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Angiogenesis, the formation of blood vessels from a pre-existing vasculature, is
a process whereby capillary sprouts are formed in response to externally sup-
plied chemical stimuli. The sprouts then grow and develop, driven initially by
endothelial-cell migration, and organize themselves into a dendritic structure.
Subsequent cell proliferation near the sprout tip permits further extension of the
capillary and ultimately completes the process. Angiogenesis occurs during em-
bryogenesis, wound healing, arthritis and during the growth of solid tumors. In
this paper we present both continuous and discrete mathematical models which
describe the formation of the capillary sprout network in response to chemical
stimuli (tumor angiogenic factors, TAF) supplied by a solid tumor. The models
also take into account essential endothelial cell–extracellular matrix interactions
via the inclusion of the matrix macromolecule fibronectin. The continuous model
consists of a system of nonlinear partial differential equations describing the initial
migratory response of endothelial cells to the TAF and the fibronectin. Numerical
simulations of the system, using parameter values based on experimental data,
are presented and compared qualitatively with in vivo experiments. We then use a
discretized form of the partial differential equations to develop a biased random-
walk model which enables us to track individual endothelial cells at the sprout
tips and incorporate anastomosis, mitosis and branching explicitly into the model.
The theoretical capillary networks generated by computer simulations of the dis-
crete model are compared with the morphology of capillary networks observed
in in vivo experiments.

c© 1998 Society for Mathematical Biology

1. INTRODUCTION

Angiogenesis (syn neovascularization), the formation of blood vessels from
a pre-existing vasculature, is a crucial component of many mammalian growth
processes. It occurs in early embryogenesis during the formation of the pla-
centa after implantation of the blastocyst in the uterine wall (Graham and Lala,
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1992). It also occurs, in a controlled manner, in adult mammals during tissue
repair (Arnold and West, 1991; Pettet et al., 1996). By contrast, uncontrolled or
excessive blood-vessel formation is essential for tumorigenesis and is also ob-
served in arthritis, abnormal neovascularization of the eye, duodenal ulcers, and
following myocardial infarction (Folkman, 1985, 1995; Folkman and Klagsbrun,
1987). These instances may be considered pathological examples of angiogenesis
(Muthukkaruppan et al., 1982; Folkman and Brem, 1992). In each case, how-
ever, the well-ordered sequence of events characterizing angiogenesis is the same,
beginning with the rearrangement and migration of endothelial cells from a pre-
existing vasculature and culminating in the formation of an extensive network,
or bed, of new capillaries (Madri and Pratt, 1986).

The first event of tumor-induced angiogenesis involves the cancerous cells of
a solid tumor secreting a number of chemicals, collectively known as tumor
angiogenic factors (TAF) (Folkman and Klagsbrun, 1987), into the surround-
ing tissue. These factors diffuse through the tissue space creating a chemical
gradient between the tumor and any existing vasculature. Upon reaching any
neighboring blood vessels, endothelial cells lining these vessels are first induced
to degrade the parent venule basement membranes and then migrate through the
disrupted membrane towards the tumor. Several angiogenic factors, e.g., vascu-
lar endothelial growth factor (VEGF), acidic and basic fibroblast growth factor
(aFGF, bFGF), angiogenin and others, have been isolated (Folkman and Klags-
brun, 1987; Relf et al., 1997) and endothelial-cell receptors for these proteins
have been discovered (Millauer et al., 1993; Hatva et al., 1995; Mandriota et al.,
1995; Fong et al., 1995; Ortega and Plouet, 1995; Hewett and Murray, 1996;
Ortega et al., 1996; Patterson et al., 1996; Duh et al., 1997; Hanahan, 1997).
Indeed, there is now clear experimental evidence that disrupting these receptors
has a direct effect on the final structure of the capillary network (Dumont et al.,
1994; Fong et al., 1995; Sato et al., 1995; Hanahan, 1997).

The initial response of the endothelial cells to these angiogenic factors is a
chemotactic one (Sholley et al., 1984; Terranova et al., 1985; Paweletz and
Knierim, 1989; Stokes et al., 1990), initiating the migration of the cells towards
the tumor. Following this, small, finger-like capillary sprouts are formed by ac-
cumulation of endothelial cells which are recruited from the parent vessel. The
sprouts grow in length due to the migration and further recruitment of endothe-
lial cells (Cliff, 1963; Schoefl, 1963; Warren, 1966; Ausprunk and Folkman,
1977; Sholley et al., 1984) and continue to move toward the tumor directed by
the motion of the leading endothelial cell at the sprout tip. Further sprout ex-
tension occurs when some of the endothelial cells of the sprout wall begin to
proliferate. Cell division is largely confined to a region just behind the cluster of
mitotically inactive endothelial cells that constitute the sprout tip. This process
of sprout tip migration and proliferation of sprout-wall cells forms solid strands
of endothelial cells amongst the extracellular matrix. The cells continue to make
their way through the extracellular matrix which consists of interstitial tissue,
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collagen fiber and fibronectin as well as other components (Liotta et al., 1983;
Paweletz and Knierim, 1989). Interactions between the endothelial cells and the
extracellular matrix are very important and directly affect cell migration. In par-
ticular, the specific interactions between the endothelial cells and fibronectin, a
major component of the extracellular matrix, have been shown to enhance cell
adhesion to the matrix.

