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Classical Time-Frequency Analysis

Localized Fourier analysis – joint descriptions of signals’ temporal and spectral
behavior

Time-frequency transforms reveal underlying structure in signal, enabling

efficient information extraction, regularization in ill-posed inverse problems, etc.

� Localized oscillations appear frequently in audio processing, vibration analysis, radar detection, etc.

Windowed Fourier transform of f ∈ L2(R):

Sf (u, ξ) := 〈f , gu,ξ〉 =

∫ ∞
−∞

f (t)g(t − u)e−2πiξtdt

The atoms gu,ξ are localized in time and frequency:
Source: Gröchenig, 2001
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The Essence of the Problem

Question: Why can’t we just apply classical time-frequency and time-scale
techniques to signals on graphs?

Weighted graphs are irregular structures that lack a shift-invariant notion
of translation:

Our objectives:

� Develop generalized notions of convolution, translation, and modulation in

the graph setting

� Leverage these to define vertex-frequency transforms that enable us to

efficiently extract information from high-dimensional data on graphs
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Spectral Graph Theory Notation

Connected, undirected, weighted graph
G = {V, E,W }

Degree matrix D: zeros except diagonals,
which are sums of weights of edges incident
to corresponding node

Non-normalized Laplacian: L := D −W

Complete set of orthonormal eigenvectors and
associated real, non-negative eigenvalues:

Lχ` = λ`χ`,

ordered w.l.o.g. s.t.

0 = λ0 < λ1 ≤ λ2... ≤ λN−1 := λmax

1
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oo
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OO

oo

W =


0 .3 .1 0
.3 0 .2 .5
.1 .2 0 .7
0 .5 .7 0



D =


.4 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1.2


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Graph Laplacian Eigenvectors

Values of eigenvectors associated with lower frequencies (low λ`) change
less rapidly across connected vertices

χ0 χ1

χ2 χ50
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Graph Laplacian Eigenvectors
Special Case – Path Graph

� λ` = 2− 2 cos
(
π`
N

)
� χ0(i) = 1√

N
, χ`(i) =

√
2
N

cos
(
π`(i−0.5)

N

)
, ` = 1, 2, . . . ,N − 1
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| |

χ0 · · · χN−1

| |

 is the Discrete Cosine Transform matrix (DCT-II, Strang, 1999),
which is used in JPEG image compression

Shuman, Ricaud, and Vandergheynst A Windowed Graph Fourier Transform May 11, 2012 8 / 22



Intro Spectral Graph Theory Generalized Operators Windowed Graph Fourier Frames Examples Conclusion

Graph Laplacian Eigenvectors
Special Case – Path Graph

� λ` = 2− 2 cos
(
π`
N

)
� χ0(i) = 1√

N
, χ`(i) =

√
2
N

cos
(
π`(i−0.5)

N

)
, ` = 1, 2, . . . ,N − 1

1 2 3 4 5 6 7 8
−0.5

0
0.5

Eigenvector 0

1 2 3 4 5 6 7 8
−0.5

0
0.5

Eigenvector 1

1 2 3 4 5 6 7 8
−0.5

0
0.5

Eigenvector 2

1 2 3 4 5 6 7 8
−0.5

0
0.5

Eigenvector 3

1 2 3 4 5 6 7 8
−0.5

0
0.5

Eigenvector 4

1 2 3 4 5 6 7 8
−0.5

0
0.5

Eigenvector 5

1 2 3 4 5 6 7 8
−0.5

0
0.5

Eigenvector 6

1 2 3 4 5 6 7 8
−0.5

0
0.5

Eigenvector 7


| |

χ0 · · · χN−1

| |

 is the Discrete Cosine Transform matrix (DCT-II, Strang, 1999),
which is used in JPEG image compression

Shuman, Ricaud, and Vandergheynst A Windowed Graph Fourier Transform May 11, 2012 8 / 22



Intro Spectral Graph Theory Generalized Operators Windowed Graph Fourier Frames Examples Conclusion

Graph Laplacian Eigenvectors
Special Case – Path Graph

� λ` = 2− 2 cos
(
π`
N

)
� χ0(i) = 1√

N
, χ`(i) =

√
2
N

cos
(
π`(i−0.5)

N

)
, ` = 1, 2, . . . ,N − 1

1 2 3 4 5 6 7 8
−0.5

0
0.5

Eigenvector 0

1 2 3 4 5 6 7 8
−0.5

0
0.5

Eigenvector 1

1 2 3 4 5 6 7 8
−0.5

0
0.5

Eigenvector 2

1 2 3 4 5 6 7 8
−0.5

0
0.5

Eigenvector 3

1 2 3 4 5 6 7 8
−0.5

0
0.5

Eigenvector 4

1 2 3 4 5 6 7 8
−0.5

0
0.5

Eigenvector 5

1 2 3 4 5 6 7 8
−0.5

0
0.5

Eigenvector 6

1 2 3 4 5 6 7 8
−0.5

0
0.5

Eigenvector 7


| |

χ0 · · · χN−1

| |

 is the Discrete Cosine Transform matrix (DCT-II, Strang, 1999),
which is used in JPEG image compression

