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WAVELETS ON GRAPHS
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WAVELETS ON GRAPHS

Our approach here: extend some
classical time-frequency techniques
to the graph setting

G2 Diffusion wavelets (Coifman and Maggioni, 2006)

o Spectral graph wavelets (Hammond et al., 2011)

G0 Wavelet filter banks (Narang and Ortega, 2012)
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Intro

Classical Time-Frequency Analysis

m Localized Fourier analysis — joint descriptions of signals’ temporal and spectral
behavior

m Time-frequency transforms reveal underlying structure in signal, enabling
efficient information extraction, regularization in ill-posed inverse problems, etc.

00 Localized oscillations appear frequently in audio processing, vibration analysis, radar detection, etc.
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Classical Time-Frequency Analysis

m Localized Fourier analysis — joint descriptions of signals’ temporal and spectral
behavior

m Time-frequency transforms reveal underlying structure in signal, enabling
efficient information extraction, regularization in ill-posed inverse problems, etc.

00 Localized oscillations appear frequently in audio processing, vibration analysis, radar detection, etc.

fHg(t-x)

m Windowed Fourier transform of f € L2(R):

Sf(u, &) == {f,8ue) = /oo f(t)g(t — u)e 2™t gt ’ ”“‘gm

—o0

0

Source: Grochenig, 2001
m The atoms g, ¢ are localized in time and frequency:

/\ Translation T,

Modulation Mg
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Intro

The Essence of the Problem

Question: Why can’t we just apply classical time-frequency and time-scale
techniques to signals on graphs?
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Intro

The Essence of the Problem

Question: Why can’t we just apply classical time-frequency and time-scale
techniques to signals on graphs?

m Weighted graphs are irregular structures that lack a shift-invariant notion
of translation:

m Our objectives:
ol Develop generalized notions of convolution, translation, and modulation in
the graph setting

00 Leverage these to define vertex-frequency transforms that enable us to

efficiently extract information from high-dimensional data on graphs
Shuman, Ricaud, and Vandergheynst
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Spectral Graph Theory

Spectral Graph Theory Notation

m Connected, undirected, weighted graph
g = {V787 W}

m Degree matrix D: zeros except diagonals,
which are sums of weights of edges incident
to corresponding node

0 3 1 0
m Non-normalized Laplacian: £:=D — W W= 3 0 2 5
|11 2 0 7
0 5 7 0
m Complete set of orthonormal eigenvectors and -
associated real, non-negative eigenvalues:
Lxe = Xexe, 4 0 0 O
ordered w.l.o.g. s.t. D= 8 (1) ? 8
0=2 <A1 < X2... <Ayt = Amax 0O 0 0 1.2
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Spectral Graph Theory

Graph Laplacian Eigenvectors

m Values of eigenvectors associated with lower frequencies (low \;) change
less rapidly across connected vertices

Shuman, Ricaud, and Vandergheynst A Windowed Graph Fourier Transform May 11, 2012



Spectral Graph Theory

Graph Laplacian Eigenvectors

Special Case — Path Graph
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Spectral Graph Theory

Graph Laplacian Eigenvectors

Special Case — Path Graph

e )\g:2—2cos(%£> e Xo(f):\%N,Xg(i):\/%cos(w>, (=1,2,...,N—1

Eigenvector 0
L
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Eigenvector 1

R . st SR
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@ 5
Eigenvector 2
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Eigenvector 4
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Eigenvector 5

o
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Eigenvector 6
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is the Discrete Cosine Transform matrix (DCT-II, Strang, 1999),

X0ttt XN=1 o \which is used in JPEG image compression
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Spectral Graph Theory

Graph Laplacian Eigenvectors
Special Case — Ring Graph
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Spectral Graph Theory

Graph Laplacian Eigenvectors

Special Case — Ring Graph

ooreroroTee

m (Unordered) Laplacian eigenvalues: A\; =2 — 2cos (%)
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Spectral Graph Theory

Graph Laplacian Eigenvectors

Special Case — Ring Graph

ooreroroTee

m (Unordered) Laplacian eigenvalues: A\; =2 — 2cos (%)

m One possible choice of orthogonal Laplacian eigenvectors:

20

pe el

_ 27
N l)e] , where w = e~

Xe = [l,we,w

m | xo --- xwn_1 | isthe Discrete Fourier Transform (DFT) matrix
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Spectral Graph Theory

Graph Fourier Transform

m Fourier transform: expansion of f in terms of the eigenfunctions of the
Laplacian / graph Laplacian

Functions on the Real Line

FOURIER TRANSFORM

F() = (F, 27%t) = [ F(t)e><" dt
R

INVERSE FOURIER TRANSFORM

f(t) = H{ F(&)e* et de
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Spectral Graph Theory

