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Intro

Motivating Application: Distributed Denoising

m Sensor network with N sensors
m Noisy signal in RY: y = x+ noise

m Node n only observes y, and wants to
estimate x,
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m No central entity - nodes can only send
messages to their neighbors in the
communication graph

m However, communication is costly
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m Prior info, e.g., signal is smooth or
piecewise smooth w.r.t. graph structure

0P If two sensors are close enough to —

O

communicate, their observations are

more likely to be correlated
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Graph Fourier Multiplier Operators

Chebyshev Approximation of Graph Fourier Multipliers
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Summary, Ongoing Work, and Extensions

David Shuman (EPFL) Distributed Chebyshev Approximation DCOSS 2011



Multiplier Operators

Spectral Graph Theory Notation

m Connected, undirected, weighted graph
G={V,E,W}

m Degree matrix D: zeros except diagonals,
which are sums of weights of edges incident
to corresponding node

0 3 1 0
m Non-normalized Laplacian: £:=D — W W= 3 0 2 5
{1 2 0 7
0 5 7 0
m Complete set of orthonormal eigenvectors and -
associated real, non-negative eigenvalues:
Lxe = Xexe, 4 0 0 O
ordered w.l.o.g. s.t. D= 8 (1) 2 8
0=2 <A1 < X2... <Ayt = Amax 0O 0 0 1.2
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Multiplier Operators

Graph Laplacian Eigenvectors

m Values of eigenvectors associated with lower frequencies (low \;) change
less rapidly across connected vertices
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Multiplier Operators

Graph Fourier Transform

m Fourier transform: expansion of f in terms of the eigenfunctions of the

Laplacian / graph Laplacian

Functions on the Real Line Functions on the Vertices of a Graph

FOURIER TRANSFORM

Fw) = (&%, f) = D{ f(x)e % dx

INVERSE FOURIER TRANSFORM

f(x) = 5= ff(w X duw

GRAPH FOURIER TRANSFORM

7(0) = (xe F) = z )

INVERSE GRAPH FOURIER TRANSFORM

f(n) = z )
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Multiplier Operators

Fourier Multiplier Operator (Filter)

fl) — FT |—F(v) g(w)F(w) — IFT — of(x)

m Fourier multiplier (filter) reshapes functions’ frequencies:

d/>\f(w) = g(w)f(w), for every frequency w

m We can extend this to any group with a Fourier transform, including
weighted, undirected graphs:

Of = IFT (g()FT(F)(w))

Functions on the Real Line Functions on the Vertices of a Graph

of(n) = ,;IX::_:E(M)?M)X@(”)
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Chebyshev Approximation

Chebyshev Polynomials

B Ta(x) := cos(narccos(x)), m To(x)=1
x € [-1, 1],
—0,1,2,.. Ti(x) = x
Ti(x) = 2xTh—1(x) — Ti—2(x)
for k > 2
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Source: Wikipedia.
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Chebyshev Approximation

Chebyshev Polynomial Expansion and Approximation

m Chebyshev polynomials form an orthogonal basis for L? ([—1, 1], \/jxiz>

o0 Every h € L2 <[—1, 1], \/%) can be represented as
—X

1 — 2 (7
h(x) = 5 + Z ¢k Tk(x), where ¢ = ;/0 cos(kB)h(cos(0))dé
k=1

m M order Chebyshev approximation to a continuous function on an
interval provides a near-optimal approximation (in the sup norm) amongst
all polynomials of degree M

SHIFTED CHEBYSHEV POLYNOMIALS

&0 To shift the domain from [-1,1] to [0,A], define

= X A
T =T (——1 h ==
k(%) k(a ),werea >

0 Ti(x) = %(x —a)Ti_1(x) — Tx_a(x) for k >2
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Chebyshev Approximation

Fast Chebyshev Approx. of a Graph Fourier Multiplier

(@)
Let & € RY*"N be a graph Fourier multiplier with ®f =

(OF)n

Approximate Graph Fourier Multiplier Operator

(f), = Z g(\e)f f)xe( fco + i ck T(Xe) f(g)XL’(”)
£=0 =

~Y |Re+ 3" 6 Tu0)| Al
=0 k=1

N =

:< cof—&—icka(ﬁ)f) = (éf)n

Here, T«(£) € RY*N and (Tw(L)f), = ng(AZ)?(Z)XZ(")
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Chebyshev Approximation

Fast Chebyshev Approx. of a Graph Fourier Multiplier

- Mo
Of = %Cof—i- Z Ck Tk(ﬁ)f ~ Of J
k=1

Question: Why do we call this a fast approximation?

Answer: From the Chebyshev polynomial recursion property, we have:
To(L)f =f

= 1 Amax
T(L)f = aﬁf— f, where o := >

T(L)f = %(.c —al) (Troa (L)) — Tra(L)f

2 _ _ _
EﬂTk,l(E)f —2T 1 (L) — Tr—a(L)f

m Does not require explicit computation of the eigenvectors of the Laplacian
m Computational cost proportional to # nonzero entries in the Laplacian
m This corresponds to the number of edges in the communication graph

m Large, sparse graph = ®f far more efficient than ®f
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Chebyshev Approximation

Distributed Computation

(@f)n - (%cof+§jl cm(c)f)n J

NODE n’S KNOWLEDGE:

