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Signal Processing on Graphs
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Social Networks

Energy Networks

Transportation Networks

Irregular Data Domains

Biological Networks



Some Typical Graph Signal Processing Problems
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Semi-Supervised Learning

Analysis / Information Extraction

Denoising

Compression / Visualization

Earth data source: Frederik Simons
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Orthonormal Dictionaries
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Orthonormal Dictionaries (cont.)
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Orthonormal Dictionaries (cont.)
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Overcomplete Dictionaries and Sparsity
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= x#

l Given an overcomplete Φ, there are infinitely many choices of α that 
lead to the same signal f 

l Useful to sparsely represent signals —> few non-zero coefficients in α 
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l Tikhonov regularization for denoising: 

Motivating Example: Denoising
argminf

�
||f � y||22 + �fTLf

 

Original Noisy Denoised

l Wavelet denoising:
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Motiving Example: Compression
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Piecewise-Smooth Signal with 
Discontinuities

Diffusion Wavelet Coefficients, 
Sorted by Magnitude

Reconstruction from 10% 
of Coefficients

Reconstruction from 20% 
of Coefficients

Reconstruction from 50% 
of Coefficients



l Ability to sparsely represent signals — few non-zero 
coefficients in α 

l Ability to capture the relevant characteristics of signals 
to extract information 

l Computationally efficient to apply Φ and ΦT   
l Tight frames

Dictionary Design for Signals on Graphs
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Desirable Characteristics



To identify and exploit structure in the data, we need to account for the 
intrinsic geometric structure of the underlying graph data domain

Why Do We Need New Dictionaries?
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Why Do We Need New Dictionaries?

G1 G2 G3

To identify and exploit structure in the data, we need to

account for the intrinsic geometric structure of the

underlying data domain
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To identify and exploit structure in the data, we need to account for the 
intrinsic geometric structure of the underlying graph data domain



l Weighted graphs are irregular structures that lack a shift-invariant 
notion of translation 

l Many simple yet fundamental concepts that underlie classical 
signal processing techniques become significantly more challenging 
in the graph setting

The Essence of the Problem
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Approach: Leverage Intuition from Euclidean Settings to 
Develop New Mathematical Tools for the Graph Setting
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Approach

Computa(onal+
Harmonic+Analysis+

++
Spectral+and+Algebraic+

Graph+Theory+
++

Numerical+Linear+Algebra+

Signal+
Transforms+/+
Dic(onaries+

Generalized+
Operators+

Scalable+
Algorithms+

Theore(cal+
Underpinnings+

Applica(ons+
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Generalized Operators



Combinatorial Graph Laplacian
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l Graph Laplacian eigenvectors are the analog of complex exponentials: Values of the 
eigenvectors associated with low eigenvalues change less rapidly across connected 
vertices 

l Different choices of graph Fourier basis include combinatorial/normalized/random 
walk Laplacian eigenbasis or generalized eigenbasis of adjacency matrix

Intro Signal Transforms Problem Spectral Graph Theory Generalized Operators WGFT Conclusion

Graph Laplacian Eigenvectors

Values of eigenvectors associated with lower frequencies (low �`) change
less rapidly across connected vertices

u0 u1

u2 u50
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Graph Fourier Transform
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The GFT Incorporates the Graph Structure

16

= x#

Graph Fourier Transform = Analysis

Vertex 
Domain

Graph 
Spectral 
Domain
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Incorporation of the Underlying Graph Connectivity 5

For notions of global smoothness, the discrete p-Dirichlet
form of f is defined as

S
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When p = 1, S
1

(f) is the total variation of the signal with
respect to the graph. When p = 2, we have

S
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S
2

(f) is known as the graph Laplacian quadratic form [17],
and the semi-norm kfkL is defined as

kfkL := kL 1

2 fk
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=

p
fTLf =

p
S
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(f).

Note from (6) that the quadratic form S
2

(f) is equal to zero
if and only if f is constant across all vertices (which is why
kfkL is only a semi-norm), and, more generally, S

2

(f) is small
when the signal f has similar values at neighboring vertices
connected by an edge with a large weight; i.e., when it is
smooth.

Returning to the graph Laplacian eigenvalues and eigen-
vectors, the Courant-Fischer Theorem [35, Theorem 4.2.11]
tells us they can also be defined iteratively via the Rayleigh
quotient as

�
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where the eigenvector u
`

is the minimizer of the `th prob-
lem. From (6) and (7), we see again why u

0

is constant
for connected graphs. Equation (8) explains why the graph
Laplacian eigenvectors associated with lower eigenvalues are
smoother, and provides another interpretation for why the
graph Laplacian spectrum carries a notion of frequency.

Example 1 in the box below demonstrates the importance of
incorporating the underlying graph structure when processing
signals on graphs.

F. Other Graph Matrices
The basis {u

`

}
`=0,1,...,N�1

of graph Laplacian eigenvectors
is just one possible basis to use in the forward and inverse
graph Fourier transforms (3) and (4). A second popular option
is to normalize each weight W
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by a factor 1p
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Example 1 (Importance of the underlying graph):
In the figure above, we plot the same signal f on
three different unweighted graphs with the same set
of vertices, but different edges. The top row shows the
signal in the vertex domains, and the bottom row shows
the signal in the respective graph spectral domains.

The smoothness and graph spectral content of the
signal both depend on the underlying graph structure.
In particular, the signal f is smoothest with respect
to the intrinsic structure of G

1

, and least smooth with
respect to the intrinsic structure of G

3

. This can be seen
(i) visually; (ii) through the Laplacian quadratic form,
as fTL

1

f = 0.14, fTL
2

f = 1.31, and fTL
3

f = 1.81;
and (iii) through the graph spectral representations,
where the signal has all of its energy in the low
frequencies in the graph spectral plot of ˆf on G

1

, and
more energy in the higher frequencies in the graph
spectral plot of ˆf on G

3

.

The eigenvalues {˜�
`

}
`=0,1,...,N�1

of the normalized graph
Laplacian of a connected graph G satisfy

0 =

˜�
0

< ˜�
1

 . . .  ˜�
max

 2,

with ˜�
max

= 2 if and only if G is bipartite; i.e., the set of
vertices V can be partitioned into two subsets V

1

and V
2

such
that every edge e 2 E connects one vertex in V

1

and one vertex
in V

2

. We denote the normalized graph Laplacian eigenvectors
by {˜u

`

}
`=0,1,...,N�1

. As seen in Figure 3(b), the spectrum of
˜L also carries a notion of frequency, with the eigenvectors
associated with higher eigenvalues generally having more zero
crossings. However, unlike u

0

, the normalized graph Laplacian
eigenvector ˜u

0

associated with the zero eigenvalue is not a
constant vector.

The normalized and non-normalized graph Laplacians are
both examples of generalized graph Laplacians [36, Section
1.6], also called discrete Schrödinger operators. A generalized
graph Laplacian of a graph G is any symmetric matrix whose
i, jth entry is negative if there is an edge connecting vertices
i and j, equal to zero if i 6= j and i is not connected to j, and
may be anything if i = j.

A third popular matrix that is often used in dimensionality-
reduction techniques for signals on graphs is the random walk
matrix P := D�1W. Each entry P

i,j

describes the probability
of going from vertex i to vertex j in one step of a Markov
random walk on the graph G. For connected, aperiodic graphs,
each row of Pt converges to the stationary distribution of

Recall, a signal is smooth with respect to the intrinsic structure of its

underlying graph

Similarly, the graph spectral content also depends on the underlying graph
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Why Do We Need New Dictionaries?

G1 G2 G3

To identify and exploit structure in the data, we need to

account for the intrinsic geometric structure of the

underlying data domain
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Inverse Graph Fourier 
Transform = Synthesis
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Why Do We Need New Dictionaries?

G1 G2 G3

To identify and exploit structure in the data, we need to

account for the intrinsic geometric structure of the

underlying data domain
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The GFT Incorporates the Graph Structure
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Incorporation of the Underlying Graph Connectivity 5
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connected by an edge with a large weight; i.e., when it is
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Example 1 (Importance of the underlying graph):
In the figure above, we plot the same signal f on
three different unweighted graphs with the same set
of vertices, but different edges. The top row shows the
signal in the vertex domains, and the bottom row shows
the signal in the respective graph spectral domains.

The smoothness and graph spectral content of the
signal both depend on the underlying graph structure.
In particular, the signal f is smoothest with respect
to the intrinsic structure of G
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. This can be seen
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associated with higher eigenvalues generally having more zero
crossings. However, unlike u
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, the normalized graph Laplacian
eigenvector ˜u
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associated with the zero eigenvalue is not a
constant vector.