Fibronectin is a matrix macromolecule which occurs in two distinctly different
forms.

1. As a soluble glycoprotein found in various body fluids (including blood),
known as plasma fibronectin.

2. As an insoluble constituent of the extracellular matrix and basement mem-
branes of cells, known as cellular fibronectin (Hynes, 1990).

Cultured endothelial cells are known to synthesize and secrete cellular fi-
bronectin (Birdwell et al., 1978, 1980; Jaffee and Mosher, 1978; Macarak et al.,
1978; Rieder et al., 1987; Sawada et al., 1987) and the expression of this secreted
fibronectin by the endothelial cells in cultures (in vitro) closely reflects the distri-
bution of pre-existing fibronectin observed in matrices in vivo (Vlodavsky et al.,
1979; Hynes, 1990). The fibronectin which is produced and secreted by en-
dothelial cells does not diffuse, but remains bound to the extracellular matrix
(Birdwell et al., 1980; Hynes, 1990), its central function being the adhesion of
cells to the matrix (Schor et al., 1981; Alessandri et al., 1986). It is a major
ligand (both cellular fibronectin and plasma fibronectin) between cells and ma-
trix materials in many situations. Endothelial cells use fibronectin for attachment
to the matrix via integrins, a family of cell-surface receptors (Johansson et al.,
1987; Hynes, 1990; Alberts et al., 1994).

It has been verified experimentally that fibronectin stimulates directional migra-
tion of a number of cell types (including endothelial cells) in Boyden-chamber as-
says (Greenberg et al., 1981; Goodman and Newgreen, 1985; Albini et al., 1987;
Woodley et al., 1988). These results have demonstrated that fibronectin pro-
motes cell migration up a concentration gradient and the results of Quigley et al.
(1983), Lacovara et al. (1984) and McCarthy and Furcht (1984) have further
demonstrated that this is a response of the cells to a gradient of adhesiveness of
bound fibronectin, termed haptotaxis (Carter, 1965, 1967). Therefore, in addition
to the chemotactic response of the endothelial cells to the TAF, there is a com-
plementary haptotactic response to the fibronectin present within the extracellular
matrix (Bowersox and Sorgente, 1982).

Initially, the sprouts arising from the parent vessel grow essentially parallel to
each other. It is observed that once the finger-like capillary sprouts have reached
a certain distance from the parent vessel, they tend to incline toward each other
(Paweletz and Knierim, 1989), leading to numerous tip-to-tip and tip-to-sprout
fusions known as anastomoses. Such anastomoses result in the fusing of the
finger-like sprouts into a network of poorly perfused loops or arcades. Following
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this process of anastomosis, the first signs of circulation can be recognized and
from the primary loops, new buds and sprouts emerge repeating the angiogenic
sequence of events and providing for the further extension of the new capillary
bed. The production of new capillary sprouts from the sprout tips is often referred
to as sprout branching, and as the sprouts approach the tumor, their branching
dramatically increases until the tumor is eventually penetrated, resulting in vas-
cularization (Muthukkaruppan et al., 1982).

This process of repeated steps of endothelial-cell migration, sprout extension,
cell proliferation and loop formation is necessary for the successful vasculariza-
tion of the tumor. However, Sholley et al. (1984) demonstrated that, in the
absence of endothelial-cell proliferation, a restricted capillary network, which
stops after a few days and never reaches the tumor, is formed. Therefore, unless
endothelial cells undergo mitosis, the capillary sprouts cannot complete vascular-
ization successfully.

Tumor-induced angiogenesis provides the crucial link between the avascular
phase of solid tumor growth and the more harmful vascular phase, wherein the
tumor invades the surrounding host tissue and blood system (Chaplain, 1996).
However, these apparently insidious features of tumor-induced angiogenesis are
now being used to combat cancer growth and the clinical importance of angio-
genesis as a prognostic tool is now well recognized (Harris et al., 1994; Bikfalvi,
1995; Ellis and Fidler, 1995; Gasparini, 1995; Gasparini and Harris, 1995; Nor-
ton, 1995). Antiangiogenesis strategies are also being developed as a potentially
powerful, non-invasive weapon against the spread of cancer (Herblin and Gross,
1994; Harris et al., 1996; Harris, 1997).