Graph Fourier Transform

m Fourier transform: expansion of f in terms of the eigenfunctions of the
Laplacian / graph Laplacian

Functions on the Real Line Functions on the Vertices of a Graph

FOURIER TRANSFORM GRAPH FOURIER TRANSFORM

" . . . N

A= 0, = [ e e P(0) = (Foxe) = 3 F(m)xi(n)

n=1
INVERSE FOURIER TRANSFORM INVERSE GRAPH FOURIER TRANSFORM
z omitt N=L .
f(t) = [ (§)e™™*" d¢ f(n) = > f(O)xe(n)
R £=0
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Spectral Graph Theory

Signals on Graphs in Two Domains
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Spectral Graph Theory

Signals on Graphs in Two Domains
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Generalized Operators

A Generalized Convolution Product for Signals on Graphs

m Convolution in the time (vertex) domain is multiplication in the Fourier
(graph spectral) domain

Functions on the Real Line

For f,g € L*(R),

(f+g)(t) = D{ f(r)g(t — 7)dr,
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A Generalized Convolution Product for Signals on Graphs

m Convolution in the time (vertex) domain is multiplication in the Fourier
(graph spectral) domain

Functions on the Real Line

For f,g € L*(R),
(f = g)(t) ::D{f(f)g(t —7)dr,

which implies

(f x g)(t) = [ F(£)a(€)e’™ " d¢

R
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A Generalized Convolution Product for Signals on Graphs

m Convolution in the time (vertex) domain is multiplication in the Fourier

(graph spectral) domain

Functions on the Real Line Functions on the Vertices of a Graph

For f,g € R", we define

For f,g € L*(R),

(F*g)(t) = [ f(7)g(t —7)dr. (f g)(n) = g P(O&(0)xe(n)
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(F = 8)(6) = [ F(E)a(€)e* "
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Generalized Operators

A Generalized Convolution Product for Signals on Graphs

m Convolution in the time (vertex) domain is multiplication in the Fourier

(graph spectral) domain

Functions on the Real Line Functions on the Vertices of a Graph

For f,g € R", we define

For f,g € L*(R),

(F*g)(t) = [ f(7)g(t —7)dr. (f g)(n) = g P(O&(0)xe(n)
which implies
(F = 8)(6) = [ F(E)a(€)e* "

m This generalized convolution product inherits properties such as
commutativity, distributivity, and associativity
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Generalized Operators

Generalized Translation on Graphs

m Define generalized translation via generalized convolution with a delta

Functions on the Real Line Functions on the Vertices of a Graph

For f € [>(R), in the weak sense For f € RY, we define
(Tuf)(t) :=f(t —u) (Tif)(n) := VN(f  6;)(n)
= (f x8u)(2) \F""IA
=VN f(O)xz (i n
Iy Fo— IOROND

<
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Generalized Operators

Generalized Translation on Graphs

m Define generalized translation via generalized convolution with a delta

Functions on the Vertices of a Graph

Functions on the Real Line

For f € [>(R), in the weak sense For f € RY, we define
(Tuf)(t) :=f(t —u) (Tif)(n) := VN(f  6;)(n)
= (f x8u)(2) =
=VvN f(O)xz (i n
Iy Fo— > FOi et

v
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Generalized Operators

Properties of Generalized Translation Operators on Graphs

m Some nice properties inherited from the generalized convolution:
@ T;T;=T;T;
@D Ti(fxg)=(Tif)xg =1 *(Tig)
@ 3 (Tif)(n) =32, f(n)
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Generalized Operators

Properties of Generalized Translation Operators on Graphs

m Some nice properties inherited from the generalized convolution:
@ T;T;=T;T;
@D Ti(fxg)=(Tif)xg =1 *(Tig)

@ 22 (Tif)(n) = 32, f(n)

m Warning 1: Do not have the group structure of classical translation:

TiT; # Tis

m Warning 2: Unlike the classical case, generalized translation operators are
not unitary:

ITill2 = max xe(7)],
so forany i € {1,2,..., N},

where the coherence p := max Ixe(i)]
N

Shuman, Ricaud, and Vandergheynst A Windowed Graph Fourier Transform May 11, 2012 14 / 22



Generalized Operators

Generalized Modulation on Graphs

m Define generalized modulation via multiplication by a Laplacian
eigenfunction / graph Laplacian eigenvector

Functions on the Vertices of a Graph

For f € RY, we define

Functions on the Real Line

For f € L*(R),

(Mef)(t) := &> F (1) (Mif)(n) := VNxi(n)f(n)

m In the classical case, the modulation operator represents a translation in
the Fourier domain:

Mef(w) = Flw — €), YVw € R
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Generalized Operators

Generalized Modulation as a Graph Spectral Shift?

