
Exercise 5: Solutions

Transport in Biological Systems

Fall 2015

1. We know from previous examples that the velocity profile in a cylinder is

vz =
∆P

4µL
(R2 − r2).

So the shear stress, evaluated at the wall, is

τrz = µ
dvz
dr

= −∆Pr

2L

∣∣∣
R

= −∆PR

2L
.

(a) And then taking the Poiseuille equation, Q = ∆PπR4/8µL, we can express shear stress as

τ =
4Qµ

πR3
.

(b) For a mean velocity < vz >= 15 cm/s, a diameter of D=1 cm, a viscosity of µ = 4cp = 0.04
dyn · s/cm2, the area of the vessel is 0.79 cm2, giving a flowrate of Q = A < vz >= 11.8 cm3/s
and a wall shear stress in the abdominal aorta is τ = 4.8 dynes/cm2.

2. In many ways this is the same set up that we have seen. By inspection of the system, we can say
that vy = vz = 0 and vx(y) only. We assume steady state and have no pressure gradient.

(a) Thus, as we like to do, we can start with only the x-component of the Navier-Stokes equation:

ρ(
∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

+ vz
∂vx
∂z

) = −∂P
∂x

+ µ(
∂2vx
∂x2

+
∂2vx
∂y2

+
∂2vx
∂z2

) + ρgx.

We can eliminate the first term because there is no time dependence, second term because vx is
only a function of y, and the third and fourth terms on the left hand side because vy = vz = 0.
On the right hand side, we are told there is no pressure drop, we will neglect gravity, and invoke
that vx is only a function of y again to be left with a simple expression which we can integrate,
using A and B and integration constants:

d2vx
dy2

= 0

vx = Ay +B
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The boundary conditions are vx(0) = 0 and vx(h) = U . Note that things work out even if you
don’t choose this coordinate system but this one is very handy. Applying these we find that

B = 0

A =
U

h

vx =
Uy

h

τyx = µ
dvx
dy

=
µU

h

(b) Graphing these shows that shear stress is constant in y and that v is a straight line in y.

(c) We know that Q = A < v > so we can find average velocity and Q:

< vx >=
1

wh

∫ h

0

∫ w

0
vxdzdy =

Uy2

2h2

∣∣∣h
0

=
U

2

Q =
whU

2

(d) What forces are acting here? No body forces, only surface forces, and really only shear. The
force required to move the plate is simply τyx = µU

h , a force per unit area.

(e) This is a good setup to measure viscosity because if you know the speed of the plate, the force
required to move it, and the distance between plates, and the area of the plate, let’s say it is
Lw (letting L be the length in x), then τ = F/Lw and µ = Fh/ULw, so you get viscosity from
a few simple measurements and the geometry of the system!

3. Now we have an oscillating pressure gradient in the x direction for our friends, the parallel plates.

(a) If we assume that flow is laminar, we should still not have flows in the y and z direction, so like
before, we can say that vy = vz = 0. We can also say that vx is not a function of z, but it is
going to be a function of y, giving us the velocity profile, and t because of the time-dependence.
x is a little more complicated. For rapidly oscillating pressure, the velocity profile will vary in
x as the fluid “catches up” with the change, but for relatively slowly oscillating pressure the
velocity profile will “instantly” change with the pressure, and there will be no x-dependence of
velocity.

(b) Either way, we only need the x component of the Navier-Stokes equation:

ρ(
∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

+ vz
∂vx
∂z

) = −∂P
∂x

+ µ(
∂2vx
∂x2

+
∂2vx
∂y2

+
∂2vx
∂z2

) + ρgx.

where, for slow oscillations, the second through fourth terms on the left are zero as described
above, as are the second and fourth on the right. Again we neglect gravity. This leaves:

ρ
∂vx(y, t)

∂t
= −dP (x, t)

∂x
+ µ

∂2vx(y, t)

∂y2
.

where P is a function of x and t as well, though as we have done before, we can likely argue that
∆P (t)/L is an equivalent term and that ∆P is not dependent on x to remove the x dependence...
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(c) The boundary conditions, since we have stationary plates are vx(0) = vx(h) = 0.

(d) Substituting for pressure, we can say that:

ρ
∂vx(y, t)

∂t
+

∆P (t)

L
= µ

∂2vx(y, t)

∂y2
,

which math folk would call the heat equation with a nonlinear term... and I’m not going to try
to solve but please let me know if you do.

