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Wireless Media Streaming

• Provide high playout quality for all users

• Maximize the number of users that can be supported

• Limit interference to other senders and their associated mobiles

• Extend system lifetime (when sender is a mobile device)

Desirable 
Operating 

Characteristics

• Single source transmitting media streams to multiple users over a shared 
wireless channel

• Available data rate of the channel varies with time and from user to user
Key Features



Opportunistic Scheduling

• Exploit temporal and spatial variation of the channel by transmitting to users 
with the best available data rates

– “Multiuser diversity gain,” introduced in context of analogous uplink problem

• Consider a notion of fairness

– Temporal fairness

– Proportional fairness

– Utilitarian fairness

– ... 

• Our approach

– Playout quality is closely linked to receiver buffer underflow

– Accordingly, we introduce strict buffer underflow constraints as our notion of fairness
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Problem Description

Timing in Each SlotTiming in Each SlotTiming in Each Slot

• Transmitter learns each channel’s state through a feedback channel

• Transmitter allocates some amount of power (possibly zero) for transmission to each user
– Total power allocated in any slot cannot exceed a power constraint, P

• Transmission and reception

• Packets removed/purged from each receiver’s buffer for playing



• Sender always has data to transmit to each receiver

• Receivers have infinite buffers

• Slot duration within channel coherence time (condition constant over slot)

• Each user’s channel condition is i.i.d.

• Transmitter knows precisely the packet requirements of each user in each 
time slot (as it knows the encoding and decoding schemes)

• Each user’s per slot consumption of packets is constant over time, dm

• Packets transmitted during a slot arrive in time to be played in the same slot

• The available power P is always sufficient to transmit packets to cover one 
slot of playout for each user 

Key Modeling 
Assumptions

Problem Description (cont.)

• Avoid underflow, so as to maintain playout quality

• Minimize system-wide power consumption
Two Control 
Objectives



Finite and Infinite Horizon Problem Formulation
Cost Structure, Information State, and Action Space

Action Space
• Defined in terms of y, receiver buffer queue levels after transmission

• Must satisfy strict underflow constraints and system-wide power constraint

•

• = vector of receiver buffer queue lengths at time n

• = vector of channel conditions for slot n
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Information 
State

• Transmission costs
– Assume a linear power-rate function

– is a random variable describing power consumption per unit of data transmitted 
to user m at time n (including retransmissions)

– Realizations of         lie in  

• Holding costs
– Per packet per slot holding cost hm assessed on all packets remaining in user m’s 

receiver buffer after playout consumption

– Technical assumption – can take hm arbitrarily small
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Cost 
Structure



Finite and Infinite Horizon Problem Formulation
System Dynamics, Optimization Criteria, and Optimization Problems

• Infinite horizon expected discounted cost criterion:

• Finite horizon expected discounted cost criterion:
Optimization 

Criteria

•

• Cn-1 generated as i.i.d. random variable
System 

Dynamics

Optimization 
Problems



Relation to Inventory Theory

• In inventory language, our problem is a multi-period, multi-item, discrete time inventory 
model with random ordering prices, deterministic demand, and a budget constraint

– Items / goods → mobile receivers

– Random ordering prices → random channel conditions 

– Deterministic demand → users’ packet requirements for playout

– Budget constraint → transmitter’s power constraint

• To our knowledge, this model has not been studied, but there is some related work

– Single item inventory models with random ordering prices 
• B. G. Kingsman, 1969

• K. Golabi, 1985

– Single and multiple item inventory models with stochastic demands and deterministic 
ordering prices

• R. Evans, 1967

• A. Federgruen and P. Zipkin, 1986

• G. A. DeCroix, 1998
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Single User Case
Finite Horizon Problem

• Uncountable state space and uncountable action space

• Computationally intractable

Dynamic Program



Single User Case
Finite Horizon Problem

• If action space were independent of x, we would have a base-stock policy

• Instead, we get a modified base-stock policy

Equivalent Dynamic Programming Equation



Single User Case
Structure of Optimal Policy
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Graphical representation of optimal transmission policy

For every n ∈ {1,2,…,N} and c ∈ C, there exists a critical number, bn(c), such that the optimal control 

strategy is given by                                 , where
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Single User Case
Structure of Optimal Policy

For every n ∈ {1,2,…,N} and c ∈ C, there exists a critical number, bn(c), such that the optimal control 
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Question: 
Can we find 

explicit form for 
critical numbers?



Single User Case
Complete Characterization of Optimal Policy

• Set of possible channel conditions is finite: C = { c1,c2,…,cK }

• Receiver buffer empty at beginning of time horizon

• is an integer

Additional 
Technical 

Assumptions
)(:)( dcPcL ⋅=

• We can define recursively a set of thresholds

• From these thresholds, we can find the critical numbers 

• This process is far simpler computationally than solving the dynamic program

Thresholds & 
Critical 

Numbers



Single User Case
Infinite Horizon Problem

• Infinite horizon optimal policy is natural extension of finite horizon optimal policy

• Stationary optimal policy characterized by critical numbers     , where 

• Again, we have a modified base-stock policy:
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• For each vector of channel conditions c at time n, there exists a vector of 
critical numbers with one critical number for each user

– Each user’s critical number bn
m depends only on its current channel condition cm

o Independent of its own current buffer level

o Independent of other users’ current buffer levels

o Independent of other users’ current channel conditions

• Optimal policy is characterized by the critical numbers
– Do not transmit packets to any user whose current buffer level exceeds its critical 

number

– If possible to bring all users up to critical number, do so

– If power constraint prevents transmitter from bringing all users up to their critical 
numbers, it should allocate the full power P to different users

o Yet to determine optimal allocation between users

Multiple Users Case
Conjecture Based on Numerical Experiments

Single user optimal policy appears to extend in following manner:
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Multiple Users Case
Example

Structure of the optimal policy for the two-user case in slot n, with a 
fixed vector of channel conditions, c.
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Current and Future Work

• Prove structure of optimal policy in multiple users case

• Identify low-complexity sub-optimal policies that perform well in multi-user 
case when power constraint prevents transmitting up to all critical numbers

• Performance analysis

• Derive alternate condition for complete characterization of optimal policy in 
single user case

– Set the maximum number of packets that can be transmitted in a slot to 

• Relax i.i.d. assumption, and examine Markovian channel

• Explore the possibility of dropping resource-draining users and determining 
when new users can be admitted
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Concluding Remarks

• Considered problem of transmitting media streams over a shared wireless 
channel in a manner that prevents receivers’ buffers from emptying

• In single user case, showed optimal transmission schedule is a modified base-
stock policy under both finite and infinite horizon discounted expected cost 
criteria

• Numerical experiments suggest similar structure for multi-user case

• Modified base-stock policies have nice feature that they are easily 
implementable
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