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Signal Processing on Graphs
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Some Typical Graph Signal Processing Problems

Compression /Visualization
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Orthonormal Dictionaries
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Orthonormal Dictionaries (cont.)
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Overcomplete Dictionaries and Sparsity

e Given an overcomplete ®, there are infinitely many choices of o that
lead to the same signal f

e Useful to sparsely represent signals —> few non-zero coefficients in o



Motivating Example: Denosing

e Tikhonov regularization for denoising: argmin; {||f — y||5 + /" L
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e Wavelet denoising:
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Motiving Example: Compression

Piecewise-Smooth Signal with Diffusion Wavelet Coefficients,
Discontinuities Sorted by Magnitude
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Motivating Example: Any Structure?




Dictionary Design for Signals on Graphs
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Desirable Characteristics

e Ability to sparsely represent signals — few non-zero
coeflicients in o

e Ability to capture the relevant characteristics of signals
to extract information

e Computationally efficient to apply ® and &'



Frames

e Overcomplete dictionary of m
atoms in R forms a frame if

AllfI13 < D100l < BIIFIIE,
= Vf e R"

e Desirable to have a tight frame == &= 8
(A=B), because then the frame
operator ®P* is a multiple of the
identity operator; equivalently,

f= 7 S (.06 VF €R”
1=1

® Christensen, Frames and bases, 2008
5] Kovacevi¢ and Chebira, Life beyond bases: The advent of frames, SPM, 2007
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Why Do We Need New Dictionaries?

To identify and exploit structure in the data, we need to account for the
intrinsic geometric structure of the underlying graph data domain
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The Essence of the Problem
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* Weighted graphs are irregular structures that lack a shift-invariant
notion of translation

e Many simple yet fundamental concepts that underlie classical

signal processing techniques become significantly more challenging
in the graph setting
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Approach: Leverage Intuition from Euclidean Settings to
Develop New Mathematical Tools for the Graph Setting

Generalized

Operators

Computational
Harmonic Analysis Signal
Applications + Transforms /
. Dicti i
Spectral and Algebraic (CHONATIES
Graph Theory
+

Numerical Linear Algebra

Theoretical Scalable

Underpinnings Algorithms
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Survey of Approaches to Graph
Signal Dictionary Design
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Analytic Versus Trained Dictionaries

% Rubinstein et al., Dictionaries for sparse representation modeling, Proc.
IEEE, 2010

e Analytic dictionaries: adapted to graph structure, but not
to any specific training signals

e Dictionary learning: adapt dictionary to training data

- Aharon et al., The K-SVD, TSP, 2003
- [ Engan et al., Method of optimal directions for frame design, ICASSP, 1999

- These general methods do not explicitly account for graph structure

e Parametric training: force some structure upon the
dictionary (e.g., to incorporate graph topology, ensure an
efficient computational implementation), but use training
signals to learn parameters
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Survey of Approaches to Graph Signal
Dictionary Design

 Graph Fourier transform

e Vertex domain designs

* Diffusion-based designs

e Windowed graph Fourier transform
* Spectral domain designs

e Generalized filter banks
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Combinatorial Graph Laplacian

Connected, undirected, weighted graph
g =4{V,&, W}

Degree matrix D: zeros except diagonals,
which are sums of weights of edges incident
to corresponding node

Non-normalized graph Laplacian:
L:=D—-W

Complete set of orthonormal eigenvectors and
associated real, non-negative eigenvalues:

ﬁUe = )\eUe,

ordered w.l.o.g. s.t.