The normalized and non-normalized graph Laplacians are
both examples of generalized graph Laplacians [36, Section
1.6], also called discrete Schrödinger operators. A generalized
graph Laplacian of a graph G is any symmetric matrix whose
i, jth entry is negative if there is an edge connecting vertices
i and j, equal to zero if i 6= j and i is not connected to j, and
may be anything if i = j.

A third popular matrix that is often used in dimensionality-
reduction techniques for signals on graphs is the random walk
matrix P := D�1W. Each entry P

i,j

describes the probability
of going from vertex i to vertex j in one step of a Markov
random walk on the graph G. For connected, aperiodic graphs,
each row of Pt converges to the stationary distribution of

Recall, a signal is smooth with respect to the intrinsic structure of its

underlying graph

Similarly, the graph spectral content also depends on the underlying graph
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Incorporation of the Underlying Graph Connectivity 5
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connected by an edge with a large weight; i.e., when it is
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for connected graphs. Equation (8) explains why the graph
Laplacian eigenvectors associated with lower eigenvalues are
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signals on graphs.
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Example 1 (Importance of the underlying graph):
In the figure above, we plot the same signal f on
three different unweighted graphs with the same set
of vertices, but different edges. The top row shows the
signal in the vertex domains, and the bottom row shows
the signal in the respective graph spectral domains.

The smoothness and graph spectral content of the
signal both depend on the underlying graph structure.
In particular, the signal f is smoothest with respect
to the intrinsic structure of G

1

, and least smooth with
respect to the intrinsic structure of G

3

. This can be seen
(i) visually; (ii) through the Laplacian quadratic form,
as fTL

1

f = 0.14, fTL
2

f = 1.31, and fTL
3

f = 1.81;
and (iii) through the graph spectral representations,
where the signal has all of its energy in the low
frequencies in the graph spectral plot of ˆf on G

1

, and
more energy in the higher frequencies in the graph
spectral plot of ˆf on G

3

.
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vertices V can be partitioned into two subsets V
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2
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by {˜u
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˜L also carries a notion of frequency, with the eigenvectors
associated with higher eigenvalues generally having more zero
crossings. However, unlike u
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eigenvector ˜u

0

associated with the zero eigenvalue is not a
constant vector.

The normalized and non-normalized graph Laplacians are
both examples of generalized graph Laplacians [36, Section
1.6], also called discrete Schrödinger operators. A generalized
graph Laplacian of a graph G is any symmetric matrix whose
i, jth entry is negative if there is an edge connecting vertices
i and j, equal to zero if i 6= j and i is not connected to j, and
may be anything if i = j.

A third popular matrix that is often used in dimensionality-
reduction techniques for signals on graphs is the random walk
matrix P := D�1W. Each entry P

i,j

describes the probability
of going from vertex i to vertex j in one step of a Markov
random walk on the graph G. For connected, aperiodic graphs,
each row of Pt converges to the stationary distribution of

Recall, a signal is smooth with respect to the intrinsic structure of its

underlying graph

Similarly, the graph spectral content also depends on the underlying graph
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Graph Spectral Filtering

18

l Filtering: represent an input signal as a combination of other signals, and 
amplify or attenuate the contributions of some of the component signals 

l In classical signal processing, the most common choice of basis the 
complex exponentials, which results in frequency filtering

Dictionaries Spectral Graph Theory Generalized Operators Transforms Scalable Algorithms and Distributed Processing

Filtering

Filtering: represent an input signal as a combination of other
signals, and amplify or attenuate the contributions of some of the
component signals

In classical signal processing, the most common choice of basis is
the complex exponentials, which results in frequency filtering

f (t) // FT // f̂ (⇠) //
ĝ

// ĝ(⇠)f̂ (⇠) // IFT // �f (t)
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−2 −1 0 1 2

−20

−10

0

10

20

Time

Φf (t)

David Shuman Signal Processing on Graphs February 1, 2016 61 / 33



Example: Image Denoising by Low-Pass Graph 
Filtering

19

Dictionaries Spectral Graph Theory Generalized Operators Transforms Scalable Algorithms and Distributed Processing

Example: Image Denoising by Low-Pass Graph Filtering

f (n) // GFT // f̂ (�`) // ĝ // ĝ(�`)f̂ (�`) // IGFT // �f (n)

Semi-Local Graph Tikhonov Regularization

argmin
f

�

kf � yk22 + �fTLf
 

=) ĝ(�`) =
1

1 + ��`
λ

ĝ(λ) = 1
1+10λ

ĝ(λ)

7

Example 2 (Tikhonov regularization): We observe a noisy graph signal y = f
0

+ ⌘, where ⌘ is uncorrelated additive
Gaussian noise, and wish to recover f

0

. To enforce a priori information that the clean signal f
0

is smooth with respect to
the underlying graph, we include a regularization term of the form fTLf , and, for a fixed � > 0, solve the optimization
problem

argmin

f

�
kf � yk2

2

+ �fTLf
 

. (16)

The first-order optimality conditions of the convex objective function in (??) show that (see, e.g., [?], [?, Section III-A],
[?, Proposition 1]) the optimal reconstruction is given by

f⇤(i) =

N�1X

`=0


1

1 + ��
`

�
ŷ(�

`

)u
`

(i), (17)

or, equivalently, f =

ˆh(L)y, where ˆh(�) :=

1

1+��

can be viewed as a low-pass filter.
As an example, in the figure below, we take the 512 x 512 cameraman image as f

0

and corrupt it with additive
Gaussian noise with mean zero and standard deviation 0.1 to get a noisy signal y. We then apply two different filtering
methods to denoise the signal. In the first method, we apply a symmetric two-dimensional Gaussian low-pass filter of
size 72 x 72 with two different standard deviations: 1.5 and 3.5. In the second method, we form a semi-local graph on
the pixels by connecting each pixel to its horizontal, vertical, and diagonal neighbors, and setting the Gaussian weights
(??) between two neighboring pixels according to the similarity of the noisy image values at those two pixels; i.e., the
edges of the semi-local graph are independent of the noisy image, but the distances in (??) are simply the differences
between the neighboring pixel values in the noisy image. For the Gaussian weights in (??), we take ✓ = 0.1 and  = 0.
We then perform the low-pass graph filtering (??) to reconstruct the image. This method is a variant of the graph-based
anisotropic diffusion image smoothing method of [?].

In all image displays, we threshold the values to the [0,1] interval. The bottom row of images is comprised of
zoomed-in versions of the top row of images. Comparing the results of the two filtering methods, we see that in order to
smooth sufficiently in smoother areas of the image, the classical Gaussian filter also smooths across the image edges.
The graph spectral filtering method does not smooth as much across the image edges, as the geometric structure of the
image is encoded in the graph Laplacian via the noisy image.

Gaussian-Filtered Gaussian-Filtered
Original Image Noisy Image (Std. Dev. = 1.5) (Std. Dev. = 3.5) Graph-Filtered

comprising any path connecting i and j) is greater than k [?,
Lemma 5.2]. Therefore, we can write (??) exactly as in (??),
with the constants defined as

b
i,j

:=

KX

k=dG(i,j)

a
k

�
Lk

�
i,j

.

So when the frequency filter is an order K polynomial,
the frequency filtered signal at vertex i, f

out

(i), is a linear
combination of the components of the input signal at vertices
within a K-hop local neighborhood of vertex i. This property
can be quite useful when relating the smoothness of a filtering

kernel to the localization of filtered signals in the vertex
domain.

