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Analytical Solution of steady state 2-membrane problem

The ultimate goal of this section is to develop an expression for effective permeability of the endothelial
cells on a membrane. We have 2 adjacent membranes that we assume have reached steady state and baths
on either side.

Let’s start by defining the things that should be labeled in your diagram (perhaps somewhat different
specifics, but generally similar):

1. Let the top bath be a and the bottom b, with concentrations Ca and Cb.

2. The coordinate system starts at the top at x = 0.

3. Membrane 1, a.k.a. the endothelial cells, has diffusivity, concentration, partition coefficient, and
thickness D1, C1(x), Φ2 and L1, respectively.

4. Membrane 2 has diffusivity, concentration, partition coefficient, and thickness D2, C2(x), Φ2, and
L2, respectively.

5. The total thickness of the membrane is L = L1 + L2.

Now, the equations and boundary conditions. Because both membranes are at steady state, the concentra-
tion in both membranes is governed by d2Ci

dt2
= 0, which gives us C1(x) = A1x+B1 and C2(x) = A2x+B2

for membranes 1 and 2. Our boundary conditions are:

1. at x = 0, C1(0) = Φ1Ca

2. at x = L, C2(L) = Φ2LCb

3. at x = L1, C1
Φ1

= C2
Φ2

4. and also N1 = N2

Starting with the first two conditions, we see that B1 = Φ1Ca and that B2 = Φ2Cb −A2L.

Then, turning to the flux condition, and recalling that Ni = −Di
dCi
dx , we see that N1 = −D1A1 and

N2 = −D2A2, so that D1A1 = D2A2, and thus A1 = D2A2
D1

.

Now we have everything in terms of our last unknown, A2. Substituting in everything into the third
boundary condition and doing some simplification gets us to:

Ca +
D2A2L1

D1Φ1
= Cb +

A2L2

Φ2

Cb − Ca =
D2A2L1

D1Φ1
+

A2L2

Φ2
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Cb − Ca = A2(
D2Φ2L1 + D1Φ1L2

Φ1Φ2D1
)

A2 =
Φ1Φ2D1

D2Φ2L1 + D1Φ1L2
(Cb − Ca)

A1 =
Φ1Φ2D2

D2Φ2L1 + D1Φ1L2
(Cb − Ca)

You know it’s right because it’s pretty....

Recall that we discussed permeability for a single membrane Ni = −DiΦi
L (CL−C0) and we defined P = DiΦi

L .
In this case,

N1 = N2 = − Φ1Φ2D1D2

D2Φ2L1 + D1Φ1L2
(Cb − Ca).

So then, by analogy:

Peff =
Φ1Φ2D1D2

D2Φ2L1 + D1Φ1L2
.

We can then see that for diffusion in membranes, the permeabilities of n membranes add in series:

1

Peff
=

n∑
i=1

1

Pi

1

Peff
=

n∑
i=1

Li

ΦiDi
.

To further confirm this makes sense, if we let this be one membrane of thickness L, then D1 = D2 and
Φ1 = Φ2 and P reduces back to DiΦi

L . As my grandfather used to say, “stick that in your pipe and smoke
it.”

Analytical Solution of time-dependent changes in bath concentration

The goal of this section is to understand how the baths are changing in time. Sub-goals are see the
types of assumptions that are made and what types of problems allow analytical solutions. This solution
generally follows a similar approach to the example in Section 6.8.4 in the book except it allows for different
volumes.

For baths a and b, connected by a membrane, which we assume to be at steady state and very very thin,
what are the concentrations Ca(t) and Cb(t)?

• Let initial conditions in baths a and b be Ca(0) = C0 and Cb(0) = 0.

• Let the bath volumes be Va and Vb.

First, consider how the baths are changing in time relative to each other in terms of moles leaving a per
time and moles entering b per time:

−Va
dCa

dt
= Vb

dCb

dt
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Integrate both sides with respect to time (
∫
k1dU(t)dt = k1U + k2, where k1 and k2 are constants and U

is our function of time). Evaluate over time from 0 to t. This gives:

Va(Ca(t)− C0) = −Vb(Cb(t)− 0)

Ca(t) = C0 −
Vb

Va
Cb

So this gives us the relationship between Ca and Cb.

Next, we know that the transport between chambers is related to the properties of the membrane and, in
fact, the amount of stuff entering chamber b is equal to the flux across the membrane.

Vb
dCb

dt
= −AP (Cb − Ca)

Vb
dCb

dt
= −AP ((

Vb

Va
+ 1)Cb − C0)

Where A is the membrane area, P = DΦ/L is permeability (or the more complex Peff for 2 membranes
as we saw above).

Rearrange to get

dCb

( Vb
Va

+ 1)Cb − C0

= −AP

Vb
dt

Integrate from time 0 to t and from Cb(0) = 0 to Cb(t), noting that the integral of 1
ax+b is 1

a ln|ax + b|.
Multiply through by ( Vb

Va
+ 1), and rearrange the RHS to get:

ln(
C0 − ( Vb

Va
+ 1)Cb

C0
) = −PA(

Vb + Va

VaVb
)t

C0 − ( Vb
Va

+ 1)Cb

C0
= exp(−PA(

Vb + Va

VaVb
)t)

(
Vb

Va
+ 1)Cb = C0(1− exp(

Vb + Va

VaVb
)t))

Cb(t) = C0(
Va

Va + Vb
)(1− exp(−PA(

Vb + Va

VaVb
)t))

Note that if Va = Vb = V , the first line should look a lot like the solution from section 6.8.4 (specifically,
the top equation in this array should look like equation 6.8.107) in the book except that it’s for the second
bath so the sign is switched!

With this sort of solution, you can plug in real values and get a sense for the rate of change of the
baths.

If you plug in the values, you can see that it takes about 1 second for the concentration of the top bath to
change by 1%. From the simulation, the membranes appear to be equilibrating within seconds and it takes
minutes for the baths to change significantly (see appended figures). Alternately, we can estimate that

the relevant timescale is t ∼ x2

D = 667ms. So, basically, the membrane should be at steady state within a
second and the quasi-steady state assumption is pretty good!
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