0=MXo < A1 < X2... < AN—1 := Amax

0 3 .1 0
3 0 2 5
W=1197 2 o 7
0 5 .7 0
4 0 0 O
0 1 0 O
D=19 0 1 o
0 0 0 1.2

Discrete difference operator: (Lf)(i) = Z'e/\/‘,- Wi ;[f(i) — f(J)]

J
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Graph Fourier Transform

e Graph Laplacian eigenvectors are the analog of complex exponentials: Values of the
eigenvectors associated with low eigenvalues change less rapidly across connected
vertices

o Different choices of graph Fourier basis include combinatorial /normalized /random
walk Laplacian eigenbasis or generalized eigenbasis of adjacency matrix
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The GFT Incorporates the Graph Structure

Vertex 1
Domain @l ...

Inverse Graph Fourier
_ Transform = Synthesis

Graph Fourier Transform = Analysis
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The GFT Incorporates the Graph Structure
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Survey of Approaches to Graph Signal
Dictionary Design

e Graph Fourier transform
* Vertex domain designs
* Diffusion-based designs
e Windowed graph Fourier transform
* Spectral domain designs

e Generalized filter banks

22



Vertex Domain Designs

Spatial Wavelets Hierarchical Trees  Lifting

Evens .
Vn\ X(j+1)

&

m t=1 xU) — Split Predict Update

£=2 .

0@ 00 06 0s fL .

+ y(J"'l)
‘ Yo 0dds g
Y111 3 Narang and Ortega, Lifting based wavelet
. transforms on graphs, APSIPA, 2009

Y1,1,2 —

| Source: Crovella and W | Jansen et al., R. Stat. Soc. Ser. B, 2009

,,,,,,,,,, Kolaczyk, 2003 ""2": =) Shen and Ortega, TSP, 2010

2,21 = Rustamov, Wavelets on graphs via

@ Crovella and Kolaczyk, deep learning, NIPS, 2013

Graph wavelets for spatial 2,22
traffi lysi Pﬁ—’
I?F(Sjgg?\/[ysé%gg Y223 @ Gavish et al., Multiscale wavelets on
’ 4—“‘.— trees, graphs and high dimensional data,
3] Wang and Ramchandran, } Yasa ICML, 2010
|

Random multi resolution i Murtagh, J. Classification, 2007
representations for arbitrary T “r . % Lee et al., Ann. Appl. Stats., 2008

sensor network graphs,
ICASSP, 2006 Ram et al., TSP, 2011 93

Source: Gavish et al, 2010 i



Survey of Approaches to Graph Signal
Dictionary Design

e Graph Fourier transform

e Vertex domain designs

* Diffusion-based designs

e Windowed graph Fourier transform
* Spectral domain designs

e Generalized filter banks

24



Diffusion-Based Designs

e Start with a unit of energy at a single vertex and let it diffuse:

=0

=1

5] Coifman and Lafon, Diffusion
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e How much it diffuses over a fixed time depends on the graph structure:
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Multiresolution Scaling Function Spaces
Approximation Spaces
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Diffusion Wavelet Atoms
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Survey of Approaches to Graph Signal
Dictionary Design

e Graph Fourier transform

e Vertex domain designs

* Diffusion-based designs
 Windowed graph Fourier transform
* Spectral domain designs

e Generalized filter banks
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Classical Windowed Fourier Transform

m Localized Fourier analysis — joint descriptions of signals’ temporal and spectral

behavior

8 Localized oscillations appear frequently in audio processing,

vibration analysis, radar detection, etc.

GF e.g., identify musical notes and melody at different times

m Windowed (short-time) Fourier transform of f € L?(R):

SF(s,€) = (F, gs.¢) = /

f(t)g(t —s)e 2™stdt

m The atoms g; ¢ are localized in time and frequency:

AN

Translation T
=
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Generalized Translation/Localization

e Define a generalized convolution by imposing that convolution in the
vertex domain is multiplication in the graph spectral domain

e Define generalized translation via generalized convolution with a delta

Functions on the Real Line

For f € L?>(R), in the weak sense
(TsF)(t) :=f(t —s)
= (f % d5)(t)

:/f(é-)e—Qﬂ'igse2ﬂ'i£td£
R

Functions on the Vertices of a Graph

For f € RN we define

(Tif)(n) := V' N(f % 6;)(n)