B. Convolution

We cannot directly generalize the definition (??) of a
convolution product to the graph setting, because of the term
h(t�⌧). However, one way to define a generalized convolution
product for signals on graphs is to replace the complex
exponentials in (??) with the graph Laplacian eigenvectors
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l Filtering:  
l Too expensive to compute U and Λ for large graphs 
l Common approach: estimate λmax and approximate the filter g on 

the interval [0, λmax] by a polynomial, rational, or spline function   

l Example: Truncated Chebyshev polynomial approximation 

l Use the three-term recurrence relation to compute           from                
                and             , at the cost of one sparse matrix-vector       
   multiplication by    
l Pros: Fast for large, sparse graphs [           ]; convergence 

guarantees when the filter g is analytic/smooth; distributable

Approximating a Matrix Function Times a 
Vector

20

O(K|E|)

g(L)f =
1

2
c0f +

1X

k=1

ckT̄k(L)f ⇡ 1

2
c0f +

KX

k=1

ckT̄k(L)f =: g̃(L)f
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g(L)f = Ug(⇤)U⇤f



l Define a generalized convolution by imposing that convolution in the 
vertex domain is multiplication in the graph spectral domain 

l Define generalized translation via generalized convolution with a delta 
(i.e., filter a delta) 

Generalized Translation/Localization

21
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Generalized Translation on Graphs

Define a generalized convolution by imposing that convolution in the vertex
domain is multiplication in the graph spectral domain

Define generalized translation via generalized convolution with a delta

Functions on the Real Line

For f 2 L2(R), in the weak sense

(Tsf )(t) := f (t � s)

= (f ⇤ �s)(t)

=

Z

R
f̂ (⇠)e�2⇡i⇠s e2⇡i⇠td⇠

Functions on the Vertices of a Graph

For f 2 RN , we define

(Ti f )(n) :=
p
N(f ⇤ �i )(n)

=
p
N

N�1
X

`=0

f̂ (�`)u
⇤
` (i)u`(n)
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Properties of Generalized Translation/
Localization

22



l Downsampling + graph reduction = 
a multiresolution of graphs 

l Methods used here: 
- Graph downsampling by polarity of 

Laplacian eigenvector associated with 
largest eigenvalue 

- Kron reduction with spectral 
sparsification 

l Alternative: coarse graining

Downsampling and Graph Reduction

23

7

(a) (b) (c)

(d) (e) (f)

Fig. 4. Incorporation of a spectral sparsification step into the graph reduction.
(a)-(c) Repeated largest eigenvector downsampling and Kron reduction of a
sensor network graph. (d)-(f) The same process with the spectral sparsification
of [31] used immediately after each Kron reduction.

where D(j+1) is computed from W(j+1). However,
there are a number of undesirable properties of this
reduction method. First, and perhaps foremost, the re-
duction method does not always preserve connectivity.
Second, self-loops are introduced at every vertex in the
reduced graph. Third, vertices in the selected subset
that are connected by an edge in the original graph
may not share an edge in the reduced graph. Fourth,
the spectrum of the reduced graph Laplacian is not
necessarily contained in the spectrum of the original
graph Laplacian.

2) Ron et al. [14] assign a fraction P
ij

of each vertex
i in the original graph to each vertex j 2 V

1

in the
reduced graph that is close to i in the original graph (in
terms of an algebraic distance). The assignment satisfies
P

j2V
1

P
ij

= 1 for all i 2 V and P
jj

= 1 for all j 2 V
1

,
and for each eliminated vertex i 2 Vc

1

, an upper limit
is placed on the number of vertices j 2 V

1

that have
P
ij

> 0. Then for all j, j0 2 V
1

,

W reduced

jj

0 :=

X

m,n2V,m 6=n

P
mj

P
nj

0W
mn

.

Next, we mention some graph coarsening (also called coarse-
graining) methods that combine graph downsampling and
reduction into a single operation by forming aggregate nodes at
each resolution, rather than keeping a strict subset of original
vertices. The basic approach of these methods is to partition
the original set of vertices into clusters, represent each cluster
of vertices in the original graph with a single vertex in the
reduced graph, and then use the original graph to form edges
and weights that connect the representative vertices in the
reduced graph. Some examples include:

1) Lafon and Lee [32] cluster based on diffusion distances
and form new edge weights based on random walk
transition probabilities.

2) The Lean Algebraic Multigrid (LAMG) method of [33]
builds each coarser Laplacian by selecting seed nodes,
assigning each non-seed node to be aggregated with
exactly one seed node, and setting the weights between

two new seed nodes j and j0 to be

W reduced

jj

0 :=

X

i2Vj

X

i

02Vj0

W
ii

0 ,

where V
j

and V
j

0 are the sets of vertices that have
been aggregated with seeds j and j0, respectively. The
seed assignments are based on an affinity measure that
approximates short time diffusion distances, rather than
the algebraic distances used in [14].

3) Multilevel clustering algorithms such as those presented
in [34], [35] often use greedy coarsening algorithms such
as heavy edge matching or max-cut coarsening (see [34,
Section 3] and [35, Section 5.1] for details).

For more thorough reviews of the graph partitioning and
coarsening literature, see, e.g., [12], [14], [36].

To summarize, given a graph G and a desired number of
resolution levels, in order to generate a multiresolution of
graphs, we only need to choose a downsampling operator and
a graph reduction method. In the remainder of the paper, we
use the largest eigenvector downsampling operator and the
Kron reduction with the extra sparsification step to generate
graph multiresolutions such as the three level one shown in
Figure 4(d)-(f). Note that graph multiresolutions generated in
this fashion are completely independent of any signals residing
on the graph.

V. FILTERING AND INTERPOLATION OF GRAPH SIGNALS

Equipped with a graph multiresolution, we now proceed to
analyze signals residing on the finest graph in the multiresolu-
tion. The two key graph signal processing components we use
in the proposed transform are a generalized filtering operator
and an interpolation operator for signals on graphs. Filters
are commonly used in classical signal processing analysis to
separate a signal into different frequency bands. In this section,
we review how to extend the notion of filtering to graph
signals. We focus on graph spectral filtering, which leverages
the eigenvalues and eigenvectors of Laplacian operators from
spectral graph theory [37] to capture the geometric structure of
the underlying graph data domain. We then discuss different
methods to interpolate from a signal residing on a coarser
graph to a signal residing on a finer graph whose vertices are
a superset of those in the coarser graph.

A. Graph Spectral Filtering
A graph signal is a function f : V ! R that associates a

real value to each vertex of the graph. Equivalently, we can
view a graph signal as a vector f 2 RN .

In frequency filtering, we represent signals as linear com-
binations of a set of signals and amplify or attenuate the
contributions of different components. In classical signal pro-
cessing, the set of component signals are usually the complex
exponentials, which carry a notion of frequency and give rise
to the Fourier transform. In graph signal processing, it is most
common to choose the graph Fourier expansion basis to be
the eigenvectors of the combinatorial or normalized graph
Laplacian operators. This is because the spectra of these graph
Laplacians also carry a notion of frequency (see, e.g., [3,

Downsampling

Graph Reduction



l How to sample a graph signal and 
interpolate from the samples?   

l How to choose the samples 
depends on your prior knowledge 
of the data 

l Subset Vs of vertices is a 
uniqueness set for a subspace P 
iff:  

If two signals in the subspace P 
have the same values on the 
vertices in the uniqueness set, 
then they are the same signal

Sampling and Interpolation

24
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Can we recover all 500 values of this 
signal from 30 measurements? If so, where 

should we take those measurements?  



Example: subspace of globally smooth signals with band limit λ29 

Sampling and Interpolation: 
Signals Concentrated on Spectral Bands

25

λ    Bandlimited signal Uniqueness set

1. Recover graph Fourier 
coefficients: 

2. Interpolation / reconstruction:

f̃ = U:,Rx

US,Rx = fS
… …u0" u1" u29" uN'1"u30"

 



Approaches to Graph Signal 
Dictionary Design

26
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l Analytic dictionaries: adapted to graph structure, but not 
to any specific training signals 

l Dictionary learning: adapt dictionary to training data 
-   
-   
- These general methods do not explicitly account for graph structure 

l Parametric training: force some structure upon the 
dictionary (e.g., to incorporate graph topology, ensure an 
efficient computational implementation), but use training 
signals to learn parameters 
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Analytic Versus Trained Dictionaries
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T. Bıyıkoğlu, J. Leydold, and P. F. Stadler, Laplacian Eigenvectors of Graphs, Springer, 2007.

D. Spielman, “Spectral graph theory” in Combinatorial Scientific Computing, Chapman and Hall, 2012.

Dictionaries for Signals on Graphs

R. R. Coifman and M. Maggioni, “Di↵usion wavelets,” Appl. Comput. Harmon. Anal., vol. 21, no. 1, pp.

53–94, Jul. 2006.

D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral graph theory,”

Appl. Comput. Harmon. Anal., vol. 30, no. 2, pp. 129–150, Mar. 2011.

S. K. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet filter banks for graph structured

data,” IEEE Trans. Signal Process., vol. 60, pp. 2786–2799, Jun. 2012.

D. I Shuman, B. Ricaud, and P. Vandergheynst, “A windowed graph Fourier transform,”in Proc. IEEE Stat.

Signal Process. Wrkshp., Ann Arbor, MI, Aug. 2012.

