Optimal Sleep Scheduling for a Wireless Sensor Network Node

David Shuman and Mingyan Liu University of Michigan

40th Annual Asilomar Conference on Signals, Systems, and Computers

October 31, 2006

Introduction

- Wireless sensor networks have recently been utilized in an expanding array of applications
- Energy conservation is a key design issue
- Wide range of solutions proposed
 - Adjust routes and power rates over time
 - Aggregate data to reduce unnecessary traffic
 - Turn nodes off and on periodically (duty-cycling)
- · Algorithms utilize different techniques to selectively turn nodes on and off
 - Leverage geographic information provided by GPS (GAF)
 - Distributed algorithms featuring local coordination (Span)
 - Frequent probing of neighboring sensors to actively replace failed nodes without maintaining information about neighbors (PEAS)

Introduction (cont.)

- We also study periodic sleeping, but proceed in a different direction
 - Consider a broad class of sleep scheduling policies, and attempt to identify the optimal
 - Restrict attention to a single node
 - Focus solely on the tradeoffs between energy consumption and packet delay
- Related models
 - Vacation models
 - A. Federgruen and K.C. So, "Optimality of threshold policies in single-server queueing systems with server vacations," Adv. Appl. Prob., vol. 23, no. 2, pp. 388-405, June 1991
 - M. Sarkar and R. Cruz (UC San Diego)

Outline

- Problem Description and Formulation
- Infinite Horizon Average Expected Cost Problem

• Finite Horizon Expected Cost Problem

• Concluding Remarks

Problem Description Overview of System Model

 Consider a single node in a wireless sensor network

Modeled as a single-server queue

Two Control Objectives

Single Node

- Conserve energy through duty-cycling
 - While asleep, the node is unable to transmit packets, but packets continue to arrive at the node
- Minimize packet queuing delay

- Node sleeps for *N* time slots at a time
 - In place of additional costs or setup time for switching modes
 - Multiple vacations are allowed

Key Modeling Assumptions

- Bernoulli arrival process with success probability p
- · Packets arriving in one slot cannot be transmitted until the following slot
- Only one packet transmission per slot, and successful w.p.1
- Node has an infinite buffer size

Finite and Infinite Horizon Problem Formulation Information State, Action Space, and System Dynamics

Information State	 X_t: two-dimensional vector -B_t: current queue length -S_t: number of slots remaining until node awakes
Action Space	 Two control actions available when node is awake: - U_t = 1 ("Awake") - U_t = 0 ("Sleep")
	Controlled Markov Chain model

System Dynamics

$$X_{t+1} = f(X_t, U_t, A_t) = \begin{bmatrix} B_{t+1} \\ S_{t+1} \end{bmatrix} = \begin{cases} \begin{bmatrix} B_t + A_t \\ S_t - 1 \end{bmatrix}, & \text{if } S_t > 0 \\ \begin{bmatrix} B_t + A_t \\ N - 1 \end{bmatrix}, & \text{if } S_t = 0 \text{ and } U_t = 0 \\ \begin{bmatrix} B_t - 1 \end{bmatrix}^+ + A_t \\ 0 \end{bmatrix}, & \text{if } S_t = 0 \text{ and } U_t = 1 \end{cases}$$

Finite and Infinite Horizon Problem Formulation Cost Structure and Optimization Criteria

Outline

- Problem Description and Formulation
- Infinite Horizon Average Expected Cost Problem

• Finite Horizon Expected Cost Problem

Concluding Remarks

Infinite Horizon Average Expected Cost Optimization

Optimal Stationary Policy Exists Problem (P1) satisfies the (BOR) assumptions of Sennott's Theorem
 7.5.6, guaranteeing the existence of an optimal stationary Markov policy¹

When Queue Is Non-Empty

- · Optimal policy is to stay awake and serve
 - Eventually, node must serve to avoid infinite average cost
 - Proof via interchange argument utilizes this fact and linear holding cost structure

When Queue is Empty

Optimal control at boundary state
$$X = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 is given by the threshold decision rule:

$$\left(\frac{p}{1-p}\right) \cdot \left(\frac{N-1}{2}\right) \overset{Awake(U_t^*=1)}{\underset{Sleep(U_t^*=0)}{\overset{>}{\sim}}} \frac{D}{c} \qquad (*)$$

Outline

- Problem Description and Formulation
- Infinite Horizon Average Expected Cost Problem

Finite Horizon Expected Cost Problem

• Concluding Remarks

Finite Horizon Expected Cost Optimization Goal: Identify Optimal Markov Policy at Each State and Time Slot Pair

Finite Horizon Expected Cost Optimization Goal: Identify Optimal Markov Policy at Each State and Time Slot Pair

Finite Horizon Expected Cost Optimization Optimal Policy at the End of the Time Horizon and When Queue is Non-Empty

Node Awake at the End of the Time Horizon

- When $T \frac{D}{c} \le t < T$, the optimal control is to sleep
- Basic idea is that marginal benefit of serving is at most $c \cdot \left\lfloor \frac{D}{c} \right\rfloor \le D$, the marginal cost of serving
- Proof by backwards induction
- For notation purposes, we define $z^* := \left[T \frac{D}{c} \right]$

Finite Horizon Expected Cost Optimization Optimal Policy at the End of the Time Horizon and When Queue is Non-Empty

Node Awake at the End of the Time Horizon

- When $T \frac{D}{c} \le t < T$, the optimal control is to sleep
- Basic idea is that marginal benefit of serving is at most $c \cdot \left\lfloor \frac{D}{c} \right\rfloor \le D$, the marginal cost of serving
- Proof by backwards induction
- For notation purposes, we define $z^* := \left\lfloor T \frac{D}{c} \right\rfloor$

Node Awake Before End and Queue Non-Empty

- · Optimal policy is to stay awake and serve
- Proof follows from similar interchange argument as the infinite horizon problem

• The optimal control at
$$X_{z^*} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 is to sleep

Implication

• The optimal control when the node is awake and the queue is empty is non-increasing over time, from *z**-*N*+1 until the end of the time horizon

Implication

• The optimal control when the node is awake and the queue is empty is non-increasing over time, from *z**-*N*+1 until the end of the time horizon

Finite Horizon Expected Cost Optimization The Optimal Policy at the Boundary State Is Not Necessarily Monotonic in Time

Answer

• No, as the following counterexample demonstrates

Optimal Control at $X_t = [0,0]^T$ When T = 15, N = 3, c = 10, D = 21, and p = 2/3

More Questions

- Can we find sufficient conditions to guarantee the optimal policy at the boundary state is non-increasing over the entire time horizon
- What behavior is possible in the optimal control at the boundary state when such conditions are not met?

Finite Horizon Expected Cost Optimization Conjectures

Observation 2

• The three possible structural forms lie on a spectrum in a sense

 Underlying tradeoff at the boundary state is between extra backlog costs from sleeping, and energy costs incurred during unutilized slots

Why (b)?

Summary and Future Work

- Infinite horizon average expected cost problem
 - Demonstrated existence of optimal stationary Markov policy
 - Completely characterized optimal control
- Finite horizon expected cost problem
 - Characterized optimal control away from the boundary
 - Posed two conjectures concerning structure of optimal control at boundary
- Possible extensions
 - Formulate as constrained optimization problem instead of assigning energy costs
 - Extend to multiple nodes