Shuman, Ricaud, and Vandergheynst A Windowed Graph Fourier Transform May 11, 2012 8 / 22



Intro Spectral Graph Theory Generalized Operators Windowed Graph Fourier Frames Examples Conclusion

Graph Laplacian Eigenvectors
Special Case – Ring Graph

(Unordered) Laplacian eigenvalues: λ` = 2− 2 cos
(

2`π
N

)

One possible choice of orthogonal Laplacian eigenvectors:

χ` =
[
1, ω`, ω2`, . . . , ω(N−1)`

]
, where ω = e

2πj
N


| |

χ0 · · · χN−1

| |

 is the Discrete Fourier Transform (DFT) matrix
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Graph Fourier Transform

Fourier transform: expansion of f in terms of the eigenfunctions of the
Laplacian / graph Laplacian

Functions on the Real Line

Fourier Transform

f̂ (ξ) = 〈f , e2πiξt〉 =
∫
R

f (t)e−2πiξt dt

Inverse Fourier Transform

f (t) =
∫
R

f̂ (ξ)e2πiξt dξ

Functions on the Vertices of a Graph

Graph Fourier Transform

f̂ (`) = 〈f , χ`〉 =
N∑

n=1

f (n)χ∗` (n)

Inverse Graph Fourier Transform

f (n) =
N−1∑̀

=0

f̂ (`)χ`(n)
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Signals on Graphs in Two Domains

λ

f̂ () =Ce−5λ

f̂ ()

λ

f̂ () =Ce−5λ

f̂ ()
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A Generalized Convolution Product for Signals on Graphs

Convolution in the time (vertex) domain is multiplication in the Fourier
(graph spectral) domain

Functions on the Real Line

For f , g ∈ L2(R),

(f ∗ g)(t) :=
∫
R

f (τ)g(t − τ)dτ ,

which implies

(f ∗ g)(t) =
∫
R

f̂ (ξ)ĝ(ξ)e2πiξtdξ

Functions on the Vertices of a Graph

For f , g ∈ RN , we define

(f ∗ g)(n) =
N−1∑̀

=0

f̂ (`)ĝ(`)χ`(n)

This generalized convolution product inherits properties such as
commutativity, distributivity, and associativity

Shuman, Ricaud, and Vandergheynst A Windowed Graph Fourier Transform May 11, 2012 12 / 22
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Generalized Translation on Graphs

Define generalized translation via generalized convolution with a delta

Functions on the Real Line

For f ∈ L2(R), in the weak sense

(Tuf )(t) := f (t − u)

= (f ∗ δu)(t)

=

∫
R

f̂ (ξ)e−2πiξue2πiξtdξ

Functions on the Vertices of a Graph

For f ∈ RN , we define

(Ti f )(n) :=
√

N(f ∗ δi )(n)

=
√

N
N−1∑
`=0

f̂ (`)χ∗` (i)χ`(n)

T200f T1000f T2000f
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Properties of Generalized Translation Operators on Graphs

Some nice properties inherited from the generalized convolution:

� TiTj = TjTi

� Ti (f ∗ g) = (Ti f ) ∗ g = f ∗ (Tig)

�
∑

n(Ti f )(n) =
∑

n f (n)

Warning 1: Do not have the group structure of classical translation:

TiTj 6= Ti+j

Warning 2: Unlike the classical case, generalized translation operators are
not unitary:

‖Ti‖2 = max
`
|χ`(i)| ,

so for any i ∈ {1, 2, . . . ,N},

1 ≤ ‖Ti‖2 ≤
√

Nµ,

where the coherence µ := max
`,i
|χ`(i)|

Shuman, Ricaud, and Vandergheynst A Windowed Graph Fourier Transform May 11, 2012 14 / 22
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Generalized Modulation on Graphs

Define generalized modulation via multiplication by a Laplacian
eigenfunction / graph Laplacian eigenvector

Functions on the Real Line

For f ∈ L2(R),

(Mξf )(t) := e2πiξt f (t)

Functions on the Vertices of a Graph

For f ∈ RN , we define

(Mk f )(n) :=
√

Nχk(n)f (n)

In the classical case, the modulation operator represents a translation in
the Fourier domain:

M̂ξf (ω) = f̂ (ω − ξ), ∀ω ∈ R

Shuman, Ricaud, and Vandergheynst A Windowed Graph Fourier Transform May 11, 2012 15 / 22
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Generalized Modulation as a Graph Spectral Shift?

