Energy-Efficient Transmission Scheduling for Wireless Media Streaming with Strict Underflow Constraints

David Shuman and Mingyan Liu University of Michigan

6th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

April 3, 2008

Wireless Media Streaming

Key Features

- Single source transmitting media streams to multiple users over a shared wireless channel
- Available data rate of the channel varies with time and from user to user

Desirable Operating Characteristics

- Provide high playout quality for all users
- Maximize the number of users that can be supported
- Limit interference to other senders and their associated mobiles
- Extend system lifetime (when sender is a mobile device)

Opportunistic Scheduling

- Exploit temporal and spatial variation of the channel by transmitting to users with the best available data rates
 - "Multiuser diversity gain," introduced in context of analogous uplink problem
- Consider a notion of fairness
 - Temporal fairness
 - Proportional fairness
 - Utilitarian fairness
 - ...
- Our approach
 - Playout quality is closely linked to receiver buffer underflow
 - Accordingly, we introduce strict buffer underflow constraints as our notion of fairness

Outline

- Problem Description and Formulation
- Single User Case

• Multiple Users Case

• Future Work and Concluding Remarks

Problem Description

Timing in Each Slot

- Transmitter learns each channel's state through a feedback channel
- Transmitter allocates some amount of power (possibly zero) for transmission to each user
 - Total power allocated in any slot cannot exceed a power constraint, P
- Transmission and reception
- · Packets removed/purged from each receiver's buffer for playing

Problem Description (cont.)

Two Control Objectives

- · Avoid underflow, so as to maintain playout quality
- Minimize system-wide power consumption

- · Sender always has data to transmit to each receiver
- · Receivers have infinite buffers
- Slot duration within channel coherence time (condition constant over slot)
- Each user's channel condition is *i.i.d.*
- Transmitter knows precisely the packet requirements of each user in each time slot (as it knows the encoding and decoding schemes)
- Each user's per slot consumption of packets is constant over time, d^m
- Packets transmitted during a slot arrive in time to be played in the same slot
- The available power *P* is always sufficient to transmit packets to cover one slot of playout for each user

Key Modeling Assumptions

Finite and Infinite Horizon Problem Formulation Cost Structure, Information State, and Action Space

LOST
Structure

- Transmission costs
 - Assume a linear power-rate function
 - C_n^m is a random variable describing power consumption per unit of data transmitted to user *m* at time *n* (including retransmissions)
 - Realizations of C_n^m lie in $(0, c_{MAX}^m]$
- Holding costs
 - Per packet per slot holding cost *h^m* assessed on all packets remaining in user *m*'s receiver buffer after playout consumption
 - Technical assumption can take *h^m* arbitrarily small

Information State X_n = (X¹_n, X²_n,..., X^M_n)^T = vector of receiver buffer queue lengths at time n
 C_n = (C¹_n, C²_n,..., C^M_n)^T = vector of channel conditions for slot n

Action Space

- Defined in terms of y, receiver buffer queue levels after transmission
- · Must satisfy strict underflow constraints and system-wide power constraint

•
$$\mathcal{A}(\mathbf{x},\mathbf{c}) := \left\{ \mathbf{y} \in I\!\!R^M_+ : \max(\mathbf{x},\mathbf{d}) \preceq \mathbf{y} \text{ and } \mathbf{c}^{\scriptscriptstyle\mathrm{T}}(\mathbf{y}-\mathbf{x}) \leq P \right\}$$

Finite and Infinite Horizon Problem Formulation System Dynamics, Optimization Criteria, and Optimization Problems

System Dynamics

- $\mathbf{X}_{n-1} = \mathbf{Y}_n \mathbf{d}$
- **C**_{*n*-1} generated as *i.i.d.* random variable

Optimization Criteria • Finite horizon expected discounted cost criterion:

$$J_N^{\pi} := I\!\!E^{\pi} \left\{ \sum_{m=1}^M \sum_{t=1}^N \alpha^{N-t} \cdot \left\{ C^m \cdot \left(Y_t^m - X_t^m \right) + h^m \cdot \left(Y_t^m - d^m \right) \right\} \mid \mathcal{F}_N \right\}$$