N—1
— VN Z F(Ne)up (ug(n)
=0

y
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Properties of Generalized Translation/
Localization

m Warning 1: Do not have the group structure of classical translation:
TiT) # Tiss

m Warning 2: Unlike the classical case, generalized translation operators are
not unitary, so || Tig||2 # ||gl|2 in general

m However, the mean is preserved: ) (T;g)(n) =>_, g(n)

Theorem (Smoothness of g leads to localization of T;g around vertex i)

Let g : [0, Amax] — R be a kernel and define d;, := dg(i,n). Then

(Tig)(n)| < VNBz(din — 1),

where Bz (K) is the minimax polynomial approximation error over all polynomials of
degree K:

Pk | A€[0,Amax]

%mw:m{ wp|mn—ﬁuﬂu
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Windowed Graph Fourier Transform

Translate a window g to each vertex of the graph

L.,

1

LIt A el

T20008

T1008

Multiply each component of the graph signal f of interest by the
corresponding component of the translated window T;g

Take the graph Fourier transform of f. x T;g (recall analysis)

@ Shuman et al., Vertex-frequency analysis on graphs, ACHA, 2016
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Windowed Graph Fourier Transform (cont.)

e Windowed graph Fourier atoms: gix:— MyTig
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Spectrogram Examples

Y
Red

Blue

Green
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Spectrogram Examples

e Spectrogram = frequency-lapse video

Red Blue Green
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Survey of Approaches to Graph Signal
Dictionary Design

e Graph Fourier transform

e Vertex domain designs

* Diffusion-based designs

e Windowed graph Fourier transform
* Spectral domain designs

e Generalized filter banks

36



Spectral Graph Wavelets

[ Hammond et al., Wavelets on graphs via spectral graph theory, ACHA, 2011

e Generalized dilation: e Spectral graph wavelet at scale s,
— A centered at vertex n:
Dsg(A) = g(sA)
15 N=1
Vs, (i) == (TnDsg) (1) = > G(sAe)ug(n)ue(i)
¢=0
1+
g(sA
§(sA) N Semi-Local Graph

37



Spectral Graph Wavelet Localization

wsl,n

Characterizations of this localization

Hammond et al., Wavelets on graphs via spectral
graph theory, ACHA, 2011 "
S5,1

@ Shuman et al., Vertex-frequency analysis on graphs, ACHA, 2016

38



Translated Kernel Variants

Meyer-Like Tight

Log-Warped Tight

. SGWT (not tight) . Wavelet Frame . Wavelet Frame
Tight _zf\/\/\/\/—\ | |
Wavelet 15 :
Frames 1 05 05
A A A
Path Graph Sensor Network Comet Graph Random E-R
Spectrum- '
Adapted "075
A A A A

4 Leonardi and Van De Ville, Tight wavelet frames on multislice graphs, TSP, 2013

%] Shuman et al., Spectrum-adapted tight graph wavelet and vertex-frequency

frames, TSP, 2015
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Translated Kernel Variants (cont.)

e Restrict kernels to be polynomials of a given degree, and learn the
polynomial coeflicients from a training data set

els
els

Parametric
Learning

ng kern
ng kern

Eigenva .l of the La pl n(\) ‘ Eigenvahies of the Lapllcian (N)
(b)Kle © K =20

4 Zhang et al., Learning of structured graph dictionaries, ICASSP, 2012

4] Thanou et al., Learning parametric dictionaries for signals on graphs, TSP, 2014
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Survey of Approaches to Graph Signal
Dictionary Design

e Graph Fourier transform

e Vertex domain designs

* Diffusion-based designs

e Windowed graph Fourier transform
* Spectral domain designs

e Generalized filter banks
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1D Wavelets Via Filter Banks
Classical 2-Channel Critically Sampled Filter Bank