M̂kχ0(λ`) = δ0(λ` − λk), so the DC component of any signal f ∈ RN is
mapped to f̂ (0)χk

Moreover, if f̂ is sufficiently localized around 0, then M̂k f will be
localized around λk

0 1 2 3 4 5 6

−0.1

0

0.1

0.2

0.3

0.4

f̂1()

λ

λ2000 = 4.03

0 1 2 3 4 5 6

−0.1

0

0.1

0.2

0.3

0.4

M2000 f1()

λ

Theorem

If for some κ > 0, f satisfies 1

|f̂ (0)|

∑N−1
`=1 |f̂ (`)| ≤ 1√

N

(
1

µ+κµ3N

)
, then

|M̂k f (k)| ≥ κ|M̂k f (`)| for all ` 6= k.
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Generalized Modulation as a Graph Spectral Shift?

M̂kχ0(λ`) = δ0(λ` − λk), so the DC component of any signal f ∈ RN is
mapped to f̂ (0)χk

Moreover, if f̂ is sufficiently localized around 0, then M̂k f will be
localized around λk
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A Windowed Graph Fourier Transform

Windowed graph Fourier atoms:

gi,k := MkTig

Windowed graph Fourier transform:

Sf (i , k) := 〈f , gi,k〉

Theorem (Windowed Graph Fourier Frames)

If ĝ(0) 6= 0, then {gi,k}i=1,2,...,N; k=0,1,...,N−1 is a frame:

A‖f ‖2
2 ≤

N∑
i=1

N−1∑
k=0

|〈f , gi,k〉|2 ≤ B‖f ‖2
2,

where

A := min
i∈{1,2,...,N}

{N‖Tig‖2
2} ≥ N|ĝ(0)|2 > 0, and

B := max
i∈{1,2,...,N}

{N‖Tig‖2
2} ≤ N2µ2‖g‖2

2.
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Example 1: The Path Graph

Signal f on the path graph comprised of three different graph Laplacian
eigenvectors restricted to three different segments of the graph:

“Spectrogram” of f showing |Sf (i , k)|2, using a normalized heat kernel
window with τ = 300:
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Example 2: A Random Sensor Network

Partition a random sensor network into 3 clusters via spectral clustering

Signal f comprised of three different graph Laplacian eigenvectors
(χ10, χ27, χ5) restricted to the three different clusters of vertices

k"
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Tiling Comparison with Spectral Graph Wavelets

STFT$ Wavelets$

Source: Vetterli and Kovac̆ević, 1995
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Example 3: Swiss Roll

Three different windowed graph Fourier atoms, shown in both domains:

−1 0 1−1

0

1
−1

0

1  

 

−0.1 0 0.1

λ

MkTig()

−1 0 1−1

0

1
−1

0

1  

 

−0.2 0 0.2

λ

MkTig()

−1 0 1−1

0

1
−1

0

1  

 

−2 0 2

λ

MkTig()

Shuman, Ricaud, and Vandergheynst A Windowed Graph Fourier Transform May 11, 2012 21 / 22



Intro Spectral Graph Theory Generalized Operators Windowed Graph Fourier Frames Examples Conclusion

Example 3: Swiss Roll

Three different windowed graph Fourier atoms, shown in both domains:

−1 0 1−1

0

1
−1

0

1  

 

−0.1 0 0.1

λ

MkTig()

−1 0 1−1

0

1
−1

0

1  

 

−0.2 0 0.2

λ

MkTig()

−1 0 1−1

0

1
−1

0

1  

 

−2 0 2

λ

MkTig()

Shuman, Ricaud, and Vandergheynst A Windowed Graph Fourier Transform May 11, 2012 21 / 22



Intro Spectral Graph Theory Generalized Operators Windowed Graph Fourier Frames Examples Conclusion

Example 3: Swiss Roll

Three different windowed graph Fourier atoms, shown in both domains:

−1 0 1−1

0

1
−1

0

1  

 

−0.1 0 0.1

λ

MkTig()

−1 0 1−1

0

1
−1

0

1  

 

−0.2 0 0.2

λ

MkTig()

−1 0 1−1

0

1
−1

0

1  

 

−2 0 2

λ

MkTig()

Shuman, Ricaud, and Vandergheynst A Windowed Graph Fourier Transform May 11, 2012 21 / 22



Intro Spectral Graph Theory Generalized Operators Windowed Graph Fourier Frames Examples Conclusion

Summary and Ongoing Work

Summary:

� Generalized translation and modulation via Laplacian eigenfunctions

� Leveraged these operators to design windowed graph Fourier frames

� For the path graph or highly-structured signals, the generalized

“spectrogram” matches our classical time-frequency intuition

� Just scratching the surface

Ongoing work:

� Mathematical theory linking 1) structural properties of graph signals and

their underlying graphs to 2) properties of the generalized operators and

transform coefficients (sparsity, localization, uncertainty principles)

Important for optimal window design, efficient information extraction, and choosing

appropriate regularization techniques for ill-posed inverse problems

� Computationally efficient implementations
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