• Infinite horizon expected discounted cost criterion:

$$J_\infty^\pi = \lim_{N \to \infty} J_N^\pi$$

Optimization Problems

$$\begin{split} \min_{\pi \in \Pi} J_N^{\pi} & \left(\text{or} \quad \min_{\pi \in \Pi} J_{\infty}^{\pi} \right) \\ \text{s.t.} & \sum_{m=1}^M C_n^m \cdot (Y_n^m - X_n^m) \leq P, \quad \forall n \text{ and} \\ & Y_n^m \geq \max(X_n^m, d^m), \quad \forall m, \forall n. \end{split}$$

Relation to Inventory Theory

- In inventory language, our problem is a multi-period, multi-item, discrete time inventory model with random ordering prices, deterministic demand, and a budget constraint
 - Items / goods \rightarrow mobile receivers
 - Random ordering prices \rightarrow random channel conditions
 - Deterministic demand \rightarrow users' packet requirements for playout
 - Budget constraint \rightarrow transmitter's power constraint
- To our knowledge, this model has not been studied, but there is some related work
 - Single item inventory models with random ordering prices
 - B. G. Kingsman, 1969
 - K. Golabi, 1985
 - Single and multiple item inventory models with stochastic demands and deterministic ordering prices
 - R. Evans, 1967
 - A. Federgruen and P. Zipkin, 1986
 - G. A. DeCroix, 1998

Outline

- Problem Description and Formulation
- Single User Case

• Multiple Users Case

• Future Work and Concluding Remarks

Single User Case Finite Horizon Problem

Dynamic Program

$$\begin{array}{lll} V_n(x,c) &=& \min_{\max(x,d) \leq y \leq x + \frac{p}{c}} \left\{ c \cdot (y-x) + h \cdot (y-d) + \alpha \cdot I\!\!E \big[V_{n-1}(y-d,C) \big] \right\} \\ \\ V_0(x,c) &=& 0, \quad \forall x \in I\!\!R_+, \forall c \in \mathcal{C} = [c_{\min},c_{\max}] \end{array}$$

- Uncountable state space and uncountable action space
- Computationally intractable

Single User Case Finite Horizon Problem

Equivalent Dynamic Programming Equation

$$V_{n}(x,c) = \min_{\max(x,d) \le y \le x + \frac{p}{c}} \left\{ c \cdot (y-x) + h \cdot (y-d) + \alpha \cdot I\!\!E \big[V_{n-1}(y-d,C) \big] \right\}$$
$$= -c \cdot x - h \cdot d + \min_{\max(x,d) \le y \le x + \frac{p}{c}} \left\{ y \cdot (c+h) + \alpha \cdot I\!\!E \big[V_{n-1}(y-d,C) \big] \right\}$$
$$= -c \cdot x - h \cdot d + \min_{\max(x,d) \le y \le x + \frac{p}{c}} \left\{ g_{n}(y,c) \right\}$$

- If action space were independent of *x*, we would have a base-stock policy
- Instead, we get a modified base-stock policy

Single User Case Structure of Optimal Policy

Theorem

For every $n \in \{1, 2, ..., N\}$ and $c \in C$, there exists a *critical number*, $b_n(c)$, such that the optimal control strategy is given by $\pi^* = \{y_N^*, y_{N-1}^*, ..., y_1^*\}$, where

$$\psi_{n}^{*}(x,c) := \begin{cases}
x, & \text{if } x \ge b_{n}(c) \\
b_{n}(c), & \text{if } b_{n}(c) - \frac{P}{c} \le x \le b_{n}(c) \\
x + \frac{P}{c}, & \text{if } x < b_{n}(c) - \frac{P}{c}
\end{cases}$$

Furthermore, for a fixed *n*, $b_n(c)$ is nonincreasing in *c*, and for a fixed *c*: $N \cdot d \ge b_N(c) \ge b_{N-1}(c) \ge \cdots \ge b_1(c) = d$.