Analysis : Synthesis

rec

Iterating Low Pass Branch Yields Wavelets

e To extend to the graph setting,

. . Single ¢, y(l)
we need appropriate notions of (0] +_s Levelof
. . the FB e ¢ » v(2)
dowr}samphng, upsamphng, e y
filtering, graph reduction x| thers e e y13)
the FB
e Some issues that arise: X2 single (4
x(3) the FB +—— x(4)

- Difficulty generalizing conditions on filters ensuring
properties such as perfect reconstruction, orthogonality

- Preserving a meaningful correspondence between
filtering at different resolution levels 2



Generalized Operators
Downsampling and Graph Reduction

e Downsampling + graph reduction =
a multiresolution of graphs

e Methods used here:

- Graph downsampling by polarity of
Laplacian eigenvector associated with
largest eigenvalue

- Kron reduction with spectral
sparsification

e Alternative: coarse graining

43



Generalized Operators
Graph Spectral Filtering

e Filtering: represent an input signal as a combination of other signals, and
amplify or attenuate the contributions of some of the component signals

e In classical signal processing, the most common choice of basis the
complex exponentials, which results in frequency filtering

N\

(1) = FT —=f(§) —= & —=&(f(§) —= IFT [— &f(t)
f(t)=20cos(2x(1)Y) + 2c0s(@x(11)t) £(&) . F(©)a(&) Of(t)

20 10 [-X-} 10 [-X-} 20

-20 2 I I 2 I I -20

-2 —i 0 1 2 -10 0 10 -10 0 10 -2 —1‘ O 1 2
Time Frequency (Hz) Frequency (Hz) Time
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Example: Image Denoising by Low-Pass Graph
Filtering

> g(\o)f(\e) —>] IGFT |—= of(n)

o>

f(n) —> GFT _[—>=f(X¢) —>

Semi-Local Graph Tikhonov Regularization

. 1 > - 1

argmin {||f — y||5 +yf Lf} P o
f g

— 200) = — L

g\N\¢) = —— ] i "

1 + FyAe 0 2 4 ; 8 10
o 4
Gaussian-Filtered Gaussian-Filtered

(Std. Dev. = 1.5) (Std. Dev. = 3.5) Graph-Filtered




Architecture Example 1:
A Multiscale Pyramid Transform for Graph Signal

j X () I .
LU e— | SZIee::tt(ieon I = Re?j?&hon | . p+1)
\ * m(J)
J
) e 1 \ | Interpolate — i
x{ HO \Lvl from V,toV ? y(J)
o x(i+1)

Generalization of classical Laplacian pyramid of Burt and Adelson

Overcomplete transform

Replace classical prediction step (upsample then low pass filter) with a graph
interpolation operator

Iterate on xU*1: Yields a multi-resolution of the underlying graph and a multi-
resolution approximation of the the graph signal

@ Burt and Adelson, The Laplacian pyramid as a compact image code, TCOM, 1983

@ Shuman et al., A multiscale pyramid transform for graph signals, TSP, 2016
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A Multiscale Pyramid Transform for Graph Signals

Multiresolution

Examples

Original Signal - x(©

x(

x@

04

08

e
3

» "L}W‘»b.v/' =
00 08¢
s
x f/

@ Shuman et al., A multiscale pyramid transform for graph signals, TSP, 2016

Prediction
Errors

Coarse
Approximations
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A Multiscale Pyramid Transform for Graph Signals
Multiresolution Examples

Original Signal - x© x(D x® x®)
' 2 By}
A’ 0%
- ‘ A
g : " {."." X R
. . ) . ey e ?" ".':'. Y B Coarse
- - > kLo N I * | Approximations
. . ,..;! PR R R
. ;AL
- i WY

y(© y y®@

5 \ \ Prediction
j ., ? ., § Errors
2 & 2 K 2

@ Shuman et al., A multiscale pyramid transform for graph signals, TSP, 2016



A Multiscale Pyramid Transform for Graph Signals
Compression Example

002000 4000 6000 8000 10000 12000 14000 16000

(b)

Figure: Compression example. (a) The original piecewise-smooth signal
with a discontinuity on the Stanford bunny. (b) The sorted magnitudes
of the 15346 pyramid transform coefficients. (c) The reconstruction from
the 2724 coefficients with the largest magnitudes, using the least squares
synthesis.

