

Energy-Efficient Transmission Scheduling with Strict Underflow Constraints

David I Shuman and Mingyan Liu, Electrical Engineering and Computer Science Department, University of Michigan Contact: dishuman@umich.edu

Motivating Application – Wireless Media Streaming

- Single source transmitting data streams to one or more receivers/users over a shared wireless channel
- Available data rate of the channel varies with time and from receiver to receiver

Timing in Each Slot

- · Transmitter learns each channel's condition
- Transmitter allocates some amount of power (possibly zero) for transmission to each user
- · Transmission and reception
- Packets are removed / purged from each receiver's buffer for playing

Transmission Scheduling Objectives

- · Avoid underflow so as to ensure playout quality
- Minimize system-wide power consumption in order to:
 - Prolong the system's lifetime
 - Maximize the number of receivers the sender can support
 - Limit interference

Main idea – Opportunistic Scheduling

- Exploit the temporal and spatial variation of the channel by transmitting more data when the channel condition is "good" and less data when the channel condition is "bad"
 - Challenge is to determine what is a "good" condition and how much data to send accordingly
- Strict underflow constraints represent a competing quality-ofservice interest

Summary of Contributions

1. Relation to inventory theory

- In inventory language, our problem is a multi-period, multiitem, discrete time inventory model with random ordering prices, deterministic demand, and budget constraints
 - Items \rightarrow Data streams for each of the mobile receivers
 - Inventories \rightarrow Receiver buffers
- Random ordering prices \rightarrow Random channel conditions
- Deterministic demand $\,\rightarrow\,$ Users' packet requirements for playout
- Budget constraint \rightarrow Transmitter's power constraint

2. Structure of optimal policy for the single receiver case

Low SNR Regime. Linear Power-Rate Curve with Peak Power Constraint Results in Modified Base-Stock Policy

ligh SNR Regime. Piecewise Linear Convex Power-Rate Curve Results in Finite Generalized Base-Stock Policy

• We can also determine the "critical numbers" when certain technical conditions are satisfied

3. Structure of optimal policy for the two receiver case

Ongoing Work

 Develop near-optimal policies and better intuition for general M-receiver case through numerical approximation techniques

ΤΟΥΟΤΑ

Aerospace Engineering • Applied Physics • Atmospheric, Oceanic and Space Sciences • Biomedical Engineering • Chemical Engineering • Civil and Environmental Engineering • Electrical Engineering and Computer Science • Industrial and Operations Engineering • Interdisciplinary Programs • Macromolecular Science and Engineering • Materials Science • Materials Science and Engineering • Mechanical Engineering • Naval Architecture and Marine Engineering • Nuclear Engineering and Radiological Sciences