(e) Assuming rapid oscillation, we still only need the x component of the Navier-Stokes equation:

ρ(
∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

+ vz
∂vx
∂z

) = −∂P
∂x

+ µ(
∂2vx
∂x2

+
∂2vx
∂y2

+
∂2vx
∂z2

) + ρgx.

but now we have to keep the v(x) terms to get:

ρ(
∂vx
∂t

+ vx
∂vx
∂x

) = −∂P
∂x

+ µ(
∂2vx
∂x2

+
∂2vx
∂y2

)

with of course the same boundary conditions, just NOW! more complicated to solve!

4. Here we consider a muscle in a well stirred bath and want to make sure it is not hypoxic (too low
oxygen).

(a) We start by developing an expression describing the concentration of oxygen in the cylindrical
muscle, radius Radius (because there are too many R’s in this problem and I’m a big dork), with
reaction (described by RO2) at steady state:

0 =
D

r

d

dr

(
r
dC

dr

)
−RO2

C(Radius) = Cbath

N
∣∣∣
r=0

= −DdC
dr

∣∣∣
r=0

= 0

Where Cbath is the concentration of the bath (see below). We can then integrate and use A and
B as integration constants to get:

dC

dr
=
RO2

2D
r +

A

r

C(r) =
RO2r

2

4D
+Aln(r) +B

Applying the boundary conditions gives us A = 0 and B = Cbath−
RO2

R2
adius

4D so we can say that:

C(r) = Cbath −
RO2

4D
(R2

adius − r2)
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Since we’re ultimately interested in the lowest concentration in the center, we evalulate at r=0:

C(0) = Cmiddle = Cbath −
RO2

4D
R2
adius

Radius =

√
4D(Cbath − Cmiddle)

RO2

(b) To get to calculating some values, we need to do a couple of things. We are given a bunch of
parameters and we need to convert them and also make some assumptions (all summarized in
the table at the end). It’s important to choose a basis for units; I’m chosing to do things in
moles, mL, mmHg, and seconds.

(c) First, we can use Henry’s law, PO2 = kHC, to convert the partial pressure of oxygen in the
bath to a concentration, where kH is the Henry’s law constant. (Recall from Chemistry that
Henry’s law relates the partial pressure of dissolved gases to the concentration.) We look up
value for kH = 769.2 L · atm/mol for oxygen in water at 25oC, which is probably close enough.
Converting that to our base units, this is 5.85x108 mL ·mmHg/mol. We can use the value of
PO2 = 600 mmHg in our well-mixed saline to calculate the oxygen concentration in the bath,
Cbath = 1.03x10−6 mol/mL.

(d) Next, let’s find the minimum concentration we can have, which will be in the middle. Since
it’s not a liquid exactly, we need the solubility, which is sort of analogous to the Henry’s law
constant. Converting solubility to our base units gives us, Stissue = 3.16x10−5 ml oxygen / ml
tissue.mmHg. We can multiply StissuePmin,tissue, but that gives us ml oxygen / ml tissue and
we need moles oxygen / ml tissue. For lack of a better idea, we can invoke the ideal gas law and
an atmospheric pressure of 760 mmHg,

nO2
V = P

RgasT
. Then, Stissue = 1.24x10−9 mol oxygen /

ml tissue.mmHg and Cmiddle = StissuePmin,tissue = 2.48x10−8 mol oxygen/mL tissue.

(e) Then we can tackle the consumption rate, using the highest value (10 mL O2 / 100 g tissue·min)
as the worst case scenario, invoking our friend the ideal gas law again, and assuming a tissue
density of 1 g/mL (this is, in fact, reasonable), we can calculate the reaction rate of oxygen as
RO2 = 6.55x10−8 mol/mL · s.

(f) Finally (!) we can calculate Radius using all the numbers we have. For the worse case scenario
(D = 1x10−5 and consumption of 10 ml oxygen/100 g tissue·min), Radius = 0.025 cm (or
250 µm) and for the best case scenario (D = 3x10−5 and consumption of 2 ml oxygen/100 g
tissue.min), Radius = 0.096 cm (or 960 µm or about 1 mm). This is pretty tinsy and would be
ridiculously hard to isolate but would be doable by a very good physiologist.
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Parameter Value Units Source

PO2bath 600 mmHg given

Cbath 1.03x10−6 mol/mL calculated

Ptissue,min 20 mmHg given

Cmin,tissue 2.48x10−8 mol/mL calculated

Stissue 1.24x10−9 mol oxygen / mL tissue·mmHg converted

consumption 2-10 mL oxygen / 100 g tissue·min given

RO2 6.55x10−8 mol/mL·s converted and calculated

D 1 − 3x10−5 cm2/s given

T 310 K assumed

ρ 1 g/mL assumed

kH 5.85x108 mL·mmHg/mol looked up

Rgas 62.36367 L·mmHg/K·mol assumed

P 760 mmHg assumed
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