David Shuman Signal Processing on Graphs February 11, 2013 34 / 35

Rubinstein et al., Dictionaries for sparse representation modeling, Proc. 
IEEE, 2010

Intro Signal Transforms Problem Spectral Graph Theory Generalized Operators WGFT Conclusion

Further Reading
Tutorial Overviews

D. I Shuman, S. K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, “Signal processing on graphs:

Extending high-dimensional data analysis to networks and other irregular domains,” Signal Process. Mag.,
to appear May 2013.

R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse representation modeling,” Proc.

IEEE, vol. 98, no. 6, pp. 1045–1057, Jun. 2010.

Spectral Graph Theory and Graph Laplacian Eigenvectors

F. K. Chung, Spectral Graph Theory, vol. 92 of the CBMS Reg. Conf. Ser. Math., AMS Bokstore, 1997.
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l Graph Fourier transform 

l Vertex domain designs 

l Diffusion-based designs 

l Windowed graph Fourier transform 

l Spectral domain designs 

l Generalized filter banks

Survey of Approaches to Graph Signal 
Dictionary Design

28



Motivating Example: Any Structure?

29



Classical Windowed Fourier Transform

30



Windowed Graph Fourier Transform

31
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A Windowed Graph Fourier Transform

1 Translate a window g to each vertex of the graph

T100g T200g T2000g

2 Multiply each component of the graph signal f of interest by the
corresponding component of the translated window Tig

3 Take the graph Fourier transform of f . ⇤ Tig (recall analysis)
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l Windowed graph Fourier atoms: gi,k := MkTig

Classical Windowed

Fourier Atoms

(a)

Classical Wavelets

(b)

Windowed Graph

Fourier Atoms

(c)

Spectral Graph

Wavelets

(d)

Figure 17: (a) Tiling of the time-frequency plane by classical windowed Fourier atoms. (b) Tiling of the time-frequency plane
by classical wavelets. (c) Sum of the spectrograms of five windowed graph Fourier atoms on the path graph with 180 vertices.
(d) Sum of the spectrograms of five spectral graph wavelets on the path graph with 180 vertices.

suggest. Namely, the sizes of the Heisenberg boxes for di↵erent windowed graph Fourier atoms are roughly
the same, while the sizes of the Heisenberg boxes of spectral graph wavelets are similar at a fixed scale, but
vary across scales.

In Figure 18, we plot three di↵erent windowed graph Fourier atoms – all with the same center vertex – on
the Swiss roll graph. Note that all three atoms are jointly localized in the vertex domain around the center
vertex 62, and in the graph spectral domain around the frequencies to which they have been respectively
modulated. However, unlike the path graph example in Figure 17, the sizes of the Heisenberg boxes of
the three atoms are quite di↵erent. In particular, the atom g

62,983

is extremely close to a delta function
in both the vertex domain and the graph spectral domain, which of course is not possible in the classical
setting due to the Heisenberg uncertainty principle. The reason this happens is that the coherence of this
Swiss roll graph is µ = 0.94, and the eigenvector �

983

is highly localized, with a value of -0.94 at vertex 62.
The takeaway is that highly localized eigenvectors can limit the extent to which intuition from the classical
setting carriers over to the graph setting.
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Figure 18: Three di↵erent windowed graph Fourier atoms on the Swiss roll from Example 1, shown in both domains.
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Windowed Graph Fourier Transform (cont.)
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Spectrogram Examples
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k"

Red" Blue" Green"

(a) (b)

Figure 14: Spectrogram example on a random sensor network. (a) A signal comprised of three di↵erent graph Laplacian
eigenvectors restricted to three di↵erent clusters of a random sensor network. (b) The spectrogram shows the di↵erent frequency
components in the red, blue, and green clusters.
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Figure 15: Frequency-lapse video representation of the spectrogram of a graph signal. The graph spectrogram can be viewed
as a sequence of images, with each frame corresponding to the spectrogram coe�cients at all vertices and a single frequency,
|Sf(:, k)|2. This particular subsequence of frames shows the spectrogram coe�cients from eigenvalues �

26

through �
29

. At
frequencies close to �

27

= 5.44, we can see the coe�cients “light up” in the blue cluster of vertices from Figure 14(a),
corresponding to the spectrogram coe�cients in the middle of Figure 14(b).

given signal f . In particular, for i = 1, 2, . . . , N , we can define y

i

:= Sf(i, :) 2 RN , and then use a standard
clustering algorithm to cluster the points {y

i

}
i=1,2,...,N

.7

Example 6: We generate a signal f on the 500 vertex random sensor network of Example 1 as follows.
First, we generate four random signals {f

i

}
i=1,2,3,4

, with each random component uniformly distributed

between 0 and 1. Second, we generate four graph spectral filters
n

b

h

i

(·)
o

i=1,2,3,4

that cover di↵erent bands of

the graph Laplacian spectrum, as shown in Figure 16(a). Third, we generate four clusters, {C
i

}
i=1,2,3,4

, on
the graph, taking the first three to be balls of radius 4 around di↵erent center vertices, and the fourth to be
the remaining vertices. These clusters are shown in Figure 16(b). Fourth, we generate a signal on the graph
as

f =
4

X

i=1

(f
i

⇤ h
i

) |
Ci ;

7Note that if we take the window to be a heat kernel ĝ(�) = Ce�⌧�, as ⌧ ! 0, Tig ! �i and Sf(i, k) ! h
p
NMk�i, fi =p

N�k(i)f(i). Thus, this method of clustering reduces to spectral clustering [9] when (i) the signal f is constant across all
vertices, and (ii) each window is a delta in the vertex domain.
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l Spectrogram = frequency-lapse video



l Windowed graph Fourier transform 

l Spectral domain designs 

l Generalized filter banks

Survey of Approaches to Graph Signal 
Dictionary Design
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l M kernels/patterns {gm} 

l Localize each pattern to each vertex 

- Atoms of the form  

-   

l Dictionary is overcomplete with MN atoms 

l Approximate kernels with polynomials 
- Ensures joint localization in both domains 
- Fast computations with dictionary and its adjoint 

Dictionary of Localized Kernels

36

= x#

Tigm = gm(L)�i

� = [g1(L), g2(L), . . . , gM (L)]



l Spectral graph wavelet at scale s, 
centered at vertex n:

 s,n(i) := (TnDsg)(i) =
N=1X

`=0

ĝ(s�`)u
⇤
` (n)u`(i)

Spectral Graph Theory Generalized Operators Transforms Scalable Algorithms and Distributed Processing

Example: Image Denoising by Low-Pass Graph Filtering

f (n) // GFT // f̂ (�`) // ĝ // ĝ(�`)f̂ (�`) // IGFT // �f (n)

Semi-Local Graph Tikhonov Regularization

argmin
f

�

kf � yk22 + �fTLf
 

=) ĝ(�`) =
1

1 + ��`
λ

ĝ(λ) = 1
1+10λ

ĝ(λ)

7

Example 2 (Tikhonov regularization): We observe a noisy graph signal y = f
0

+ ⌘, where ⌘ is uncorrelated additive
Gaussian noise, and wish to recover f

0

. To enforce a priori information that the clean signal f
0

is smooth with respect to
the underlying graph, we include a regularization term of the form fTLf , and, for a fixed � > 0, solve the optimization
problem

argmin

f

�
kf � yk2

2

+ �fTLf
 
. (16)

The first-order optimality conditions of the convex objective function in (??) show that (see, e.g., [?], [?, Section III-A],
[?, Proposition 1]) the optimal reconstruction is given by

f⇤(i) =
N�1X

`=0


1

1 + ��
`

�
ŷ(�

`

)u
`

(i), (17)

or, equivalently, f = ˆh(L)y, where ˆh(�) := 1

1+��

can be viewed as a low-pass filter.
As an example, in the figure below, we take the 512 x 512 cameraman image as f

0

and corrupt it with additive
Gaussian noise with mean zero and standard deviation 0.1 to get a noisy signal y. We then apply two different filtering
methods to denoise the signal. In the first method, we apply a symmetric two-dimensional Gaussian low-pass filter of
size 72 x 72 with two different standard deviations: 1.5 and 3.5. In the second method, we form a semi-local graph on
the pixels by connecting each pixel to its horizontal, vertical, and diagonal neighbors, and setting the Gaussian weights
(??) between two neighboring pixels according to the similarity of the noisy image values at those two pixels; i.e., the
edges of the semi-local graph are independent of the noisy image, but the distances in (??) are simply the differences
between the neighboring pixel values in the noisy image. For the Gaussian weights in (??), we take ✓ = 0.1 and  = 0.
We then perform the low-pass graph filtering (??) to reconstruct the image. This method is a variant of the graph-based
anisotropic diffusion image smoothing method of [?].

