.6 \end{gathered}$	$\begin{gathered} \{234 \mid 1\} \\ -\sqrt{52}+ \\ 318.7 \end{gathered}$	$\begin{gathered} \{134 \mid 2\} \\ -2 z \\ -185.1 \end{gathered}$	$\begin{gathered} \{124 \mid 3\} \\ -2 z \\ -221.9 \end{gathered}$		$\begin{gathered} \{12 \mid 34\} \\ -2-2 \\ 239.0 \end{gathered}$	$\begin{array}{r} \{13 \mid 24 \\ -5 \\ -39.9 \\ \hline \end{array}$	$\begin{gathered} \{14 \mid 23\} \\ -5-2 \\ -199.3 \end{gathered}$

2017 Minneapolis City Council Ward 3 election data

Four candidates:

1. Ginger Jentzen (Socialist-Alternative)
2. Samantha Pree-Stinson (Green)
3. Steven Fletcher (Democratic-Farmer-Labor, elected)
4. Tim Bildsoe (Democratic-Farmer-Labor)

Candidate	First Choice	Second Choice	Third Choice	Fourth Choice
Ginger Jentzen	1871	704	922	1558
Samantha Pree-Stinson	656	1307	1744	1348
Steve Fletcher	1455	1878	1277	445
Tim Bildsoe	1073	1166	1112	1704

Sushi preference data (n=10)

Index	Sushi Type
1	Shrimp
2	Sea eel
3	Tuna
4	Squid
5	Sea urchin
6	Salmon roe
7	Egg
8	Fatty tuna
9	Tuna roll
$10(0)$	Cucumber roll

- $\mathrm{n}=10: 10!=3.6$ million permutations, 25.2 million frame vectors, ...
- This necessitated more efficient computation which drove interesting theoretical questions

1. Recursively build permutahedron/eigenvectors
2. Work in lower dimensional spaces when possible (do all computations on Schreiers)
3. Rotate data instead of using different projection matrices

Analysis coefficients with the largest magnitudes

γ	$\bar{\pi}$	λ	$\left\langle\mathbf{h}, \boldsymbol{\varphi}_{\gamma, \lambda, \bar{\pi}}\right\rangle$	$\left\|\left\langle\mathbf{h}, \boldsymbol{\varphi}_{\gamma, \lambda, \bar{\pi}}\right\rangle\right\|^{2}$
هسmهm	\｛1234567890\}	0	2.6248	6.8893
هسחسه	\｛123456789｜0\}	0.0979	－2．1513	4.6280
هسmه\％	\｛123456790｜8\}	0.0979	1.9978	3.9912
田	\｛12345679｜80\}	0.2047	－1．7150	2.9413
هسTه	\｛12345689｜70\}	0.2047	1.6543	2.7369
صسسه	\｛12345679｜8｜0\}	0.4799	1.3471	1.8147
هساهس	\｛12456790｜38\}	0.2047	1.3304	1.7699
	\｛123456890｜7\}	0.0979	－1．1896	1.4150
هسחهן	\｛123456780｜9\}	0.3820	－1．1006	1.2112
田	\｛1234569｜780\}	0.3227	1.0659	1.1362
回	\｛12345690｜78\}	0.2047	－1．0400	1.0817
	\｛123456790｜8\}	0.3820	1.0392	1.0800
هسחד	\｛12345689｜70\}	0.4700	－1．0046	1.0093
	\｛123467890｜5\}	0.3820	0.9604	0.9223

Interpretation of analysis coefficients

Individual Popularity

- Positive: popular
- Negative: unpopular

Candidate	Coefficient
9 (Tuna Roll)	-1.1006
8 (Fatty Tuna)	1.0392
5 (Sea Urchin)	0.9604

Polarization

- Positive: polarized
- Negative: ranked middle

Interpretation of analysis coefficients

$$
\mathbf{v}_{[8,2], 0.2047}
$$

Candidates	Coefficient
8 (Fatty Tuna), 10 (Cucumber)	-1.7150
7 (Egg), 10 (Cucumber)	1.6543
3 (Tuna), 8 (Fatty Tuna)	1.3304
7 (Egg), 8 (Fatty Tuna)	-1.0400

Pairwise Co-occurrence

- Positive: ranked together
- Negative: ranked far apart

Interpretation of analysis coefficients

Ongoing Work and Photographic Evidence

Ongoing work

- Generalization of the tight spectral frame construction to other finite groups and combinatorial structures
- Extension to partial ranking (ties allowed) and incomplete rankings (voters rank a subset of the candidates)
- More signal processing concepts on the permutahedron: wavelets, uncertainty principles

