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e High-dimensional data naturally reside on graphs in e Connected, undirected, weighted graphs: G ={V, &, W} e Convolution in the time (vertex) domain is e Signal f on the 180 vertex path graph, composed by
social, electricity, transportation, and sensor networks - 0 3 1 0] 4 0 0 0 multiplication in the Fourier (graph spectral) domain: summing Y1 restricted to the first 60 vertices, Ygo
S 0 .2 5 0O 1 0 O : :
e Weighted graphs are also a flexible tool to describe 1 2 0 7 P=10 01 o restricted to next 60, and y3g restricted to final 60 :
topologically-complicated data domains 0 o .7 0 0 0 0
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- Similarities between data points in statistical learning e Non-normalized graph Laplacian: £ — D — W For f,g,€ L*(R), For f,g € R, we define H |

|
- Functional connectivities between regions of the brain
| | e Complete set of orthonormal eigenvectors and (f*9)(t) := / f(r)g(t —7)dr. (f*g)(n) V

e A number of multiscale wavelet transforms for Slgnals associated real, non-negative eigenvalues: £xe = ArXe R N-1 e “Spectrogram” of f showing |Sf(i, k) 27 using a

on graphs have been introduced recently (e.g., [1]-|3]) which implies = F0)g(£)xe(n) . . . B |

n e Values of eigenvectors associated with lower A | =0 normalized heat kernel window with 7 = 300 :

® Our objective: Define a vertex-frequency transtorm frequencies vary less rapidly across connected vertices: (f x9)(t) = / F(€)g(&)e ™ d¢

to extract information from high-dimensional signals R

on weighted graphs (statistically or visually), as well
as to regularize ill-posed inverse problems

e Define generalized translation via generalized

convolution with a delta:

e (Classical time-frequency transforms provide joint . . . .
L. , , ‘: , e Fourier transform: expansion of a signal in terms of Ny
descriptions of signals’ temporal and spectral behavior . . . . T
, o o the eigenfunctions of the Laplacian / graph Laplacian For g € L*(R) For g € RN, we define
- Particularly useful for extracting information from ’ ’

e Signal f comprised of three graph Laplacian

signals with localized oscillations eigenvectors (x10, X27, X5) restricted to three different

————.

- E.g., audio processing, vibration analysis, radar detection §(€) = (g, ezmgt> §(0) = (g, xe) = VN (g * ;)(n) clusters of a random sensor network:
e Essence of the problem: Weighted graphs are _ / g(t)e= 2Tt g EN: (m): () 300 () xe (1)
: oy - : : - = n n ¢ 4
irregular structures that lack a shift-invariant notion 2 nzlg X |
of translation ® Two representations of signal ¢ € R on the N vertices: k
- What does it mean to “translate” a graph signal? 50 e !
0.1 ) & ~
i &= T o
- 2000 . m m .
A ® Smoothness of g controls localization of T’g

e Tiling comparison on the path graph:
e Warnings:

e Our approach: Develop generalized notions of _ Classical STFT Classical Wavelets
convolution, translation, and modulation in the graph _ - No group structure L

setting, and then mimic the classical windowed Fourier - Generalized translation operators are not isometric —
transform construction ® Define generalized modulation via multiplication by a B
craph Laplacian eigenvector = > >
WGFEFT SGWT
70 % =
For g € L*(R), For g € RY, we define t
271 . .
(Meg)(t) == > g(t) (Mgg)(n) == VNxx(n)g(n) e Windowed graph Fourier atoms: I
e Windowed Fourier atoms: e The classical modulation operator represents a gix = Milig i S 1}
Gue(t) i= (McTog) (1) = gt — u)e?miét translation in the Fourier domain e Windowed graph Fourier transform: e However, due to localized eigenvectors, atoms may be
u, T u o ° ° ° ° °
e Generalized modulation as a graph spectral shift? . o | jointly localized in vertex and graph spectral domains:
. . . — Sf(Z, k) T <f7 gz,k> | | | | | |
e The atoms g, ¢ are localized in time and frequency: - Mypdo(Ae) = 0o(Ae — Ag) i 400 - o ; : = . : :
) : . o .
- Moreover, if g is sufficiently localized around 0, then g(0) # 0, then {gz’k}z_l’Q’“"N’ k=0,1,...,N—1 15 & 11alhe
]\/4;{\9 will be localized around A B N N-1 ; oy (I - :
AN SN BN AWAN P i B | oo =403 AIFIB <SS [(fogun)l? < BIIFIE, where
| | 0.4 — 0.4/ - i=1 k=0 | |
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o0 °2 — Z\T\g(f) 0.2 j A= ielnzll.r.l. N {ITigllz} = N{g(0)]” >0, \T . | \ ! | \ ! |
e Windowed Fourier transform of f - L2 (R) . 0.1 | - 0.1 | 9 2 9 9 962,100 962,450 962,983
of o B _nax {||T29H2} <N K Hg||27 and 03—, T AR 3/—————————————————
1€1,2,....N 15 : | J -
C Imift -0.1 | -0.1} |< 5 >‘ I e
e — — B : max ill- al |
Sf(u, &) = (f, gug) = / f(t)g(t —ue at R T e SN T N (01N —1 | XE 2
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