In recent years several mathematical models, using different approaches, have
been developed to describe some of the more important features of tumor-induced
angiogenesis. Many of these models have used a continuum, deterministic frame-
work in one space dimension (Liotta et al., 1977; Zawicki et al., 1981; Bald-
ing and McElwain, 1985; Chaplain and Stuart, 1993; Byrne and Chaplain, 1995;
Orme and Chaplain, 1996). Although these models were capable of captur-
ing some features of angiogenesis such as average sprout density and network
expansion rates, they were unable to provide more detailed information concern-
ing the actual structure and morphology of the capillary network and as such
were of limited predictive value. More realistic continuum models of angio-
genesis in two space dimensions have been considered by Chaplain (1995) and
Orme and Chaplain (1997). The results of these models permit a more detailed
qualitative comparison with in vivo observations concerning the spatiotemporal
distribution of capillary sprouts within the network. However, even with these
models, it is not possible to capture certain important events such as repeated
sprout branching and hence the overall dendritic structure of the network. More
general two-dimensional continuum branching models, with potential application
to a wide number of problems, have been considered by Meinhardt (1976, 1982)
and Edelstein-Keshet and Ermentrout (1989).
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In contrast to the deterministic models, the model of Stokes and Lauffenburger
(1991) used a discrete probabilistic framework in two space dimensions, based
on stochastic differential equations. This approach had the advantage of enabling
the motion of individual endothelial cells to be followed. Realistic capillary
network structures were generated by incorporating rules for sprout branching and
anastomosis. As parameters were estimated, as far as possible, from available
experimental data, this permitted both qualitative and quantitative comparisons
with in vivo networks to be made. Although the model incorporated random
motility and chemotaxis as mechanisms for cell migration, no account was taken
of interactions between the endothelial cells and the extracellular matrix. The
model was also unable to reproduce the fact that there is an increased frequency of
branching at the edge of the network as the capillary sprouts become closer to the
tumor. This observed feature of tumor-induced angiogenesis has been described
as the ‘brush border’ effect (Gimbrone et al., 1974; Ausprunk and Folkman,
1977; Zawicki et al., 1981; Muthukkaruppan et al., 1982; Sholley et al., 1984).

The model we will present in this paper utilizes a novel combination of the con-
tinuum and probabilistic approaches, combining the strengths of each approach.
The mathematical model will focus on three very important variables involved in
tumor-induced angiogenesis; namely, endothelial cells, TAF and fibronectin, each
of which has a crucial role to play. In the first instance, using conservation laws
and a continuum approach, we will derive a system of coupled nonlinear partial
differential equations modeling the initial chemotactic response of the endothelial
cells to TAF and the haptotactic response of the endothelial cells to fibronectin.
In the continuum model we will not consider endothelial-cell proliferation. This
models the experiments of Sholley et al., (1984) where, although endothelial
cells were irradiated to prevent mitosis occurring, a restricted capillary network
did form. From a discretized form of these partial differential equations, a dis-
crete biased random-walk model will be derived enabling the paths of individual
endothelial cells located at the sprout tips, and hence the individual capillary
sprouts, to be followed. The processes of sprout branching, anastomosis and cell
proliferation will be incorporated in this discrete biased random-walk model.

The morphological events that are involved in new blood-vessel formation have
been defined by studies of in vivo systems such as the chick chorioallantoic mem-
brane (CAM), animal corneal models and in vitro examination of endothelial-cell
migration and proliferation (Folkman and Haudenschild, 1980). The particular
experimental system upon which we will base our mathematical model is that
of the implant of a solid tumor in the cornea of a test animal (Gimbrone et al.,
1974; Muthukkaruppan et al., 1982). Parameter values used in the model will be
based, as far as possible, on estimates obtained from experimental observations.

The main aims of the model are to examine the relative importance of chemo-
taxis and haptotaxis in governing the migration of the endothelial cells, to ex-
amine capillary network formation with and without proliferation of endothe-
lial cells, and to produce theoretical capillary network structures, from a model
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based on sound physiological principles with realistic parameter values, which
are morphologically similar to those observed in vivo. It is possible to analyze
these computed structures for quantitative information such as network expansion
rates, loop formation and overall network architecture. Therefore, from the con-
tinuous and discrete models, both qualitative and quantitative comparisons can
be made with observations from the in vivo experimental system to validate the
assumptions of the model.