In all image displays, we threshold the values to the [0,1] interval. The bottom row of images is comprised of
zoomed-in versions of the top row of images. Comparing the results of the two filtering methods, we see that in order to
smooth sufficiently in smoother areas of the image, the classical Gaussian filter also smooths across the image edges.
The graph spectral filtering method does not smooth as much across the image edges, as the geometric structure of the
image is encoded in the graph Laplacian via the noisy image.

Gaussian-Filtered Gaussian-Filtered
Original Image Noisy Image (Std. Dev. = 1.5) (Std. Dev. = 3.5) Graph-Filtered

comprising any path connecting i and j) is greater than k [?,
Lemma 5.2]. Therefore, we can write (??) exactly as in (??),
with the constants defined as

b
i,j

:=

KX

k=dG(i,j)

a
k

�
Lk

�
i,j

.

So when the frequency filter is an order K polynomial,
the frequency filtered signal at vertex i, f

out

(i), is a linear
combination of the components of the input signal at vertices
within a K-hop local neighborhood of vertex i. This property
can be quite useful when relating the smoothness of a filtering

kernel to the localization of filtered signals in the vertex
domain.

B. Convolution

We cannot directly generalize the definition (??) of a
convolution product to the graph setting, because of the term
h(t�⌧). However, one way to define a generalized convolution
product for signals on graphs is to replace the complex
exponentials in (??) with the graph Laplacian eigenvectors
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Example: Spectral Graph Wavelets
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l Generalized dilation:
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Improvement 1: Energy Conservation
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5

warping function !(x) := log(x).5 Second, as described
in Corollary 2, choose 2 < R  M and K  R

2

and con-
struct a set of uniform translates,

n

cgU
m

(·)
o

m=1,2,...,M�1

,

with � = !(�
max

). Finally, define the M � 1 wavelet
kernels as

cg
m

(�) := [gU
m�1

�

!(�)
�

, m = 2, 3, . . . ,M, (12)

and the scaling kernel as

bg
1

(�) :=

v

u

u

tRa2
0

+

R

2

K

X

k=1

a2
k

�
M

X

m=2

|cg
m

(�)|2. (13)

Note that for some values of � in [0,�
max

], !(�) /2
[0, �]; however, the form of the scaling kernel (13) and
Lemma 1 ensure that {T

i

g
m

}
i=1,2,...,N ; m=1,2,...,M

is
still a tight wavelet frame.

Example 2: In Figure 3(c), we show an example of
graph wavelet and scaling kernels generated in the above
fashion, using Hann kernels (K = 1 and a

0

= a
1

=

1

2

)
with �

max

= 12, R = 3, and M = 8. Comparing this
system to the corresponding kernels used for the spectral
graph wavelet transform (SGWT) [4] and Meyer-like
graph wavelet frame [9], [10], we see that, similar to
the Meyer-like kernels, the log-warped kernels lead to
a tight frame and the support of each wavelet kernel
is a strict subset of the spectrum [0,�

max

] (analogously
to bandlimited wavelets on the real line); however, the
overlap and shape of the wavelet kernels is closer to the
spline-based SGWT wavelet kernels.

Spectral Graph
Wavelet Frame [4]
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�

(a)

Meyer-Like Tight
Graph Wavelet
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Fig. 3. Three different sets of wavelet and scaling kernels in the graph
spectral domain. The top black line in each figure is G(�).

V. SPECTRUM-ADAPTED FILTERS

While each atom of the form T
i

g
m

=

p
Ncg

m

(L)�
i

generated from the filters in Examples 1 and 2 is adapted
to the particular graph spectrum through the matrix
function cg

m

(L), the filters themselves are only adapted
to the length of the discrete spectrum, and not to the

5We take !(0) to be �1 so that cgm(0) :=

\gUm�1

�

�1
�

= 0.
Alternatively, in numerical implementations, we can define !(x) :=

log(x) + ✏, where ✏ is an arbitrarily small constant.

specific locations of the eigenvalues. As discussed in
[8], in order to extract information from signals with
oscillations that are localized on the graph, it is useful to
develop atoms that are simultaneously localized in both
the vertex domain and the graph spectral domain. In clas-
sical continuous-time or discrete-time time-frequency
analysis, we can form such atoms by modulating and
then translating a window, where the modulation is a
translation in the Fourier domain. In the graph setting,
however, the Laplacian spectrum is not only finite, but
it is not uniformly distributed. Therefore, as Example
3 below demonstrates, simply shifting filters in the
graph spectral domain is not the ideal way to break the
spectrum up into different frequency bands for analysis.

Example 3: In Figure 4, we show three different
graphs with N = 64 vertices. In Figure 5, we plot
systems of eight uniform translates of the form (10),
with � = �

max

for the three different graphs. The
filters are only adapted to the length of the spectrum,
�
max

; however, we also show the locations of the graph
Laplacian eigenvalues with “x” marks on the horizontal
axis. Throughout the paper, we mark the eigenvalues
locations that are used in the design of the filters in red,
and those that are not known or not used in the design
of the filters in black.

Path Graph

(a)

Sensor Network

(b)

Comet Graph

(c)

Fig. 4. Three different graphs with 64 vertices. The degree of the
center vertex in the comet graph in (c) is 30. The non-zero edge
weights in (a) and (c) are all equal to 1. The edge weights in the
sensor network in (b) are assigned based on physical distance via a
thresholded Gaussian kernel weighting function (see, e.g., [1, Equation
(1)]).

Path Graph

�

(a)

Sensor Network

�

(b)

Comet Graph

�

(c)

Fig. 5. Systems of uniformly translated filters,
n

cgUm

o

m=1,2,...,8
,

adapted to the length, �
max

, of the graph Laplacian spectrum for three
different graphs, each with N = 64 vertices. The locations of the graph
Laplacian eigenvalues are marked on the horizontal axis. Only those
shown in red (�

0

and �
max

) are used in the design of the filters.

We see that simply shifting filters in the graph spectral
domain may lead to a disparity in the number of graph

SGWT (not tight) Meyer-Like Tight 
Wavelet Frame

Log-Warped Tight 
Wavelet Frame

Intro Signal Transforms Problem Spectral Graph Theory Generalized Operators WGFT Conclusion

Further Reading
Tutorial Overviews

D. I Shuman, S. K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, “Signal processing on graphs:

Extending high-dimensional data analysis to networks and other irregular domains,” Signal Process. Mag.,
to appear May 2013.

R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse representation modeling,” Proc.

IEEE, vol. 98, no. 6, pp. 1045–1057, Jun. 2010.

Spectral Graph Theory and Graph Laplacian Eigenvectors

F. K. Chung, Spectral Graph Theory, vol. 92 of the CBMS Reg. Conf. Ser. Math., AMS Bokstore, 1997.
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l Ideally, atoms should not be too correlated with each other 
l An extreme example:

Improvement 2: Discrimination Power
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µ1(k) := max

|⇥|=k
max

 2D{1,2,...,N·M}\⇥

X

✓2⇥

|h ,D✓i|
|| ||2||D✓||2

l Cumulative coherence for a given sparsity level k
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Thus, given a large but finite Erdős-Rényi random
graph with N vertices and edge probability p, we pro-
ceed as in Section VI-A, with ˜�

upper

either computed
more precisely or simply set to 2, and

!̃ER

(z) := PER

˜

�,1(z), z 2
h

0, ˜�
upper

i

. (22)

Example 7: We now consider the same class of
Erdős-Rényi random graphs and specific graph realiza-
tion as in Example 6, but we adapt the filters to the
normalized graph Laplacian spectrum. We use the trivial
upper bound �

upper

= 2. Figure 9 shows the approxi-
mate empirical spectral distribution, warping function,
and resulting system of warped filters.

Empirical Spectral
Distribution

�

(a)

Warping Function

�

(b)

Warped Filters

�

(c)

Fig. 9. Construction of a system of filters adapted to the normalized
graph Laplacian spectrum of the class of Erdős-Rényi random graphs
with N = 3000 vertices and edge probability p = 0.05. (a) The
normalized histogram of the normalized graph Laplacian eigenvalues of
a single graph realization from this class, compared to the approximate
empirical spectral distribution pER

˜�,N
(s) given in (21). (b) The warping

function !̃ER
(

˜�) defined in (22). (c) The system of warped filters.

