
David Shuman 
Joint work with Shuni Li and Yan Jin 

June 6, 2018 
Graph Signal Processing Workshop 

Lausanne, Switzerland

A Scalable M-Channel 
Critically Sampled 
Graph Filter Bank



f H1

H2

frec

↓Ѵ1

↓Ѵ1
c

↑Ѵ1

↑Ѵ1
c

G1

G2

+"

Analysis" Synthesis"

Graph Spectral Filter Banks

2

l For irregular graphs, it is difficult to generalize conditions on filters 
ensuring properties such as perfect reconstruction, orthogonality 

l Approach 1: Decompose into structured subgraphs
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Approach 2: Replace Upsampling and Synthesis 
Filters with Interpolation Operators

3

Ideal Filter Bank

Architecture
l Number of vertices in Vm 

is equal to the number of 
eigenvalues in the support 
of the corresponding filter
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l How to sample a graph signal and 
interpolate from the samples?   

l How to choose the samples 
depends on your prior knowledge 
of the data 

l Subset Vs of vertices is a 
uniqueness set for a subspace P 
iff:  

If two signals in the subspace P 
have the same values on the 
vertices in the uniqueness set, 
then they are the same signal

Sampling and Interpolation

4
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Can we recover all 500 values of this 
signal from 30 measurements? If so, where 

should we take those measurements?  



Partition into M Uniqueness Sets for Ideal 
Filter Bank Subspaces

5

l Initialize selection for each band via greedy algorithms 
l Refine to ensure the partition with techniques initially discovered in the 

context of matroid theory
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Fast M-CSFB



Improving the Computational Efficiency for Large, 
Sparse Graphs

77

Replace with non-
uniform random 

sampling

Hmf

= Uhm(⇤)U>f

⇡ Uh̃m(⇤)U>f

= h̃m(L)f

Polynomial 
approximation:

UVm,Rmx = yVm

Recover graph 
Fourier coefficients: 

Interpolate: 

Replace with 
convex 
optimization 

f̃m = U:,Rmx



Improving the Computational Efficiency for Large, 
Sparse Graphs

88

l How to design the filters to be more 
amenable to polynomial approximation? 

l How to allocate the N samples across 
the channels? 

l How to choose the non-uniform random 
sampling distribution for each 
downsampling set? 

l How to regularize the interpolation?

Can we improve the reconstruction error due to 
numerical approximations if we adapt our 
answers to these questions to the signal f?



Filter Bank Design
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Filter Bank Design
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Sampling Weights
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downsampling operator

signal model space

approximate 
by convex 
optimization 
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0.04h̃m(L)�il Dictionary atoms are of the form  

l Localized within K hops of 
center vertex  

l As K increases, become more 
concentrated in spectral domain 

Joint Localization of Atoms
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Fast, Signal-Adapted M-CSFB
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l Initial allocation proportional to  

l Multiply by                          and renormalize

Trace(X>h̃m(L)X)



Computation Times and Reconstruction Errors 
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l Computational complexity of setup and analysis is  

- Leverage single computation of                               to 
estimate (i) spectral density for filter bank design, (ii) 
number of samples for each band, and (iii) non-uniform 
sampling distributions 

l Can be viewed as a fast graph Fourier transform with 
coarser resolution in the spectral domain 

l On the other hand, atoms of the proposed transform can 
be viewed as a subset of the atoms of a spectral graph 
wavelet transform (with different filters)

Discussion

19

{T̄k(L)X}k=0,1,...,K

O(JK|E|)