@ Shuman et al., A multiscale pyramid transform for graph signals, TSP, 2016
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A Multiscale Pyramid Transform for Graph Signals
Denoising Example

(a) (b) | (©)

Figure: Denoising example. (a) Piecewise constant signal on the
Minnesota graph. (b) Noisy observation with o = 7. (c) Denoised signal
reconstructed after hard thresholding the prediction errors of a two-level
pyramid transform.

@ Shuman et al., A multiscale pyramid transform for graph signals, TSP, 2016
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Architecture Example 2:
M-Channel Critically Sampled Graph Filter Bank

Architecture
Analyss . Synthess e Number of vertices in V;
f H, ~@— Interpolate is equal to the number of
eigenvalues in the support
H, —@—— Interpolate of the corresponding filter
Interpolate
C'i')_‘ frec
Ideal Filter Bank
Interpolate 1

0.5

[g)L T RS T AU T o W ] I Ot LR R TIRT NIRRT -
0 15

@ Jin and Shuman., An M-channel critically sampled filter bank for
graph signals, ICASSP, 2017 51



Sampling and Interpolation

 How to sample a graph signal and interpolate from the samples?

e Subset Vs of vertices is a uniqueness set for a subspace P iff:

If two signals in the subspace P have the same values on the
vertices in the uniqueness set, then they are the same signal

e Partition into uniqueness sets for ideal filter bank subspaces:

@ Jin and Shuman., An M-channel critically sampled filter bank for
graph signals, ICASSP, 2017

52



How to Evaluate Dictionaries /
Open Research Questions



Dictionaries Galore

Subgraph Filter Bank Cr:t:cally—Say:ﬂgd Filter Bansly<ntheSiS Spatial Wavelets

10 0m “ —

Oversampled Filter Bank Crovella and Kolaczyk, 2003 le—>%""

Y112

Hierarchical Trees

@ i

,,,,,

Which multiscale transforms for signals s

on graphs are well-suited for which "
Bo . . . Yaaa

Spectral Graph signal processing tasks, which classes of o

Wavelets

signals, and which types of graphs?

-

) .
=  Coifman and
Maggioni, 2006  Top-Down Approaches

Lk, 5 ne
iu!. oyl

Circulant Subgraph Decomposition

H (@), Q)—

N0

Ekambaram, Ph.D. Thesis, 2013




Approach

Generalized

Operators

Computational
Harmonic Analysis SEGE]
Applications + Transforms /
. Dicti i
Spectral and Algebraic ictionaries
Graph Theory
+

Numerical Linear Algebra

Theoretical Scalable

Underpinnings Algorithms

e Which multiscale transforms for signals on graphs are well-suited
for which signal processing tasks, which classes of signals, and
which types of graphs?



1. Signal Models and Sparsity

e For signals on Euclidean data domains, we have results
characterizing classes of signals that are well-approximated by
different transforms

- e.g., piecewise-smooth 1D signals by wavelets, 2D cartoons with
curvilinear discontinuities by curvelets/shearlets

e Connections between properties of graph signals, the graph
structure, and the decay of transtorm coefficients?

