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Designing Graph Spectral Filter Banks
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Classical 2-Channel Critically Sampled Filter Bank
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Iterating Low Pass Branch Yields Wavelets

Need appropriate notions of 
downsampling, upsampling, filtering, 
graph reduction that preserve a 
meaningful correspondence between 
filtering at different resolution levels

For irregular graphs, it is 
difficult to generalize 
conditions on filters ensuring 
properties such as perfect 
reconstruction, orthogonality



Sakiyama and Tanaka, Oversampled graph 
Laplacian matrix for graph filter banks, TSP, 2014

Approach 1: Decompose into Structured 
Subgraphs
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Bipartite Subgraph Decomposition

Source: Narang and Ortega, TSP, 2012
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Narang and Ortega, Perfect reconstruction two-
channel wavelet filter banks for graph structured 
data, TSP, 2012
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Oversampled Filter Bank

Circulant Subgraph Decomposition

Source: Ekambaram, Ph.D. Thesis, 2013

Kotzagiannidis and Dragotti, The graph FRI 
framework - spline wavelet theory and 
sampling on circulant graphs, ICASSP, 2016

Enkambaram et al., Critically-sampled perfect 
reconstruction spline-wavelet filterbanks for 
graph signals, GlobalSIP, 2013
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T. Bıyıkoğlu, J. Leydold, and P. F. Stadler, Laplacian Eigenvectors of Graphs, Springer, 2007.

D. Spielman, “Spectral graph theory” in Combinatorial Scientific Computing, Chapman and Hall, 2012.

Dictionaries for Signals on Graphs

R. R. Coifman and M. Maggioni, “Di↵usion wavelets,” Appl. Comput. Harmon. Anal., vol. 21, no. 1, pp.

53–94, Jul. 2006.

D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral graph theory,”

Appl. Comput. Harmon. Anal., vol. 30, no. 2, pp. 129–150, Mar. 2011.

S. K. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet filter banks for graph structured

data,” IEEE Trans. Signal Process., vol. 60, pp. 2786–2799, Jun. 2012.

D. I Shuman, B. Ricaud, and P. Vandergheynst, “A windowed graph Fourier transform,”in Proc. IEEE Stat.

Signal Process. Wrkshp., Ann Arbor, MI, Aug. 2012.

David Shuman Signal Processing on Graphs February 11, 2013 34 / 35

Source: Sakiyama and Tanaka, 2014



Approach 2: Replace Upsampling and 
Synthesis Filters with Interpolation Operators
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Synthesis Via Interpolation
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M-Channel Critically Sampled Graph Filter Bank
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Ideal Filter Bank

Architecture
l Number of vertices in Vi 

is equal to the number of 
eigenvalues in the support 
of the corresponding filter



l How to sample a graph signal and interpolate from the samples?   
l Subset Vs of vertices is a uniqueness set for a subspace P iff:  

If two signals in the subspace P have the same values on the vertices in 
the uniqueness set, then they are the same signal

Sampling and Interpolation

6

Graph Spectral Domain Vertex Domain
Signal Sampled on a 

Uniqueness Set for col(U1:266)

l Interpolation (noiseless case):
frec = U1:266↵, where fS = US,1:266↵
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Objective: Partition into M Uniqueness Sets 
for Ideal Filter Bank Subspaces
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500-node Random Sensor Network Minnesota Road Network



Algorithm to Create Uniqueness Set Partitions 
Case 1: M=2

8

l Goal: Find a permutation matrix P such that the submatrices 
along the diagonal of PU are full rank:

PU = Ũ =


Ũ1

Ũ2

�

l Steinitz exchange lemma guarantees 
that we can find such a permutation  

l Equivalently, we can find two 
complementary uniqueness sets for 
the corresponding spectral subspaces

l Proposition: If M=2 and the space spanned by first k columns of U is 
orthogonal to the space spanned by last N-k columns, then S is a 
uniqueness set for U1:k if and only if Sc is a uniqueness set for Uk+1:N  



l Numerous algorithms have been proposed recently

Finding a Single Uniqueness Set

9
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§ Shomorony and Avestimehr, Sampling large data on graphs, GlobalSIP, 2014 
§ Chen et al., Discrete signal processing on graphs: Sampling theory, TSP, 2015 
§ Anis et al., Efficient sampling set selection for bandlimited graph signals using 

graph spectral proxies, TSP, 2016 
§ Puy et al., Random sampling of bandlimited signals on graphs, ACHA, 2016

Different objectives: minimal set size, speed, recovery robustness 
to noise



Algorithm to Create Uniqueness Set Partitions 
Case 2: M>2

10

PU = Ũ =

2

6664

Ũ1

Ũ2

. . .

ŨM

3

7775

l Goal: Find permutation P s.t.

l Challenge: After first set of vertices is identified, the shaded 
submatrix no longer features orthogonal columns, so you cannot 
simply greedily iterate the M=2 method block by block 

l May need to do extra row exchanges at each step 
l Techniques initially discovered in the context of matroid theory tell 

us how to perform these exchanges  
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T. Bıyıkoğlu, J. Leydold, and P. F. Stadler, Laplacian Eigenvectors of Graphs, Springer, 2007.

D. Spielman, “Spectral graph theory” in Combinatorial Scientific Computing, Chapman and Hall, 2012.

Dictionaries for Signals on Graphs

R. R. Coifman and M. Maggioni, “Di↵usion wavelets,” Appl. Comput. Harmon. Anal., vol. 21, no. 1, pp.

53–94, Jul. 2006.

D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral graph theory,”

Appl. Comput. Harmon. Anal., vol. 30, no. 2, pp. 129–150, Mar. 2011.

S. K. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet filter banks for graph structured

data,” IEEE Trans. Signal Process., vol. 60, pp. 2786–2799, Jun. 2012.

D. I Shuman, B. Ricaud, and P. Vandergheynst, “A windowed graph Fourier transform,”in Proc. IEEE Stat.

Signal Process. Wrkshp., Ann Arbor, MI, Aug. 2012.

David Shuman Signal Processing on Graphs February 11, 2013 34 / 35

Greene and Magnanti, Some abstract pivot algorithms, SIAM J. Appl. Math., 1975
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Algorithm to Create Uniqueness Set Partitions 
Case 2: M>2

M1 M2
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Example: Piecewise Smooth Signal  
Partition and Analysis Coefficients
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Graph Spectral Domain

Analysis CoefficientsPartition into Uniqueness Sets

Vertex Domain



Example: Piecewise Smooth Signal 
Atoms

13

l Atoms jointly localized in vertex and graph spectral domains   
l Non-zero wavelet coefficients clustered around discontinuities



Compression Example
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Graph Spectral Domain

Transform Coefficients Sorted by Magnitude

Vertex Domain

Reconstruction Errors



Ongoing Work
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l Computational approximations to improve scaling 
- Non-uniform random sampling (c.f., Puy et al., 2015) 
- Stably reconstruct signals supported on a specific spectral band 

without requiring a full eigendecomposition 

l Reconstruction robustness 
- Many different partitions into uniqueness sets; which ones makes 

reconstruction more stable when transform coefficients are noisy or 
missing? 

l Iterated filter bank: how does iterating with fewer channels 
compares to a single level with more channels? 

l Formally characterize the relationships between the decay of 
the analysis coefficients, properties of the graph signals, and 
the underlying graph structure


