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Motivating Application: Distributed Denoising

Sensor network with N sensors

Noisy signal in RN : y = x+ noise

Node n only observes yn and wants to
estimate xn

No central entity - nodes can only send
messages to their neighbors in the
communication graph

However, communication is costly

Prior info, e.g., signal is smooth or

piecewise smooth w.r.t. graph structure

� If two sensors are close enough to

communicate, their observations are

more likely to be correlated
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Spectral Graph Theory Notation

Connected, undirected, weighted graph
G = {V ,E ,W }

Degree matrix D: zeros except diagonals,
which are sums of weights of edges incident
to corresponding node

Non-normalized Laplacian: L := D −W

Complete set of orthonormal eigenvectors and
associated real, non-negative eigenvalues:

Lχ` = λ`χ`,

ordered w.l.o.g. s.t.

0 = λ0 < λ1 ≤ λ2... ≤ λN−1 := λmax
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Graph Laplacian Eigenvectors

Values of eigenvectors associated with lower frequencies (low λ`) change
less rapidly across connected vertices

χ0 χ1

χ2 χ50
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Graph Fourier Transform

Fourier transform: expansion of f in terms of the eigenfunctions of the
Laplacian / graph Laplacian

Functions on the Real Line

Fourier Transform

f̂ (ω) = 〈e iωx , f 〉 =
∫
R

f (x)e−iωx dx

Inverse Fourier Transform

f (x) = 1
2π

∫
R

f̂ (ω)e iωx dω

Functions on the Vertices of a Graph

Graph Fourier Transform

f̂ (`) = 〈χ`, f 〉 =
N∑

n=1

f (n)χ∗` (n)

Inverse Graph Fourier Transform

f (n) =
N−1∑̀

=0

f̂ (`)χ`(n)
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Fourier Multiplier Operator (Filter)

f (x) // FT // f̂ (ω) // g // g(ω)f̂ (ω) // IFT // Φf (x)

Fourier multiplier (filter) reshapes functions’ frequencies:

Φ̂f (ω) = g(ω)f̂ (ω), for every frequency ω

We can extend this to any group with a Fourier transform, including
weighted, undirected graphs:

Φf = IFT
(
g(ω)FT(f )(ω)

)

Functions on the Real Line

Φf (x) = 1
2π

∫
R

g(ω)f̂ (ω)e iωx dω

Functions on the Vertices of a Graph

Φf (n) =
N−1∑̀

=0

g(λ`)f̂ (`)χ`(n)
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Chebyshev Polynomials

Tn(x) := cos
(
n arccos(x)

)
,

x ∈ [−1, 1],
n = 0, 1, 2, . . .

T0(x) = 1

T1(x) = x

Tk (x) = 2xTk−1(x)− Tk−2(x)

for k ≥ 2

Source: Wikipedia.
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Chebyshev Polynomial Expansion and Approximation

Chebyshev polynomials form an orthogonal basis for L2

(
[−1, 1], dx√

1−x2

)
� Every h ∈ L2

(
[−1, 1], dx√

1−x2

)
can be represented as

h(x) =
1

2
c0 +

∞∑
k=1

ckTk (x), where ck =
2

π

∫ π

0
cos(kθ)h(cos(θ))dθ

M th order Chebyshev approximation to a continuous function on an
interval provides a near-optimal approximation (in the sup norm) amongst
all polynomials of degree M

Shifted Chebyshev Polynomials

� To shift the domain from [-1,1] to [0,A], define

T k (x) := Tk

( x

α
− 1
)
, where α :=

A

2

� T k (x) = 2
α

(x − α)T k−1(x)− T k−2(x) for k ≥ 2
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Fast Chebyshev Approx. of a Graph Fourier Multiplier

Let Φ ∈ RN×N be a graph Fourier multiplier with Φf =

 (Φf )1

...
(Φf )N


Approximate Graph Fourier Multiplier Operator

(Φf )n =
N−1∑
`=0

g(λ`)f̂ (`)χ`(n) =
N−1∑
`=0

[
1

2
c0 +

∞∑
k=1

ckT k(λ`)

]
f̂ (`)χ`(n)

≈
N−1∑
`=0

[
1

2
c0 +

M∑
k=1

ckT k(λ`)

]
f̂ (`)χ`(n)

=

(
1

2
c0f +

M∑
k=1

ckT k(L)f

)
n

:=
(

Φ̃f
)

n

Here, T k(L) ∈ RN×N and
(
T k(L)f

)
n

:=
N−1∑̀

=0

T k(λ`)f̂ (`)χ`(n)
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Fast Chebyshev Approx. of a Graph Fourier Multiplier

Φ̃f = 1
2c0f +

M∑
k=1

ckT k(L)f ≈ Φf

Question: Why do we call this a fast approximation?