n m(/\g) = 6o(A¢ — Ax), so the DC component of any signal f € R is
mapped to 7(0)x«

m Moreover, if f is sufficiently localized around 0, then I\7k\f will be
localized around A

A2000 = 4.03
04 04
03 03
. 02 — = 02
§AG] M 0013 (0)
0.1 01
0 ol
0.1 —0.1
0 1 2 3 4 5 6 0 1 2 3 4 5 6
A, A,
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mapped to 7(0)x«
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If for some k > 0, f satisfies I?(IT)I L) < e (m) then

|McF(K)| > k| MiF ()| for all ¢ # k.
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Windowed Graph Fourier Frames

A Windowed Graph Fourier Transform

m Windowed graph Fourier atoms:

gik = McTig
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A Windowed Graph Fourier Transform

m Windowed graph Fourier atoms:

gik = McTig

m Windowed graph Fourier transform:
Sf(’v k) = <f7gi,k>
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Windowed Graph Fourier Frames

A Windowed Graph Fourier Transform

m Windowed graph Fourier atoms:

gik = McTig

m Windowed graph Fourier transform:
Sf(’v k) = <f7gi,k>

Theorem (Windowed Graph Fourier Frames)

/fé’(()) 75 0, then {g,"k},'zl,z’,,,,lv; k=0,1,...,N—1 is a frame:

N N-1

AlFIB < 37 57 i g P < BIIFIE,

i=1 k=0

where

>
Il

: 212} > N|2(0)]?
ie{lr,]g,m N}{N|\Tg||2} > N|g(0)|° > 0, and

x N}{NHngllﬁ} < N%2lgls
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Examples

Example 1: The Path Graph

m Signal f on the path graph comprised of three different graph Laplacian
eigenvectors restricted to three different segments of the graph:

m “Spectrogram’ of f showing |Sf(i, k)|?, using a normalized heat kernel
window with 7 = 300:
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Examples

Example 2: A Random Sensor Network

m Partition a random sensor network into 3 clusters via spectral clustering

m Signal f comprised of three different graph Laplacian eigenvectors
(x10, X27, X5) restricted to the three different clusters of vertices

2.2
2
18
i
14
1.2
1
0.5
0.6
0.4
0.2
L I JL J
T

T T
Red Blue Green
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Examples

Tiling Comparison with Spectral Graph Wavelets

- -

STFT Wavelets

Source: Vetterli and Kovagevi¢, 1995
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Examples

Tiling Comparison with Spectral Graph Wavelets

-

STFT Wavelets
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Source: Vetterli and Kovagevi¢, 1995

Windowed Graph Fourier Atom - Low Frequency

Windowed Graph Fourier Atom - High Frequency

04

TR !
o
O
A,

Spectral Graph Wavelet - High Frequency

o
TDRO  ommmmett b EILLL

o
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Examples

Example 3: Swiss Roll

Three different windowed graph Fourier atoms, shown in both domains:

0123456789101

2
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Examples

Example 3: Swiss Roll

Three different windowed graph Fourier atoms, shown in both domains:
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Example 3: Swiss Roll

Examples

Three different windowed graph Fourier atoms, shown in both domains:
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2

2,

1234567809100
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Conclusion

Summary and Ongoing Work

m Summary:
o0 Generalized translation and modulation via Laplacian eigenfunctions
00 Leveraged these operators to design windowed graph Fourier frames

&7 For the path graph or highly-structured signals, the generalized

“spectrogram” matches our classical time-frequency intuition

0P Just scratching the surface
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00 Leveraged these operators to design windowed graph Fourier frames

&7 For the path graph or highly-structured signals, the generalized

“spectrogram” matches our classical time-frequency intuition
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m Ongoing work:

00 Mathematical theory linking 1) structural properties of graph signals and
their underlying graphs to 2) properties of the generalized operators and
transform coefficients (sparsity, localization, uncertainty principles)
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m Ongoing work:

00 Mathematical theory linking 1) structural properties of graph signals and
their underlying graphs to 2) properties of the generalized operators and
transform coefficients (sparsity, localization, uncertainty principles)

B Important for optimal window design, efficient information extraction, and choosing

appropriate regularization techniques for ill-posed inverse problems
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Conclusion

Summary and Ongoing Work

m Summary:
o0 Generalized translation and modulation via Laplacian eigenfunctions
00 Leveraged these operators to design windowed graph Fourier frames

&7 For the path graph or highly-structured signals, the generalized

“spectrogram” matches our classical time-frequency intuition

0P Just scratching the surface

m Ongoing work:

00 Mathematical theory linking 1) structural properties of graph signals and
their underlying graphs to 2) properties of the generalized operators and
transform coefficients (sparsity, localization, uncertainty principles)

B Important for optimal window design, efficient information extraction, and choosing

appropriate regularization techniques for ill-posed inverse problems

o2 Computationally efficient implementations
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