2. THE CONTINUOUS MATHEMATICAL MODEL

We will base our mathematical model on the experimental system of Gimbrone
et al. (1974), Muthukkaruppan et al. (1982), whereby a small solid tumor or
fragment of tumor is implanted in the cornea of a test animal close to the limbal
vessels of the eye which are lined with endothelial cells. Anderson and Chaplain
(1997) considered a one-dimensional model for capillary network formation in
the absence of endothelial-cell proliferation, and it is essentially a more general
form of this model that we develop here. We denote the endothelial-cell density
per unit area by n, the TAF concentration by c and the fibronectin concentration
by f .

As already discussed in the introduction we assume that the motion of the
endothelial cells (at or near a capillary sprout tip) is influenced by three factors:
random motility (analogous to molecular diffusion), chemotaxis in response to
TAF gradients (Terranova et al., 1985; Stokes et al., 1990, 1991); haptotaxis in
response to fibronectin gradients (Schor et al., 1981; Bowersox and Sorgente,
1982; Quigley et al., 1983; Lacovara et al., 1984; McCarthy and Furcht, 1984).
To derive the partial differential equation governing endothelial-cell motion, we
first consider the total cell flux and then use the conservation equation for cell
density. The three contributions to the endothelial-cell flux Jn , are given by,

Jn = Jrandom+ Jchemo+ Jhapto.

To describe the random motility of the endothelial cells at or near the sprout
tips, we assume a flux of the form Jrandom = −Dn∇n, where Dn is a positive
constant, the cell random-motility coefficient. We take the chemotactic flux to be
Jchemo= χ(c)n∇c, where χ(c) is a chemotactic function. In previous models of
tumor-induced angiogenesis χ(c) is often assumed to be constant, meaning that
endothelial cells always respond to a chemosensory stimulus (e.g., TAF) in the
same manner, regardless of the stimulus concentration. We choose a receptor-
kinetic law of the form

χ(c) = χ0
k1

k1 + c
, (1)

reflecting the more realistic assumption that chemotactic sensitivity decreases
with increased TAF concentration, where χ0, the chemotactic coefficient, and k1
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are positive constants (Lapidus and Schiller, 1976; Lauffenburger et al., 1984;
Sherratt, 1994; Woodward et al. 1995; Olsen et al. 1997). The influence of
fibronectin on the endothelial cells is modeled by the haptotactic flux, Jhapto =
ρ0n∇ f , where ρ0 > 0 is the (constant) haptotactic coefficient.

As we are focusing attention on the endothelial cells at the sprout tips (where
there is no proliferation) and given that endothelial cells have a long half–life,
in the order of months (Paweletz and Knierim, 1989), we omit any birth and
death terms associated with the endothelial cells (we will consider endothelial-
cell proliferation later in the section devoted to the discrete model). This also
models the experiments of Sholley et al. (1984) where the cells were irradiated
to stop proliferation, but the network formed to a certain extent.

The conservation equation for the endothelial-cell density n is therefore given
by

∂n

∂t
+∇ · Jn = 0,

and hence the partial differential equation governing endothelial-cell motion (in
the absence of cell proliferation) is,

∂n

∂t
= Dn∇2n−∇ · (χ(c)n∇c)−∇ · (ρ0n∇ f ) . (2)

To derive the TAF equation, we first of all consider the initial event of tumor-
induced angiogenesis which is the secretion of TAF by the tumor cells. Once
secreted, TAF diffuses into the surrounding corneal tissue and extracellular matrix
and sets up a concentration gradient between the tumor and any pre-existing
vasculature such as the nearby limbal vessels. During this initial stage, where the
TAF diffuses into the surrounding tissue (with some natural decay), we assume
that the TAF concentration c satisfies an equation of the form:

∂c

∂t
= Dc∇2c− θc (3)

where Dc is the TAF diffusion coefficient and θ is the decay rate. We will assume
that the steady-state of this equation establishes the TAF gradient between the tu-
mor and the nearby vessels and provides us with the initial conditions for the TAF
concentration profile. As the endothelial cells migrate through the extracellular
matrix in response to this steady-state gradient (cf. Stokes and Lauffenburger,
1991), there is some uptake and binding of TAF by the cells (Ausprunk and Folk-
man, 1977; Hanahan, 1997). We model this process by a simple uptake function,
resulting in the following equation for the TAF concentration:

∂c

∂t
= −λnc, (4)

where λ is a positive constant, and the initial TAF concentration profile is obtained
from the steady state of (3).
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Fibronectin is known to be present in most mammalian tissue and has been
identified as a component of the tissue of the cornea (Kohno et al., 1983, 1987;
Ben-Zvi et al., 1986; Sramek et al., 1987). In addition to this pre-existing
fibronectin, it is known that the endothelial cells themselves produce and secrete
fibronectin (Birdwell et al., 1978, 1980; Jaffee and Mosher, 1978; Macarak et al.,
1978; Monaghan et al., 1983; Rieder et al., 1987; Sawada et al., 1987) which then
becomes bound to the extracellular matrix and does not diffuse (Birdwell et al.,
1980; Hynes, 1990). Therefore, the equation for fibronectin contains no diffusion
term. There is also some uptake and binding of fibronectin to the endothelial cells
as they migrate toward the tumor (Hynes, 1990). These production and uptake
processes are modeled by the following equation:

∂ f

∂t
= ωn− µn f, (5)

where ω and µ are positive constants.
Hence the complete system of equations describing the interactions of the en-

dothelial cells, TAF and fibronectin as detailed in the previous paragraphs is

∂n

∂t
=

random motili ty︷ ︸︸ ︷
Dn∇2n −

chemotaxis︷ ︸︸ ︷
∇ ·

(
χ0k1

k1 + c
n∇c

)
−

haptotaxis︷ ︸︸ ︷
∇ · (ρ0n∇ f ) ,

∂ f

∂t
=

production︷︸︸︷
ωn −

uptake︷︸︸︷
µn f , (6)

∂c

∂t
=−

uptake︷︸︸︷
λnc .

This system is considered to hold on a square spatial domain of side L (rep-
resenting a square of corneal tissue) with the parent vessel (e.g., limbal vessel)
located along one edge and the tumor located on the opposite edge. We assume
that the cells, and consequently the capillary sprouts, remain within the domain
of tissue under consideration and therefore no-flux boundary conditions of the
form

ζ · (−Dn∇n+ n (χ(c)∇c+ ρ0∇ f )) = 0, (7)

are imposed on the boundaries of the square, where ζ is an appropriate outward
unit normal vector.

We now nondimensionalize (6) by rescaling distance with the parent vessel to
tumor distance of L , time with τ = L2/Dc (where Dc is the TAF diffusion coef-
ficient), endothelial-cell density with n0, and TAF and fibronectin concentration
with c0 and f0 respectively (where n0, c0, f0 are appropriate reference variables).
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Therefore setting

c̃ = c

c0
, f̃ = f

f0
, ñ = n

n0
, t̃ = t

τ

and dropping the tildes for clarity, we obtain the nondimensional system,

∂n

∂t
= D∇2n−∇ ·

(
χ

1+ αc
n∇c

)
−∇ · (ρn∇ f ) ,

∂ f

∂t
= βn− γn f, (8)

∂c

∂t
=−ηnc,

where

D = Dn

Dc
, χ = χ0c0

Dc
, α = c0

k1
, ρ = ρ0 f0

Dc
,

β = ωL2n0

f0 Dc
, γ = µL2n0

Dc
, η = λL2n0

Dc
,

and subject to the no-flux conditions,

ζ ·
(
−D∇n+ n

(
χ

1+ αc
∇c+ ρ∇ f

))
= 0 (9)

on the boundaries of the unit square.
Wherever possible, parameter values have been estimated from available exper-

imental data. An average distance from a tumor implant to parent vessels in the
cornea is between 1 and 2 mm (Gimbrone et al., 1974; Muthukkaruppan et al.,
1982) and we take the lengthscale L = 2 mm (cf. Stokes and Lauffenburger,
1991). The experiments of Stokes et al. (1990) and Rupnick et al. (1988) on
endothelial-cell migration in response to angiogenic factors provide us with es-
timates for Dn, χ0 and c0. Endothelial-cell random motility coefficients in the
range 2 × 10−9–10−8 cm2 s−1 were obtained. However, this was under the as-
sumption that the cells moved independently. Rupnick et al. (1988) showed that
when the movement of individual endothelial cells is constrained by surrounding
cells, their estimate of the random motility coefficient was too large and did not
agree with the experimental results. The formation of capillary sprouts causes
a dependence on neighboring cells due to the formation of vessel walls—the
endothelial cells which line the sprout wall are contiguous with one another.
Therefore, one might expect a smaller random-motility coefficient than that ob-
served by Rupnick et al. (1988), and we therefore take Dn = 10−10 cm2 s−1 (cf.
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Bray, 1992). Other in vivo experimental results also indicate that there appears
to be very little random motility of endothelial cells at the capillary sprout tips
(Paweletz and Knierim, 1989; Paku and Paweletz, 1991). Stokes et al. (1990)
measured the chemotactic coefficient of migrating endothelial cells in gradients
of aFGF. The maximum chemotactic response was measured in concentrations
of aFGF around 10−10 M giving a chemotactic coefficient of 2600 cm2 s−1 M−1