Answer: From the Chebyshev polynomial recursion property, we have:

T 0(L)f = f

T 1(L)f =
1

α
Lf − f , where α :=

λmax

2

T k(L)f =
2

α
(L − αI )

(
T k−1(L)f

)
− T k−2(L)f

=
2

α
LT k−1(L)f − 2T k−1(L)f − T k−2(L)f

Does not require explicit computation of the eigenvectors of the Laplacian

Computational cost proportional to # nonzero entries in the Laplacian

This corresponds to the number of edges in the communication graph

Large, sparse graph ⇒ Φ̃f far more efficient than Φf
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Distributed Computation

(
Φ̃f
)

n
=

(
1
2c0f +

M∑
k=1

ckT k(L)f

)
n

Node n’s knowledge:

1 (f )n

2 Neighbors and weights of edges to
its neighbors

3 Graph Fourier multiplier g(·), which
is used to compute co , c1, . . . , cM

4 Loose upper bound on λmax

Task: Compute (T k(L)f )n, k ∈ {1, 2, . . . ,M} in a distributed manner

(T 1(L)f )n = 1
α

(Lf )n − (f )n = 1
α

f0 Ln,2 0 0 0 Ln,6 0 0 0   −(f )n

(
T k (L)f

)
n

=
(

2
α
LT k−1(L)f

)
n
−
(

2T k−1(L)f
)

n
−
(
T k−2(L)f

)
n

To get (T 2(L)f )n, suffices to compute (LT 1(L)f )n = `T1(L)f0  Ln,2 0 0 0 Ln,6 0 0 0   

2M|E |
scalar

messages
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Distributed Denoising - Method 1

Prior: signal is smooth w.r.t the underlying graph structure

Regularization term: fTLf = 1
2

∑
n∈V

∑
m∼n

wm,n [f (m)− f (n)]2

� fTLf = 0 iff f is constant across all vertices

� fTLf is small when signal f has similar values at neighboring vertices

connected by an edge with a large weight

Distributed regularization problem:

argmin
f

τ

2
‖f − y‖2

2 + fTLf (1)

Proposition

The solution to (1) is given by Ry, where R is a graph Fourier multiplier
operator with multiplier g(λ`) = τ

τ+2λ`
.
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Distributed Denoising Illustrative Example

Graph analog to low-pass filtering

Modify the contribution of each Laplacian

eigenvector

� f∗(n) = (Ry)n =
N−1∑̀

=0

[
τ

τ+2λ`

]
ŷ(`)χ`(n)

Use Chebyshev approximation to compute R̃y
in a distributed manner

Over 1000 experiments, average mean square
error reduced from 0.250 to 0.013

0 5 10 15
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Unions of Graph Fourier Multipliers

So far, just a single
graph Fourier
multiplier

Can easily extend this
to unions of graph
Fourier multipliers:

(Φηf) 1

f

(Φ1f) 1

Φ2

Φη

1N 1

NηNη

N

=.
.
.

…

(Φ1f) N

Φ1

…

(Φηf) N

.

.

.

(Φ2f) 1

(Φ2f) N

…

Example: Spectral Graph Wavelet Transform (Hammond et al., 2011)

� (Φf )(j−1)N+n =
N−1∑̀

=0
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Unions of Graph Fourier Multipliers
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Distributed Denoising - Method 2

Prior: signal is p.w. smooth w.r.t. graph ⇔ SGWT coefficients sparse

Regularize via LASSO (Tibshirani, 1996):

min
a

1
2
‖y −W ∗a‖2

2 + µ‖a‖1

Solve via iterative soft thresholding (Daubechies et al., 2004):

a(k) = Sµτ
(
a(k−1) + τW

(
y −W ∗a(k−1)

))
, k = 1, 2, . . .

D-LASSO (Mateos et al., 2010) solves in distributed fashion, but requires
2|E | messages of length N(J + 1) at each iteration

Communication cost of Chebyshev polynomial approximation:
� One computation of W̃ y (2M|E | messages of length 1)

� At each soft thresholding iteration, distributed computation of
W̃ W̃ ∗a(k−1) (2M|E | messages of length J + 1 and 2M|E | messages of
length 1)

� One final computation of W̃ ∗˜̂a to recover signal (2M|E | messages of

length J + 1)

Key takeaway: communication workload only scales with network
size through |E |, otherwise independent of N
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Summary

Graph Fourier muliplier operators are the graph analog of filter banks

� They reshape functions’ frequencies through multiplication in the graph

Fourier domain

A number of distributed signal processing tasks can be represented as
applications of graph Fourier multiplier operators

We approximate graph Fourier multipliers by Chebyshev polynomials

The recurrence relations of the Chebyshev polynomials make the
approximate operators readily amenable to distributed computation

The communication required to perform distributed computations only
scales with the size of the network through the number of edges in the
communication graph

The proposed method is well-suited to large-scale sensor networks with
sparse communication graphs
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Ongoing Work and Extensions

Reviewer: “This seems to be a very interesting technique looking for a

problem”

� Other possible applications we are working on include distributed

smoothing, deconvolution, classification, and learning

� More thorough comparisons of communication costs with alternative

distributed methods for these applications

Extension: use the eigenvectors of other symmetric positive-semidefinite
matrices as bases

Robustness issues

� Sensitivity to quantization and communication noise - how do they

propagate?

� Effect of a sensor node dropping out of the network or losing synchronicity
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J. C. Mason and D. C. Handscomb, Chebyshev Polynomials. Chapman and Hall, 2003.

G. M. Phillips, Interpolation and Approximation by Polynomials. CMS Books in Mathematics,
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