(F)n Graph Fourier multiplier g(-), which
Neighbors and weights of edges to is used to compute o, Cy; . .., €y
its neighbors Loose upper bound on Amax
Task: Compute (T(L)f)n, k € {1,2,..., M} in a distributed manner
| (Tl(ﬁ)f)n = é([:f)n — (f)n = é [Jo"2,;0002,,000]] 7(f)n
_ _ _ _ 2M|E]|
= (Tu(0)f) = (2£Tica(0)f) = (2Ter(0)F) — (Tumal)f) <calar
g N messages

m To get (Tz(ﬁ)f)n, suffices to compute (L?l(ﬁ)f)n = [[0£,,000£,,000]] |[T.cex

C J
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Distributed Denoising

Distributed Denoising - Method 1

m Prior: signal is smooth w.r.t the underlying graph structure

m Regularization term: f*Lf =1 3° ° wp,, [f(m) — f(n)]?

neV m~n

& fYLF = 0 iff f is constant across all vertices

& fYLf is small when signal f has similar values at neighboring vertices
connected by an edge with a large weight

m Distributed regularization problem:

argmin %Hf —yl3+fcf (1)
f

Proposition

The solution to (1) is given by Ry, where R is a graph Fourier multiplier

operator with multiplier g(A¢) = JTM
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Distributed Denoising

Distributed Denoising lllustrative Example

m Graph analog to low-pass filtering

m Modify the contribution of each Laplacian — G spor

09 ——— Chebyshev Polynomial Approximation, M=5
——— Chebyshev Polynomial Approximation, M=15

eigenvector

D ()= Rn = % [55x] 7Oxeln)

m Use Chebyshev approximation to compute R’y
in a distributed manner

m Over 1000 experiments, average mean square r
error reduced from 0.250 to 0.013

Original Signal Noisy Signal Denoised Signal
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Distributed Denoising

Unions of Graph Fourier Multipliers

N 1 1
. . r ~N .

m So far, just a single o, (“’3‘)1
graph Fourier | | || XN
multiplier ® f -N (@),

- : ’ (@30
m Can easily extend this | [ R
. Nn - . . - Nn
to unions of graph
Fourier multipliers:
”””””””””” @0,
o, i
- J L@y

EXAMPLE: SPECTRAL GRAPH WAVELET TRANSFORM (HAMMOND ET AL., 2011)

N—1 R
i (d)f)(jfl)Nﬁ»n = 820 gj(AZ)f(K)XZ(n) forj € {1727 ce 777}7 ne {1727 sy N}

@ gj(Ae) = g(tjAe) for j € {1,2,...,n — 1}, where g(-) is a band-pass filter
@ gy(-) is a low-pass filter; coefficients represent low frequency content of signal
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Distributed Denoising

Distributed Denoising - Method 2

Prior: signal is p.w. smooth w.r.t. graph < SGWT coefficients sparse
Regularize via LASSO (Tibshirani, 1996):

min Llly — W*al} + pllals
m Solve via iterative soft thresholding (Daubechies et al., 2004):

a(k) = S}_A,T (a(k_l) + W (y - W*a(k_l))>, k= 17 27 s

D-LASSO (Mateos et al., 2010) solves in distributed fashion, but requires
2|E| messages of length N(J + 1) at each iteration

m Communication cost of Chebyshev polynomial approximation:

G0 One computation of Wy (2M|E| messages of length 1)

ol At each soft thresholding iteration, distributed computation of

WW*alk=1) (2M|E| messages of length J + 1 and 2M|E| messages of
length 1)

G0 One final computation of W*3 to recover signal (2M|E| messages of
length J + 1)
m Key takeaway: communication workload only scales with network
size through |E|, otherwise independent of N
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Conclusion

Summary

m Graph Fourier muliplier operators are the graph analog of filter banks

G0 They reshape functions’ frequencies through multiplication in the graph

Fourier domain

® A number of distributed signal processing tasks can be represented as
applications of graph Fourier multiplier operators

m We approximate graph Fourier multipliers by Chebyshev polynomials

m The recurrence relations of the Chebyshev polynomials make the
approximate operators readily amenable to distributed computation

m The communication required to perform distributed computations only
scales with the size of the network through the number of edges in the

communication graph

m The proposed method is well-suited to large-scale sensor networks with
sparse communication graphs
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Conclusion

Ongoing Work and Extensions

m Reviewer: “This seems to be a very interesting technique looking for a
problem”

&0 Other possible applications we are working on include distributed

smoothing, deconvolution, classification, and learning

& More thorough comparisons of communication costs with alternative
distributed methods for these applications

m Extension: use the eigenvectors of other symmetric positive-semidefinite
matrices as bases
m Robustness issues

oo Sensitivity to quantization and communication noise - how do they
propagate?

0P Effect of a sensor node dropping out of the network or losing synchronicity
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Conclusion

Further Reading

SPECTRAL GRAPH THEORY AND LAPLACIAN EIGENVECTORS

‘ F. K. Chung, Spectral Graph Theory. Vol. 92 of the CBMS Regional Conference Series in Mathematics,
AMS Bokstore, 1997.

‘ T. Biyikoglu, J. Leydold, and P. F. Stadler, Laplacian Eigenvectors of Graphs. Lecture Notes in
Mathematics, vol. 1915, Springer, 2007.

CHEBYSHEV POLYNOMIALS

Q J. C. Mason and D. C. Handscomb, Chebyshev Polynomials. Chapman and Hall, 2003.

Q G. M. Phillips, Interpolation and Approximation by Polynomials. CMS Books in Mathematics,
Springer-Verlag, 2003.

‘ T. J. Rivlin, Chebyshev Polynomials. Wiley-Interscience, 1990.

SPECTRAL GRAPH WAVELET TRANSFORM

@ D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral graph theory,”
Appl. Comput. Harmon. Anal., vol. 30, no. 2, pp. 129-150, Mar. 2011.
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