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Graph Spectral Filter Banks

Analysis Synthesis

rec

e For irregular graphs, it is difficult to generalize conditions on filters
ensuring properties such as perfect reconstruction, orthogonality

e Approach 1: Decompose into structured subgraphs

Narang and Ortega, “Perfect reconstruction two-channel wavelet

filter banks for graph structured data,” TSP, 2012

5] Enkambaram et al., “Critically-sampled perfect reconstruction spline-wavelet

filterbanks for graph signals,” GlobalSIP, 2013

5 Kotzagiannidis and Dragotti, “The graph FRI framework - spline
wavelet theory and sampling on circulant graphs,” ICASSP, 2016



Approach 2: Replace Upsampling and Synthesis
Filters with Interpolation Operators

Architecture

Analysis Synthesis

e Number of vertices in Vy,

Interpolate

is equal to the number of
eigenvalues in the support

Interpolate

of the corresponding filter

Interpolate

C'i')_‘ frec
Ideal Filter Bank

Interpolate

Chen et al., “Discrete signal processing
on graphs: sampling theory,” TSP, 2015
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Sampling and Interpolation

e How to sample a graph signal and

interpolate from the samples? .
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@ Pesenson, “Sampling in Paley-Wiener spaces on combinatorial graphs,” Trans. AMS, 2008 ,



Partition into M Uniqueness Sets for Ideal
Filter Bank Subspaces

e Initialize selection for each band via greedy algorithms

e Refine to ensure the partition with techniques initially discovered in the
context of matroid theory

@ Greene and Magnanti, “Some abstract pivot algorithms,” SIAM J. Appl. Math., 1975



Fast M-CSFB



Improving the Computational Efficiency for Large,

Sparse Graphs

Analysis
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Improving the Computational Efficiency for Large,
Sparse (Graphs

Analysis Synthesis

0 | e How to design the filters to be more

H, Vi Interpolate . . .
amenable to polynomial approximation?

| -Go){nterpolate ~ * How to allocate the N samples across

- - @—fe§  the channels?

|4 interpolate e How to choose the non-uniform random

sampling distribution for each
downsampling set?

=i AT =iy

e How to regularize the interpolation?

Can we improve the reconstruction error due to
numerical approximations if we adapt our
answers to these questions to the signal t7



Filter Bank Design

Logarithmically Spaced,
Spectrum-Adapted Filter Bank
1
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5] Lin, Saad, and Yang, “Approximating spectral densities of large
matrices,” SIAM Review, 2016



Filter Bank Design

Estimate of Spectral CDF Initial Filter Bank
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Non-Uniform Random Sampling

Lowpass (smooth) signals

Signal Model Sampling Weights
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Non-Uniform Random Sampling
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Signal Model
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approximation of the filter
describing the signal model

e follow a standard normal dist.

@ Puy et al., “Random sampling of band limited signals on graphs,” ACHA, 2016
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Efficient Interpolation

downsampling operator

approximate min HQ 1/2 (M 2 — Yy )H%

by convex o~ 1 m m
optimization & z€COL(U:, R, ) o
problem  # - signal model space | )

. 1/2 v
min {WHQ 2 (Mz — v, )13 + ZTsom(E)Z}
optimality

condition

(ngﬂfnfvm M, + som(ﬁ)) M TQm v, Yo,

solve with preconditioned
conjugate gradient

preconditioner:
diag (1 + %1{i€vm})
(]
@ Puy et al., “Random sampling of band limited signals on graphs,” ACHA, 2016 13




Joint Localization of Atoms

e Dictionary atoms are of the form h,,,(£)d;

e Localized within K hops of
center vertex

e As K increases, become more

concentrated in spectral domain
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Fast, Signal-Adapted M-CSFB



Adapting the Sampling Weights to

the Signal

Number of Samples

Weights Realization Error
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Adapting the Allocation of Samples
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e Initial allocation proportional to Trace(X ' hn,(L£)X)
e Multiply by log(1 + ||Am(£)f||) and renormalize
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Computation Times and Reconstruction Errors

Sensor Network Bunny Andrianov net25 Graph Community Graph Temperatures
N =500 N = 2,503 N = 9,520 N = 25,000 N = 469,404
|€] = 2,050 |€| = 13,726 |€] = 195,841 |€| = 480, 459 €] = 1,865,415
Anal. Synth. Rec. Anal. Synth. Rec. Anal. Synth. Rec. Anal. Synth. Rec. Anal. Synth. Rec.
Time  Time NMSE Time Time NMSE | Time Time NMSE | Time Time NMSE | Time Time NMSE
%:fshfoljfnmer 01 001 5430 § 98 002 25029 | 2957 008 14e28 |85448 0.6 45028 | NA NA  NA
Exact M-CSFB 22 0.06§ 7.8e-30 f 3804 0.1 7.8e-23 NA NA NA NA NA NA NA NA NA
Diffusion Wavelets [8] | 8.5 0.03% 1.2e-30 §f 313.9 0.02 1.2e-29 | 14354 0.3 1.0e-26 NA NA NA NA NA NA
Graph-QMF [14] 0.6 0.1 5.4e-8 49 34 3.2e-8 384 21.0 3.3e9 [1062.7 9780 6.0e-8 , - .
Fast M-CSFB (A) 0.6 0.5 6.8¢e-2 0.8 0.9 8.2e-2 23 3.1 1.6e-1 2.8 124  22e-1 § 55.1 945 1.4e-2
Fast M-CSFB (B) 0.7 1.0 9.2e-2 0.9 3.7 3.3e-2 14 12.1  1.de-1 4.4 71.7  1.5e-1 91.6 8743 7.0e-3
Signal-Adapted ]
Fast M-CSFB (A) 0.7 0.5 3.8e-2 0.8 0.9 3.4e-2 0.8 2.2 6.7e-2 2.8 9.9 1.2e-1 i 47.6 984  1.7e-3
Signal-Adapted
Fast M-CSFB (B) 0.7 1.1 2.4e-2 0.9 3.6 1.2e-2 1.3 9.7 7.7e-2 4.4 71.1  7.9e-2 81.2 976.0 6.6e-4
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Discussion

e Computational complexity of setup and analysis is O(JK|&|)

- Leverage single computation of {Tk(£)X}r—01... x to
estimate (i) spectral density for filter bank design, (ii)
number of samples for each band, and (iii) non-uniform
sampling distributions

e Can be viewed as a fast graph Fourier transform with
coarser resolution in the spectral domain

e On the other hand, atoms of the proposed transform can
be viewed as a subset of the atoms of a spectral graph
wavelet transform (with different filters)
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