VII. SPECTRUM-ADAPTED TIGHT GRAPH WAVELET
FRAMES

We can now combine the logarithmic warping from
Section IV-A with the spectrum-adapted warping func-
tions from Sections V and VI to generate spectrum-
adapted tight wavelet frames. Namely, we take the warp-
ing function to be

!(�) := log

�

!
0

(�)
�

, (23)

where !
0

(·) is a normalizing constant times some ap-
proximation of the empirical spectral cumulative distri-
bution. Then we can once again generate the wavelet and
scaling kernels according to (12) and (13).

Example 8: We consider the same class of Erdős-
Rényi random graphs from Example 6, and take !

0

(�) =
�
upper

· !ER

(�). In Figure 10, we compare the wavelet
and scaling kernels generated from the spectral graph
wavelet transform, Meyer-like tight wavelet frames, and
log-warped tight wavelet frame from Section IV-A to
the warped filters generated by the composite warping
function (23).

Spectral Graph
Wavelet Frame [4]

�

(a)

Meyer-Like Tight
Graph Wavelet
Frame [9], [10]

�

(b)

Max Degree-Adapted
Meyer-Like Tight

Wavelet Frame [10]

�

(c)

Warping Functions

�

(d)

Log-Warped
Tight Graph

Wavelet Frame
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Spectrum-Adapted
Tight Graph

Wavelet Frame
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(f)

Fig. 10. Five different sets of wavelet and scaling kernels on
the graph Laplacian spectrum for Erdős-Rényi random graphs with
N = 3000 and edge probability p = .05. The spectral graph
wavelet transform, Meyer-like tight wavelet frame, and log-warped
tight wavelet frame in (a), (b), and (e) are only adapted to an
approximation of the length of the spectrum, �upper . The Meyer-
like tight wavelet frame of (c) is also adapted to the maximum degree
via the warping function C arccos

⇣

1� �
d
max

⌘

, where the constant

C = �upper/ arccos
⇣

1� �
upper

d
max

⌘

ensures that the range of the
warping function is [0,�upper]. The tight frame kernels in (f) are
adapted to an approximation of the empirical spectral cumulative
distribution via the composite warping function (23), which is shown in
(d). Although not used in the construction of any of the above filters,
the eigenvalues of a single realization from this class of graphs are
shown on the horizontal axis of each system of filters. We see that the
system of filters in (f) is the only one of the five concentrated on the
area of the spectrum where the eigenvalues are concentrated.
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Thus, given a large but finite Erdős-Rényi random
graph with N vertices and edge probability p, we pro-
ceed as in Section VI-A, with ˜�

upper

either computed
more precisely or simply set to 2, and

!̃ER

(z) := PER

˜

�,1(z), z 2
h

0, ˜�
upper

i

. (22)

Example 7: We now consider the same class of
Erdős-Rényi random graphs and specific graph realiza-
tion as in Example 6, but we adapt the filters to the
normalized graph Laplacian spectrum. We use the trivial
upper bound �

upper

= 2. Figure 9 shows the approxi-
mate empirical spectral distribution, warping function,
and resulting system of warped filters.

Empirical Spectral
Distribution

�

(a)

Warping Function

�

(b)

Warped Filters

�

(c)

Fig. 9. Construction of a system of filters adapted to the normalized
graph Laplacian spectrum of the class of Erdős-Rényi random graphs
with N = 3000 vertices and edge probability p = 0.05. (a) The
normalized histogram of the normalized graph Laplacian eigenvalues of
a single graph realization from this class, compared to the approximate
empirical spectral distribution pER

˜�,N
(s) given in (21). (b) The warping

function !̃ER
(

˜�) defined in (22). (c) The system of warped filters.

VII. SPECTRUM-ADAPTED TIGHT GRAPH WAVELET
FRAMES

We can now combine the logarithmic warping from
Section IV-A with the spectrum-adapted warping func-
tions from Sections V and VI to generate spectrum-
adapted tight wavelet frames. Namely, we take the warp-
ing function to be

!(�) := log

�

!
0

(�)
�

, (23)

where !
0

(·) is a normalizing constant times some ap-
proximation of the empirical spectral cumulative distri-
bution. Then we can once again generate the wavelet and
scaling kernels according to (12) and (13).

Example 8: We consider the same class of Erdős-
Rényi random graphs from Example 6, and take !

0

(�) =
�
upper

· !ER

(�). In Figure 10, we compare the wavelet
and scaling kernels generated from the spectral graph
wavelet transform, Meyer-like tight wavelet frames, and
log-warped tight wavelet frame from Section IV-A to
the warped filters generated by the composite warping
function (23).

Spectral Graph
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�

(a)

Meyer-Like Tight
Graph Wavelet
Frame [9], [10]

0 20 40 60 80 100 120140 1601800
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(b)

Max Degree-Adapted
Meyer-Like Tight

Wavelet Frame [10]

�

(c)

Warping Functions

�

(d)

Log-Warped
Tight Graph

Wavelet Frame

�

(e)

Spectrum-Adapted
Tight Graph

Wavelet Frame

�

(f)

Fig. 10. Five different sets of wavelet and scaling kernels on
the graph Laplacian spectrum for Erdős-Rényi random graphs with
N = 3000 and edge probability p = .05. The spectral graph
wavelet transform, Meyer-like tight wavelet frame, and log-warped
tight wavelet frame in (a), (b), and (e) are only adapted to an
approximation of the length of the spectrum, �upper . The Meyer-
like tight wavelet frame of (c) is also adapted to the maximum degree
via the warping function C arccos

⇣

1� �
d
max

⌘

, where the constant

C = �upper/ arccos
⇣

1� �
upper

d
max

⌘

ensures that the range of the
warping function is [0,�upper]. The tight frame kernels in (f) are
adapted to an approximation of the empirical spectral cumulative
distribution via the composite warping function (23), which is shown in
(d). Although not used in the construction of any of the above filters,
the eigenvalues of a single realization from this class of graphs are
shown on the horizontal axis of each system of filters. We see that the
system of filters in (f) is the only one of the five concentrated on the
area of the spectrum where the eigenvalues are concentrated.
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Path Graph

6

Laplacian eigenvalues (frequencies) in each frequency
band, which is not ideal for information extraction. As an
extreme example, for the comet graph, because cgU

5

(�) =
0 for all � 2 �(L) in Figure 5(c), hf, T

i

gU
5

i = 0 for all
i 2 {1, 2, . . . , N} and every signal f 2 RN . Therefore,
given a fixed number of filters and knowledge about the
locations of the eigenvalues, cgU

5

(·) (shown in magenta) is
not a good choice of a filter, because hf, T

i

gU
5

i provides
no additional information about any signal f on this
comet graph.

In the remainder of this section, we present a method
to incorporate some knowledge about the locations of
the graph Laplacian eigenvalues into the design of the
system of filters, in a manner such that the resulting
analysis coefficients hf, T

i

g
m

i provide more information
about the signal f . Our general approach is to estimate
the density of the graph Laplacian eigenvalues, and then
warp the spectrum accordingly.

In Section V-A, we assume that we know all of the
eigenvalues exactly; however, in extremely large graphs,
it is computationally prohibitive to compute this full
spectrum, and therefore in Section V-B, we discuss
how to approximate the density of the graph Laplacian
eigenvalues in a more efficient manner.

A. Spectrum-Based Warping Functions
The spectral density function (see, e.g., [24, Chapter

6]) or empirical spectral distribution (see, e.g., [25,
Chapter 2.4]) of the graph Laplacian eigenvalues of a
given graph G with N vertices is the probability measure

p
�

(s) :=
1

N

N�1

X

`=0

11{�
`

=s}.