Graphical representation of optimal transmission policy

Single User Case Structure of Optimal Policy

Theorem

For every $n \in \{1, 2, ..., N\}$ and $c \in \mathcal{C}$, there exists a *critical number*, $b_n(c)$, such that the optimal control strategy is given by $\pi^* = \{y_N^*, y_{N-1}^*, ..., y_1^*\}$, where

$$y_{n}^{*}(x,c) := \begin{cases} x, & \text{if } x \ge b_{n}(c) \\ b_{n}(c), & \text{if } b_{n}(c) - \frac{P}{c} \le x \le b_{n}(c) \\ x + \frac{P}{c}, & \text{if } x < b_{n}(c) - \frac{P}{c} \end{cases}$$

Furthermore, for a fixed *n*, $b_n(c)$ is nonincreasing in *c*, and for a fixed *c*: $N \cdot d \ge b_N(c) \ge b_{N-1}(c) \ge \cdots \ge b_1(c) = d$.

Single User Case Complete Characterization of Optimal Policy

Additional Technical Assumptions

- Set of possible channel conditions is finite: $\mathcal{C} = \{c_1, c_2, ..., c_K\}$
- Receiver buffer empty at beginning of time horizon
- $L(c) := P/(c \cdot d)$ is an integer

Thresholds & Critical Numbers

- We can define recursively a set of thresholds
- From these thresholds, we can find the critical numbers
- This process is far simpler computationally than solving the dynamic program

Single User Case Infinite Horizon Problem

- Infinite horizon optimal policy is natural extension of finite horizon optimal policy
- Stationary optimal policy characterized by critical numbers $b_{\infty}(c)$, where

$$b_{\infty}(c) \coloneqq \lim_{n \to \infty} b_n(c)$$

• Again, we have a modified base-stock policy:

$$y_{\infty}^{*}(x,c) \coloneqq \begin{cases} x, & \text{if } x \ge b_{\infty}(c) \\ b_{\infty}(c), & \text{if } b_{\infty}(c) - \frac{P}{c} \le x \le b_{\infty}(c) \\ x + \frac{P}{c}, & \text{if } x < b_{\infty}(c) - \frac{P}{c} \end{cases}$$

Outline

- Problem Description and Formulation
- Single User Case

Multiple Users Case

• Future Work and Concluding Remarks

Single user optimal policy appears to extend in following manner:

- For each vector of channel conditions *c* at time *n*, there exists a vector of critical numbers with one critical number for each user
 - Each user's critical number b_n^m depends only on its current channel condition c^m
 - o Independent of its own current buffer level
 - Independent of other users' current buffer levels
 - Independent of other users' current channel conditions
- Optimal policy is characterized by the critical numbers
 - Do not transmit packets to any user whose current buffer level exceeds its critical number
 - If possible to bring all users up to critical number, do so
 - If power constraint prevents transmitter from bringing all users up to their critical numbers, it should allocate the full power P to different users
 - Yet to determine optimal allocation between users

Structure of the optimal policy for the two-user case in slot n, with a fixed vector of channel conditions, c.

Outline

- Problem Description and Formulation
- Single User Case

• Multiple Users Case

Future Work and Concluding Remarks

Current and Future Work

- Prove structure of optimal policy in multiple users case
- Identify low-complexity sub-optimal policies that perform well in multi-user case when power constraint prevents transmitting up to all critical numbers
- Performance analysis
- Derive alternate condition for complete characterization of optimal policy in single user case
 - Set the maximum number of packets that can be transmitted in a slot to $\left|\frac{P}{c \cdot d}\right| \cdot d$
- Relax *i.i.d.* assumption, and examine Markovian channel
- Explore the possibility of dropping resource-draining users and determining when new users can be admitted

Concluding Remarks

- Considered problem of transmitting media streams over a shared wireless channel in a manner that prevents receivers' buffers from emptying
- In single user case, showed optimal transmission schedule is a modified basestock policy under both finite and infinite horizon discounted expected cost criteria
- Numerical experiments suggest similar structure for multi-user case
- Modified base-stock policies have nice feature that they are easily implementable