and therefore we take χ0 = 2600 cm2 s−1 M−1, c0 ≈ 10−10 M. In the absence of
any available data for the haptotactic coefficient ρ0, we assume that this is of the
same magnitude as χ0. As the endothelial cells generally migrate towards the tu-
mor, even in the absence of proliferation, it is reasonable to assume that χ0 > ρ0.
Terranova et al. (1985) found that endothelial cells responded in a haptotactic
manner to fibronectin in concentrations of fibronectin around 10−10 M and we
take this as an estimate for f0. Estimates for the diffusion coefficient of TAF
are in the range 5× 10−7–5.9× 10−6 cm2 s−1 (Sherratt and Murray, 1990; Bray,
1992) and for our simulations, we take Dc = 2.9× 10−7 cm2 s−1. Estimates of
the parameters ω,µ, λ were not available since these are very difficult to obtain
experimentally (Hynes, 1990).

These parameter values now give nondimensional values of D = 0.00035,
χ = 0.38 and we use a nondimensional value of ρ = 0.34. The estimates for L
and Dc now give the timescale τ = L2/Dc as 1.5 days.

The first event of tumor-induced angiogenesis is the secretion of TAF by the
tumor cells. The TAF then diffuses into the extracellular matrix and a concentra-
tion gradient is established between the tumor and parent vessel. If we consider
the tumor as approximately circular and model TAF diffusion using (3) then an
approximation of the steady-state solution for such an equation (Chaplain, 1995,
1996) has a concentration field of the form,

c(x, y, 0) =
{

1, 0 ≤ r ≤ 0.1,
(ν − r )2

ν − 0.1 , 0.1 ≤ r ≤ 1,
(10)

where ν is a positive constant and r is given by,

r =
√
(x − 1)2 + (y− 1

2

)2
, (11)

assuming that the tumor is centered on (1, 1
2 ), with a radius of 0.1. Taking (10) as

the initial conditions for the TAF concentration profile might then be a reasonable
description of the actual concentration field arising from a small circular tumor
implant. To approximate a row of tumor cells (or a larger circular implant) we
also consider an initial TAF concentration field of the form,

c(x, y, 0) = e−
(1−x)2
ε1 , (x, y) ∈ [0, 1] × [0, 1], (12)
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Figure 1. Initial fibronectin concentration (maximum value at x = 0) and initial TAF
concentration (maximum value at x = 1) profiles for the two-dimensional simulations;
ε1 = ε2 = 0.45; k = 0.75. The TAF concentration profile approximates a gradient
produced by a line of tumour cells situated at x = 1. The fibronectin initial concentration
is highest near the parent vessel at x = 0.

where ε1 is a positive constant. In the simulations of the following sections using
initial condition (12) emphasizes that any lateral motion of the endothelial cells
is due to the interactions with TAF and fibronectin and is not dependent on the
underlying geometry of the system.

Once the endothelial cells have been activated by TAF, they degrade their
basal lamina leading to the damaging, and perhaps rupturing, of the parent-vessel
basement membrane. This initial damage results in an increased vessel perme-
ability (Clark et al., 1981) which allows plasma fibronectin from the blood to
leak from the parent vessel and diffuse into the corneal tissue (Hynes, 1990)
[the diffusion coefficient of plasma fibronectin has been estimated at around
2 × 10−7 cm2 s−1, Williams et al. (1982) and Rocco et al. (1987)]. Subse-
quently, this plasma fibronectin becomes bound to the extracellular matrix of the
corneal tissue (Oh et al., 1981; Deno et al., 1983; Clark et al., 1983), creat-
ing a high initial concentration of fibronectin in and around the parent vessel.
This has been observed experimentally by Clark et al. (1981, 1982, 1983) and
Paku and Paweletz (1991). It has also been observed experimentally that high
levels of laminin (another matrix macromolecule with similar adhesive proper-
ties to fibronectin) are initially found around the parent vessel (Hynes, 1990;
Paku and Paweletz, 1991). In addition to this plasma fibronectin, there is also
pre-existing cellular fibronectin distributed throughout the corneal tissue. We
therefore take the initial concentration profile of fibronectin in the extracellular
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Figure 2. Initial endothelial-cell density distribution for the two-dimensional simulations
representing the three initial regions of capillary sprout outgrowth; ε3 = 0.001.

matrix to have the form,

f (x, y, 0) = ke−
x2
ε2 , (x, y) ∈ [0, 1] × [0, 1]. (13)

where k < 1, ε2 are positive constants. In other simulations, we also choose an
initial spatially homogeneous fibronectin concentration representing the distribu-
tion of only pre-existing fibronectin in the extracellular matrix. Figure 1 contains
a plot of the two-dimensional initial data for both the linear source TAF (12) and
fibronectin (13). Parameters ε1 and ε2 were taken to be 0.45, and k was taken to
be 0.75.