Similarly, we can define a cumulative spectral density
function or empirical spectral cumulative distribution as

P
�

(z) :=
1

N

N�1

X

`=0

11{�
`

z}. (14)

One method to adapt the uniform translates of Ex-
ample 3 so that the support of each filter includes a
similar number of eigenvalues is, as in (11), to let the
filters be of the form cg

m

(�) =

cgU
m

(!(�)), with the
cumulative spectral density function (14) used as the
warping function !(�). However, for finite deterministic
graphs, doing so results in discontinuous filters, as the
cumulative spectral density function is discontinuous.
We prefer smooth filters, because (i) results character-
izing the localization of T

i

g
m

in the vertex domain
(see, e.g., [8]) depend on smoothness of cg

m

(·) in the
graph spectral domain; and (ii) smooth kernels can be
better approximated by low-order polynomials, which is
relevant for approximate computational approaches (see,
e.g., [4, Section 6]).
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Fig. 6. (a)-(c) Spectrum-based warping functions, !(�), based on full
knowledge of the graph Laplacian spectrum, �(L). (d)-(f) Systems of
warped filters, {cgm}m=1,2,...,8, where cgm(�) =

cgUm(!(�)), and
!(�) are the spectrum-adapted warping functions constructed with
monotonic cubic interpolation in (a)-(c). (g)-(i) Systems of warped
filters arising from a warping function generated by interpolating a
subset of 8 of the 64 Laplacian eigenvalues. Specifically, we use the
interpolation points

n⇣

¯�`,
`

¯N�1

⌘o

`=0,1,..., ¯N�1

, where ¯N = 8 and

�̄(L) =
�

¯�`
 

`=0,1,...,7
= {�

0

,�
9

,�
18

,�
27

,�
36

,�
45

,�
54

,�
63

}.

Rather, we build a continuous warping function that
approximates the cumulative spectral density function by
interpolating the points6

⇢✓

�
`

,
`

N � 1

◆�

`=0,1,...,N�1

. (15)

We consider two interpolation methods: simple linear
interpolation and monotonic cubic interpolation [26].

Example 4: In Figure 6(a)-(c), we show the warping
functions generated by interpolating the points (15) with
each of these two methods, for each of the graphs
in Example 3. We then show the resulting systems
of spectrum-adapted warped filters in Figure 6(d)-(f).
We see that the warped filters are narrower where the
eigenvalue density is higher – each end of the spectrum
for the path graph, the middle of the spectrum for the
sensor network, and the very low end of the spectrum

6By setting the first interpolation point to (0, 0) and the last to
(�

max

, 1), we ensure that the support, [0,�
max

], of the warped filters
is mapped to the full support of the uniform translates. In the case of
a repeated eigenvalue �` = �`+1

= . . . = �`+k , we just include the
single point

⇣

�`+k,
`+k
N�1

⌘

in the set of interpolation points.

Sensor Network Comet Graph Random E-R

9

spectral cumulative distribution

¯PER

�,N

(z) :=
1

N

N�1

X

`=0

11

⇢

�

`

�pNp
pN(1�p)

z

� (18)

of the graph Laplacian eigenvalues of a large random
Erdős-Rényi graph with edge probability p converges
weakly to the measure µ = µ

A

� µ
B

, the free additive
convolution9 of the standard normal distribution with
density

dµ
A

:=

1p
2⇡

e
�x

2

2 dx,

and the semi-circular distribution with density

dµ
B

:=

1

2⇡

p

4� x2

11{�2x2} dx. (19)

Given a large but finite Erdős-Rényi random graph
with N vertices and edge probability p, we can approx-
imate the empirical spectral cumulative distribution by
rearranging (18) to get

PER

�,N

(z) :=

s

1

pN(1� p)
µ

  

�1,
z � pN

p

pN(1� p)

#!

=

s

1

pN(1� p)

Z

z

�1
dµ

 

s� pN
p

pN(1� p)

!

, (20)

and then proceed as in Section VI-A with !ER

(z) :=

PER

�,N

(z) for z 2 [0,�
upper

]. We should comment on
a few technical issues. First, as mentioned earlier, for a
fixed N , the empirical spectral cumulative distribution is
a random measure, while the sequence of distributions
converges to a deterministic measure asymptotically as
N increases. Nonetheless, we are taking the determin-
istic approximation (20) as the warping function. Sec-
ond, in general, computing free convolutions is non-
trivial. In Example 6 below, we implement the numerical
method presented in [37] to compute the density dµ
in (20). Third, the support of the density function of
the free convolution of the standard normal distribution
and the semi-circular distribution is the entire real line.
Therefore, unlike the case of the random regular graph
above, !ER

(0) is not exactly equal to zero; however,
for large N , it is quite small (e.g., on the order of 1

1000

for Example 6 below). Another consequence of the non-
compact support of pER

�,N

(s) is that we cannot choose a
strict upper bound �

upper

. Rather, for any given ✏ > 0,
we can choose a �

upper

such that the probability that an
eigenvalue is bigger than �

upper

is less than ✏.
Example 6: We choose a realization from the class

of Erdős-Rényi random graphs with N = 3000 vertices
and edge probability p = 0.05, and take �

upper

= pN +

9For more details about free probability theory and the free additive
convolution, see [25, Chapter 2.5] or [36].

Empirical Spectral
Distribution
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(b)
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Fig. 8. Construction of a system of filters adapted to the graph
Laplacian spectrum of the class of Erdős-Rényi random graphs with
N = 3000 vertices and edge probability p = 0.05. (a) The normalized
histogram of the graph Laplacian eigenvalues of a single graph realiza-
tion from this class, compared to the approximate empirical spectral
distribution pER

�,N (s). (b) The warping function !ER
(�) defined in

(20). (c) The resulting system of warped filters. Once again, the filters,
although not adapted to that specific realization, are narrower in the
regions of the spectrum where the eigenvalue density is higher.

4

p

pN(1� p) = 197.75. In Figure 8, we compare the
normalized histogram of the graph Laplacian eigenvalues
to pER

�,N

(s) and plot the warping function and warped
system of filters.

C. Normalized Graph Laplacian Spectrum of Erdős-
Rényi Random Graphs

As discussed in [1], it may be beneficial to use the
normalized graph Laplacian eigenvectors as a graph
spectral filtering basis in some applications. Therefore,
we continue to consider Erdős-Rényi random graphs,
and now derive filters adapted to the normalized graph
Laplacian spectrum �(˜L). The asymptotic behavior of
the empirical spectral cumulative distribution of these
eigenvalues is characterized in the following theorem.

Theorem 4: (Fan, Lu, and Vu, Theorem 6, [38] and
Jiang, Corollary 1.3, [39]) In the limit as the number
of vertices N goes to infinity, with probability one,
the shifted and scaled empirical spectral cumulative
distribution ¯PER

˜

�,N

(z) :=

1

N

P

N�1

`=0

11

n

q

pN

(1�p)

(

1�˜

�

`

)

z

o

of the normalized graph Laplacian eigenvalues of a
large random Erdős-Rényi graph with edge probability p
converges weakly to the semi-circular distribution (19).

We again take the warping function for a random
graph with N vertices to be the (deterministic) approx-
imate empirical spectral cumulative distribution. Substi-
tuting x =

q

pN

1�p

(1� s) into (19) yields

pER

˜

�,N

(s) =
1

2⇡

s

pN

1� p

s

4� pN

1� p
(1� s)2

· 11n
1�2

q

1�p

pN

s1+2

q

1�p

pN

o. (21)

Integrating (21), we find that for large N , the empir-
ical spectral cumulative distribution is approximately
PER

˜

�,N

(z), given in (B), where we use formulas from [40,
Section 2.26, pp. 94-95] to evaluate the integral.

l With access to a rough estimate of the spectral density, we 
can adapt the filters to the spectrum via warping



l Restrict kernels to be polynomials of a given degree, and learn the 
polynomial coefficients from a training data set
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(c) K = 20

Fig. 4. Kernels { bgs(·)}s=1,2,3,4 learned by the polynomial dictionary algorithm for (a) K = 5, (b) K = 10, and (c) K = 20.

(a) bg1(L)�1 (b) bg2(L)�1

(c) bg3(L)�1 (d) bg4(L)�1

Fig. 5. Learned atoms centered on vertex n = 1, from each of the
subdictionaries.

K = 20. We can see that the support of the atoms adapts
to the graph topology. The atoms can be either smoother
around a particular vertex, as for example in Fig. 5(c), or
more localized, as in Fig. 5(a). Comparing Figs. 4, and 5, we
observe that the localization of the atoms in the graph domain
depends on the spectral behavior of the kernels. Note that the
smoothest atom on the graph (Fig. 5(c)) corresponds to the
subdictionary generated from the kernel that is concentrated
on the low frequencies (i.e., bg

3

(·)). This is because the graph
Laplacian eigenvectors associated with the lower frequencies
are smoother with respect to the underlying graph topology,
while those associated with the larger eigenvalues oscillate
more rapidly [1]. Apart from the polynomial degree, a second
parameter that influences the support of the atoms on the graph
is the sparsity level T

0

imposed in the leaning phase. A large
T
0

implies that the learning algorithm has the flexibility to
approximate the signals with many atoms. In the extreme case
where T

0

is very big, the atoms of the dictionary tend to look
like impulse functions. On the other hand, if T

0

is chosen to
be small, the algorithm learns a dictionary that approximate

Fig. 6. Comparison of the average approximation performance of our
learned dictionary on test signals generated by the non-polynomial synthetic
generating dictionary, for K = {5, 10, 20, 25}.

the signals with only a few atoms. It implicitly guides the
algorithm to learn atoms that are more spread on the graph,
in order to cover it fully.