 Empirically, many of the proposed transforms sparsely represent
smooth and piecewise smooth graph signals, but there is little in
the way of theoretical guarantees to date
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Mathematical Models for Graph Signals

e Bandlimited or concentrated on

specific parts of the spectrum APPFOXImately bandlimited

- with noise

- approximately bandlimited with some
extra components (model mismatch)

e Globally smooth/low pass

e Piecewise-smooth /locally regular

e Linear combination (possibly
sparse) of some dictionary atoms

- variational splines (Green’s functions)

3] Pesenson, Sampling in Paley-Wiener spaces
on combinatorial graphs, T. AMS, 2008

- overlapping local patterns

5] Thanou et al., Learning parametric
dictionaries for signals on graphs, TSP, 2014

57



Notions of Global Regularity

Quadratic Form / > w(m,n)[f(n) — f(m)]* = £°Lf
Total Variation
(m,n)e€
Zhu et al., ICML, 2003
p-Dirichlet Form 1 0 z
(Elmoataz et al., TIP, — Z Z w(m, ’n) [f(n) — f(m)]
2L, P ey nENm
Elmoataz et al., TIP, 2008
N-—-1
s-Linearly FIN)2 < —s
Compressible Z |f()\z)| <Oy
=

Zhu and Rabbat, ICASSP, 2012

Semi-Norm

Discrete Soboley | Fle 2= 122 Fllo = |1 277 2 = \/Z Ml f ()P
12

Ricaud et al., SPIE, 2013
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Notions of Local Regularity

Local
Variation

Holder
Regularity

Laplacian
as

Derivative

1Vflla = | Y wlm,n)[f(n) = f(m)]"

nENm,

=

A graph signal f is (C, o, r)-Holder regular with respect

to the graph G at vertex n € V' if

[f(n) = f(m)| < Cldg(m,n)]*, Vm € N(n,r)

Gavish et al., ICML, 2010

(L* £)(n) as a measure of local regularity of fin a

neighborhood of radius k£ around vertex n

e If fis constant on a neighborhood of radius & around

vertex n, this quantity is equal to 0

Ricaud et al., SPIE, 2013
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2. Application-Driven Developments

e Which mathematical models actually match graph signals
found in applications?

e Can we collectively build a set of applications/problems to
empirically explore and compare the behavior of different
dictionaries to better understand what works well when?

e How can specific signal processing tasks arising in certain
applications inform dictionary design?

e Recent applications include brain signals, road traflic, video
compression, epidemic outbreaks, climate data, and social
networks
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3. Cumulative Coherence of Atoms

e Ideally, atoms should not be too correlated with each other

e An extreme example:

SGWT Meyer-Like Tight Log-Warped Tight Spectrum-Adapted
, Wavelet Frame | Wayelet Frame | Tight Wavelet Frame
2.5‘(\/\/\/\/_\ 1.25 q 1.25 1 o8l
] j

2 ] 1f
- ] i q 0.75 075!

1} 05 0.5
0.5 1 0.25 \ q 0.25!

0 20 40 60 80 100 0 20 40 60 80 100120140160180 0(!) 20 40 60 80 100120140160180

A A A A

e Cumulative coherence for a given sparsity level k

p1 (k) == max max Z

©O|=k YEDy1,2,... N.M}N\O

61



4. Vertex-Frequency Tiling

e To sparsely represent large classes of signals, it can be
desirable for dictionary atoms to be jointly localized in
vertex (time) and graph spectral (frequency) domains

Graph Signals on the Path Graph

Signals on the Real Line

A I

170
160
Al 150|
’ - . > + + 140
— - S o0 .
06
120 120
} + + 110 110
100 05 100
0.08
% ~ %
4 4 80 0.4 0
70 70 0.06
60 0.3 60
50 50 0.04
40 = 02 40
30 30
0.1 20 — 0.02
10
0 o
140 160 180 20 40 60 80 100 120 140 160 180
n

SGWT

- 20
_ 10
0
20 40 60 80 100 120
n
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e For signals on the real line, the Heisenberg uncertainty
principle characterizes the tradeoff in resolution between

the two domains



4. Vertex-Frequency Tiling (cont.)

e Unlike the complex exponentials, the graph Laplacian
eigenvectors can be localized (highly concentrated on a small

region of the graph)