After the TAF has reached the parent blood vessel, the endothelial cells within
the vessel form into a few cell clusters (Muthukkaruppan et al., 1982; Orme
and Chaplain, 1996) which eventually become sprouts. For simplicity, we will
assume that initially three clusters form along the y-axis at x ≈ 0, with the tumor
located at x = 1 and the parent vessel of the endothelial cells at x = 0. The
initial data is given by the distribution in Figure 2, which has three discrete peaks

of the form e−
x2
ε3 sin2(6πy), with the positive parameter ε3 = 0.001.

3. TWO-DIMENSIONAL NUMERICAL SIMULATIONS

All of the numerical solutions presented in this section were obtained from
a finite difference approximation of the system (8) with boundary and initial
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Figure 3. Spatiotemporal evolution of the endothelial-cell density from a numerical
simulation of system (8) representing endothelial-cell migration from the parent vessel
toward a line source of tumor cells without haptotaxis (see text for parameter values).
The figure shows that the motion is almost entirely governed by chemotaxis with very
little lateral movement. The three regions of cell density remain unconnected throughout
the domain. The color graduation is directly proportional to the cell density, i.e., white
is high density and black low density.

conditions (9)–(13). As there are no birth and death terms in the endothelial-cell
equation (8) and we impose zero flux boundary conditions (9) then the total cell
number is conserved. We used the conservation of cell number as a check on
the accuracy of our numerical scheme which was found to be accurate to within
0.01%. The parameter values used in the simulations (unless specified otherwise)
were D = 0.00035, χ = 0.38, ρ = 0.34, η = 0.1, β = 0.05 and γ = 0.1.

In order to examine the relative importance of chemotaxis and haptotaxis in
the model, we first of all consider the system in the absence of any haptotaxis
(i.e., ρ = 0). With all other parameter values as above, data were obtained from
our two-dimensional numerical code for four different times, producing the plots
given in Fig. 3. We note that by t = 2 (3 days) the endothelial cells are more than
half way through the domain, and by t = 4 (6 days) they have migrated almost
completely across the domain. It is also important to note that there is very little
lateral migration (i.e., movement parallel to the y-axis) of the endothelial cells.
The bulk of the endothelial-cell density retains the shape of the initial distribution
of the three peaks. This is because the motion is largely governed by chemotaxis
with the small amount of lateral movement due to random motility.
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Figure 4. Spatiotemporal evolution of endothelial-cell density from a numerical simula-
tion of system (8) representing endothelial-cell migration from the parent vessel toward
a line source of tumor cells with both chemotaxis and haptotaxis (see text for parameter
values). The effect that fibronectin and haptotaxis have on the endothelial cells is now
apparent. The initial three regions of high cell density are drawn towards each other and
first form a looped structure and then a band of high cell density. The color graduation
is as in Fig. 3.

If we now include the effect of haptotaxis in the model, i.e., ρ = 0.34 (all
other parameters having the same value as for Fig. 3), we obtain the four plots
shown in Fig. 4. Comparing the plot at t = 2 (3 days) with that in Fig. 3, we see
that cell migration towards the tumor is now slower and that the endothelial-cell
density distribution is not as circular as in Fig. 3. The cell density distribution in
each cluster appears as a crescent-like shape. This is due to the lateral migration
of the endothelial-cell clusters towards one another. By t = 4 (6 days) we see
that the three separate clusters have joined to form a continuous band of cell
density. At t = 7 (10.5 days), there are now four clusters of high endothelial-
cell density within the band due to the lateral motion and overlapping of the
initial clusters. At the final time, t = 10 (15 days), in Fig. 4 we find that the
endothelial-cell density distribution has now formed into a band which is slowly
advancing toward the tumor, with the highest cell density at the leading edge.
However, due to the form of the chosen chemotactic function (1), the cells do
not reach the tumor. This models the assumed inactivation of endothelial-cell
receptors for TAF (Hanahan, 1997) which causes the cells to reach a quasisteady
state at approximately x = 0.9. However, given a long enough time, the TAF
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Figure 5. Plot showing the difference in fibronectin uptake between the initial fibronectin
concentration and the fibronectin concentration at t = 2, 4, 7 and 10. The white areas
represent net uptake of fibronectin by the endothelial cells. The plots show the underlying
gradients of fibronectin created in the extracellular matrix, which are responsible for the
behaviour of the endothelial cells in the previous figure. The color graduation is directly
proportional to net fibronectin uptake, i.e., white is high uptake, black is low uptake.

