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Motivation

• High-dimensional data naturally reside on graphs in 
social, electricity, transportation, and sensor networks

• Weighted graphs are also a flexible tool to describe 
topologically-complicated data domains

- Similarities between data points in statistical learning 
- Functional connectivities between regions of the brain

• A number of multiscale wavelet transforms for signals 
on graphs have been introduced recently (e.g., [1]-[3])

• Our objective: Define a vertex-frequency transform 
to extract information from high-dimensional signals 
on weighted graphs (statistically or visually), as well 
as to regularize ill-posed inverse problems

• Classical time-frequency transforms provide joint 
descriptions of signals’ temporal and spectral behavior 

- Particularly useful for extracting information from 
signals with localized oscillations

- E.g., audio processing, vibration analysis, radar detection

• Essence of the problem: Weighted graphs are 
irregular structures that lack a shift-invariant notion 
of translation

- What does it mean to “translate” a graph signal?

• Our approach: Develop generalized notions of 
convolution, translation, and modulation in the graph 
setting, and then mimic the classical windowed Fourier 
transform construction

• Windowed Fourier atoms:

•    

•    

The Classical Windowed 
Fourier Transform

Sf(u, ⇠) := hf, gu,⇠i =
Z 1

�1
f(t)g(t� u)e�2⇡i⇠tdt

gu,⇠(t) := (M⇠Tug) (t) = g(t� u)e2⇡i⇠t

The atoms gu,⇠ are localized in time and frequency:

Windowed Fourier transform of f 2 L2
(R) :

•  

•  

•  

clusters of a random sensor network:

• Tiling comparison on the path graph:

• However, due to localized eigenvectors, atoms may be 
jointly localized in vertex and graph spectral domains:

Examples and Discussion

“Spectrogram” of f showing |Sf(i, k)|2, using a

normalized heat kernel window with ⌧ = 300 :

Classical STFT Classical Wavelets

WGFT SGWT

Signal f comprised of three graph Laplacian

eigenvectors (�10,�27,�5) restricted to three di↵erent

• Connected, undirected, weighted graphs:

• Non-normalized graph Laplacian:

• Complete set of orthonormal eigenvectors and 
associated real, non-negative eigenvalues:

• Values of eigenvectors associated with lower 
frequencies vary less rapidly across connected vertices:

• Fourier transform: expansion of a signal in terms of 
the eigenfunctions of the Laplacian / graph Laplacian

•  

Spectral Graph Theory

Analog Signals Graph Signals

• Define generalized modulation via multiplication by a 
graph Laplacian eigenvector

• The classical modulation operator represents a 
translation in the Fourier domain

• Generalized modulation as a graph spectral shift?
-  
-  

Generalized Modulation

Analog Signals Graph Signals

\Mk�0(�`) = �0(�` � �k)

Moreover, if ĝ is su�ciently localized around 0, then

dMkg will be localized around �k

For g 2 L2
(R), For g 2 RN , we define

(Mkg)(n) :=
p
N�k(n)g(n)(M⇠g)(t) := e2⇡i⇠tg(t)
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G = {V, E ,W}

ĝ(⇠) = hg, e2⇡i⇠ti

=

Z

R

g(t)e�2⇡i⇠tdt

ĝ(`) = hg,�`i

=
NX

n=1

g(n)�⇤
` (n)

Generalized Translation

• Convolution in the time (vertex) domain is 
multiplication in the Fourier (graph spectral) domain:

• Define generalized translation via generalized 
convolution with a delta: 

•  

• Warnings:
- No group structure
- Generalized translation operators are not isometric

Analog Signals Graph Signals

Analog Signals Graph Signals

Smoothness of g controls localization of Tig

(f ⇤ g)(t) =
Z

R

f̂(⇠)ĝ(⇠)e2⇡i⇠td⇠

(f ⇤ g)(t) :=
Z

R

f(⌧)g(t� ⌧)d⌧,

For f, g,2 L2
(R),

which implies

For f, g 2 RN , we define

(f ⇤ g)(n) =
N�1X

`=0

f̂(`)ĝ(`)�`(n)

(Tug)(t) := g(t� u)

= (g ⇤ �u)(t)

=

Z

R
ĝ(⇠)e�2⇡i⇠ue2⇡i⇠td⇠

For g 2 L2
(R), For g 2 RN , we define

(Tig)(n)

:=
p
N(g ⇤ �i)(n)

=
p
N

N�1X

`=0

ĝ(`)�⇤
` (i)�`(n)
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L = D �W

L�` = �`�`

Two representations of signal g 2 RN
on the N vertices:

Windowed Graph Fourier 
Frames

• Windowed graph Fourier atoms:

• Windowed graph Fourier transform:

•   

gi,k := MkTig

Sf(i, k) := hf, gi,ki

If ĝ(0) 6= 0, then {gi,k}i=1,2,...,N ; k=0,1,...,N�1 is a frame:

A := min

i21,2,...,N
{||Tig||22} � N |ĝ(0)|2 > 0,

B := max

i21,2,...,N
{||Tig||22}  N2µ2||g||22, and

µ := max

`20,1,...,N�1
i21,2,...,N

|h�`, �ii|.

A||f ||22 
NX

i=1

N�1X

k=0

|hf, gi,ki|2  B||f ||22, where

�`
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Signal f on the 180 vertex path graph, composed by

summing �10 restricted to the first 60 vertices, �60

restricted to next 60, and �30 restricted to final 60 :
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