& Saito and Woei, RIMS Kokyuoku, 2011

e As a result, some graph signals may be simultaneously
localized in both the vertex and graph spectral domains

962,100

N
1
0
-1 0 1

0.3

0.25

oo )| -

0.15

0.1

0.05

01234567891011&

A’ﬂ

962,450

-1
A
1
[
-1 » o f

|§62,450(A'€)|

1.5

1

0.5

0123456789101115

A,

962,983

N
| \,/V’%

0
- 0 ;

|§62,983(A’/f)|

3.5
3
25
2
1.5
1
0.5

012345678910

A’/{

112

63



4. Vertex-Frequency Tiling: Open Questions

e How are structural properties of weighted graphs theoretically
related to the (non-)localization of the graph Laplacian eigenvectors?

e Different ways to measure spreads in the two domains?

e New uncertainty principles?
- Uncertainty principles can be used to show unexpected things are possible

- Example: partial, noisy observation of a bandlimited signal recoverable
because a bandlimited signal cannot be concentrated on missing values
(provided few enough values are missing and/or bandlimit is low enough)

@ Donoho and Stark, Uncertainty principles and signal recovery, 1989

Theoretical results characterizing fundamental limits of graph signals
such as uncertainty principles inform dictionary design

& Agaskar and Lu, A spectral graph uncertainty principle, T. Info. Theory, 2013
5| Pasdeloup et al., Toward an uncertainty principle for weighted graphs, 2015
5] Tsitsvero et al., Signals on graphs: Uncertainty principle and sampling, 2015

% Perraudin et al., Global and local uncertainty principles, 2016 64



5. Scalable /Distributed Implementations

 Routines that avoid full eigendecompositions
- e.g., polynomial approximations for graph spectral filtering
- fast graph Fourier transforms?

e Reduce storage and communication requirements in
distributed settings

e Leverage numerical linear algebra literature / form
collaborations with researchers from that area

e Connections with solving symmetric, diagonally-
dominant systems of equations

&) Spielman, http://www.cs.yale.edu/homes /spielman /precon /precon.html
® Saad, Iterative methods for sparse linear systems, 2003

@ Livne and Brandt, Lean algebraic multigrid: Fast graph Laplacian linear solver, 2012
® Vishnoi, Lx—=b Laplacian solvers and their algorithmic applications, 2013 65



6. Graph Construction and Choice of Graph
Fourier Basis

e Different choices of graph construction (choosing edges and
weights, directed /undirected)

e Different notions of distance (geodesic/shortest path,
resistance, diffusion, algebraic)

e Different choices of graph Fourier basis

e Recent flurry of work on graph topology identification/learning
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Explore

i The Graph Signal Processing Toolbox

You thought signal processing on graphs was hard?

Home Download Contact Documentation Development Team Related

The Graph Signal Processing toolbox is an easy to use matlab toolbox that performs a wide
variety of operations on graphs, from simple ones like filtering to advanced ones like interpolation or
graph learning. You can create all sorts of filterbanks including wavelets and Gabor. It is based on
spectral graph theory and many of the features can scale to very large graphs.

e https://lts2.epfl.ch/gsp/

e https://www.macalester.edu/~dshumanl /publications.html
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Summary

Weighted graphs are a flexible tool to represent a wide variety of
topologically-complicated data domains

To identify and exploit structure in the data, we need to design
dictionaries that incorporate the intrinsic geometric structure of the
underlying data domain

Try to leverage intuition from computational harmonic analysis of
signals on Euclidean domains

- Some ideas generalize relatively straightforwardly (e.g., notion of frequency)

- However, signals and transforms on graphs can have surprising properties
due to the irregularity of the data domains (e.g., uncertainty principle)

Field is emerging
- Requires more connections/iterations between dictionary design, theory,
algorithms, and applications

- Application of these techniques to real science and engineering problems is
in its infancy
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