Next, we test the approximation performance of our learned
dictionary on a set of 2000 testing signals generated in exactly
the same way as the training signals, for four different degree
values of the polynomial, i.e., K = {5, 10, 20}. Fig. 6
shows that the approximation performance obtained with our
algorithm improves as we increase the polynomial degree.
This is attributed to two main reasons: (i) by increasing the
polynomial degree, we allow more flexibility in the learning
process; (ii) a small K implies that the atoms are localized
in a small neighborhood and thus more atoms are needed to
represent signals with support in different areas of the graph.
However, we have empirically observed, that in practice, the
improvement in the performance saturates after a big enough
value of K and K = 20 is usually enough to capture the
frequency characteristics of the signals.

In Fig. 7, we fix K = 20, and compare the approximation
performance of our learned dictionary to that of other dictio-
naries, with exactly the same setup as we used in Figure 3. We
again observe that K-SVD is the most sensitive to the size of

Variant: Parametric Learning
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l Windowed graph Fourier transform 

l Spectral domain designs 

l Generalized filter banks

Survey of Approaches to Graph Signal 
Dictionary Design
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1D Wavelets Via Filter Banks
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Iterating Low Pass Branch Yields Wavelets
l To extend to the graph setting, 

we need appropriate notions of 
downsampling, upsampling, 
filtering, graph reduction

l Some issues that arise:  
- Difficulty generalizing conditions on filters ensuring 

properties such as perfect reconstruction, orthogonality 
- Preserving a meaningful correspondence between 

filtering at different resolution levels



M-Channel Critically Sampled Graph Filter Bank
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Ideal Filter Bank

Architecture
l Number of vertices in Vi 

is equal to the number of 
eigenvalues in the support 
of the corresponding filter



l To avoid a full eigendecomposition, we would like to use random, 
non-uniform sampling and fast, approximate reconstruction methods

l Partition into uniqueness sets for ideal filter bank subspaces:
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l Also reallocate samples across bands based on signal’s energy

Signal-Adapted M-CSFB
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T. Bıyıkoğlu, J. Leydold, and P. F. Stadler, Laplacian Eigenvectors of Graphs, Springer, 2007.

D. Spielman, “Spectral graph theory” in Combinatorial Scientific Computing, Chapman and Hall, 2012.

Dictionaries for Signals on Graphs

R. R. Coifman and M. Maggioni, “Di↵usion wavelets,” Appl. Comput. Harmon. Anal., vol. 21, no. 1, pp.

53–94, Jul. 2006.

D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral graph theory,”

Appl. Comput. Harmon. Anal., vol. 30, no. 2, pp. 129–150, Mar. 2011.

S. K. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet filter banks for graph structured

data,” IEEE Trans. Signal Process., vol. 60, pp. 2786–2799, Jun. 2012.

D. I Shuman, B. Ricaud, and P. Vandergheynst, “A windowed graph Fourier transform,”in Proc. IEEE Stat.

Signal Process. Wrkshp., Ann Arbor, MI, Aug. 2012.

David Shuman Signal Processing on Graphs February 11, 2013 34 / 35

Li, Jin, and Shuman, “Scalable M-channel critically sampled filter banks,” 2018

0.5

1

1.5

2

10-3

0

0.05

0.1

0.15

0.2

0.25

0.3

Sampling Weights Realization Average Error

-1

-0.5

0

0.5

1



-0.04

-0.02

0

0.02

0.04h̃m(L)�il Dictionary atoms are of the form  

l Localized within K hops of 
center vertex  

l As K increases, become more 
concentrated in spectral domain 

Joint Localization of Atoms

52

0

0.01

0.02

0.03

0.04

0.05

0 2 4 6 8



⇣
�M>

m⌦�1
m,Vm

Mm + 'm(L)
⌘
z = �M>

m⌦�1
m,Vm

yVm

min
z2RN

n

�||⌦�1/2
m,Vm

(Mmz � yVm)||22 + z>'m(L)z
o

min

z2col(U:,Rm )
||⌦�1/2

m,Vm
(Mmz � yVm)||22

Efficient Interpolation

53

downsampling operator

signal model space

approximate 
by convex 
optimization 
problem

optimality 
condition

solve with preconditioned 
conjugate gradient

diag

✓
1 +

�

pi
11{i2Vm}

◆preconditioner: 

0 2 4 6 8
0

0.5

1

1.5

2

Intro Signal Transforms Problem Spectral Graph Theory Generalized Operators WGFT Conclusion

Further Reading
Tutorial Overviews

D. I Shuman, S. K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, “Signal processing on graphs:

Extending high-dimensional data analysis to networks and other irregular domains,” Signal Process. Mag.,
to appear May 2013.

R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse representation modeling,” Proc.

IEEE, vol. 98, no. 6, pp. 1045–1057, Jun. 2010.

Spectral Graph Theory and Graph Laplacian Eigenvectors

F. K. Chung, Spectral Graph Theory, vol. 92 of the CBMS Reg. Conf. Ser. Math., AMS Bokstore, 1997.

T. Bıyıkoğlu, J. Leydold, and P. F. Stadler, Laplacian Eigenvectors of Graphs, Springer, 2007.

D. Spielman, “Spectral graph theory” in Combinatorial Scientific Computing, Chapman and Hall, 2012.

Dictionaries for Signals on Graphs

R. R. Coifman and M. Maggioni, “Di↵usion wavelets,” Appl. Comput. Harmon. Anal., vol. 21, no. 1, pp.

53–94, Jul. 2006.

D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral graph theory,”

Appl. Comput. Harmon. Anal., vol. 30, no. 2, pp. 129–150, Mar. 2011.

S. K. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet filter banks for graph structured

data,” IEEE Trans. Signal Process., vol. 60, pp. 2786–2799, Jun. 2012.

D. I Shuman, B. Ricaud, and P. Vandergheynst, “A windowed graph Fourier transform,”in Proc. IEEE Stat.

Signal Process. Wrkshp., Ann Arbor, MI, Aug. 2012.

David Shuman Signal Processing on Graphs February 11, 2013 34 / 35

Puy et al., “Random sampling of band limited signals on graphs,” 
ACHA, 2016

Intro Signal Transforms Problem Spectral Graph Theory Generalized Operators WGFT Conclusion

Further Reading
Tutorial Overviews

D. I Shuman, S. K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, “Signal processing on graphs:

Extending high-dimensional data analysis to networks and other irregular domains,” Signal Process. Mag.,
to appear May 2013.

R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse representation modeling,” Proc.

IEEE, vol. 98, no. 6, pp. 1045–1057, Jun. 2010.

Spectral Graph Theory and Graph Laplacian Eigenvectors

F. K. Chung, Spectral Graph Theory, vol. 92 of the CBMS Reg. Conf. Ser. Math., AMS Bokstore, 1997.
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l N=469,404 
l Computation times 
- Analysis: 45-90 sec 
- Synthesis: 90-1000 sec

54

Compression Example
Original Signal Reconstruction from 10% of Coefficients

Reconstruction Error
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Recent, Ongoing, and Future Work
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l Filtering / convolution 
l Translation / localization 
l Modulation and dilation 
l Sampling and interpolation 
l Graph coarsening / reduction

l Spectral graph wavelets 
l Windowed graph Fourier 

transform 
l Multiscale pyramids 
l Critically-sampled filter 

banks 
l Spectrum-adapted tight 

frames 
l Dictionary learning 
l Time series data at each 

vertex

l Goal: Avoid full eigen-decomposition 
l Polynomial approximation algorithms 

‣ Centralized (incl. GPU) 
‣ Distributed 

l Spectrum-adapted approximation algorithms

l Connections between 
sparsity and smoothness 

l Uncertainty principles 
l Graph Laplacian 

eigenvector localization

l Social, transportation, 
energy, and sensor 
networks 

l Statistical learning 
l Astrophysics 

‣ CMB 
‣ Asteroids 

l Brain networks 
l Image and video 

processing 
l Ranked choice voting 
l …



Explore
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l https://lts2.epfl.ch/gsp/ 
l https://www.macalester.edu/~dshuman1/publications.html