concentration profile will decay to a level which will allow further cell migration.
By increasing α we could restrict the extent of cell migration to a point closer
to the parent vessel. This is analogous to assuming that the endothelial cells
become desensitized at a lower concentration of TAF. At the other extreme, by
setting α = 0, we can ensure that the endothelial cells always reach the tumor
and that vascularization occurs. The incorporation of the chemotactic function
χ(c) therefore provides a potential mechanism to explain the experimental results
of Sholley et al. (1984), which demonstrated that vascularization of the tumor
did not occur in the absence of endothelial-cell proliferation.

Figure 5 shows the difference in fibronectin concentration between the initial
distribution and the current distribution. The white areas represent regions where
there has been a net uptake of fibronectin by the endothelial cells. This figure
indicates that small gradients are being formed in the fibronectin concentration
profile due to the synthesis and uptake of fibronectin by the endothelial cells.
The endothelial cells then move in response to these gradients via haptotaxis.

From the results of Figs 3 and 4 it is clear that the interplay between the
endothelial cells, TAF and fibronectin is capable of producing lateral movement
of the cells. The incorporation of the chemotactic function χ(c) has also enabled
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Figure 6. Initial fibronectin concentration (maximum value at x = 0) and initial TAF
concentration profiles in the case of a circular or spherical tumor implant. The TAF
concentration profile approximates a gradient produced by a circular tumor source at
x = 1, y = 1

2 . The initial fibronectin concentration profile (ε2 = 0.45, k = 0.75) is
unchanged from Fig. 4.

the model to reproduce the experimental observations of Sholley et al. (1984).
We now use our model to focus on the experimental results of Muthukkaruppan

et al. (1982), where a single spherical tumor was implanted into the cornea of a
mouse and the resulting angiogenic response was observed. This involves solving
(8) numerically with an initial TAF concentration field given by (10) to represent
the TAF profile generated by a circular tumor implant. Figure 6 shows the initial
data for the circular TAF concentration profile (10) along with the fibronectin
initial profile (13). The parameter values used were ε2 = 0.45, k = 0.75 and
ν =

√
5−0.1√
5−1

. The tumor implant is centered at (1, 0.5) and the value of ν was
selected to ensure continuity of TAF concentration at r = 0.1 and a minimum
concentration of TAF in the domain at x = 0 approximately equal to its minimum
value in equation (12).

Using the above initial data and the boundary condition (9) we solved the system
(8) numerically with the parameter values D = 0.00035, α = 0.6, χ = 0.38,
ρ = 0.34, β = 0.05, γ = 0.1 and η = 0.1. Figure 7 shows the plots of the
endothelial-cell density profiles for t = 1–5. The profile at time t = 1 (1.5 days)
immediately shows the different effect of a circular tumor implant on the response
of the cells, with the outer clusters of endothelial cells initially seen to be moving
towards the central cluster. Comparing t = 2 (3 days) in Fig. 7 with Fig. 4, we
see that endothelial-cell migration is somewhat slower in Fig. 7. This is due to
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Figure 7. Spatiotemporal evolution of endothelial-cell density from a numerical simula-
tion of system (8) representing endothelial-cell migration from the parent vessel toward a
circular tumor implant with the initial fibronectin and TAF concentrations of Fig. 6 (see
text for parameter values). The initial three areas of high cell density are drawn towards
the centre of the domain where they coalesce and eventually form into one central area
with the region of highest cell density located at the leading edge. The color graduation is
directly proportional to the cell density, i.e., white is high density and black low density.

the fact that the gradient of TAF (10) is not as steep as before (12). As t increases
the outer clusters move laterally and two main clusters are then formed (t = 3,
4.5 days). These two clusters subsequently come together to form one large
central cluster of high cell density (t = 5, 7.5 days). Due to the slower migration
of endothelial cells in Fig. 7 and the rich spatiotemporal dynamic behavior that
is observed, we generated plots of the cell density distribution for later times,
t = 10–20 (15–30 days); Fig. 8 shows the subsequent evolution of the single
cluster. At t = 10 (15 days) we can see that there has been some lateral spread
as well as both forward and backward migration of cells. There is a region of
high cell density at the leading edge and also, interestingly, near the parent vessel
at x = 0. From time t = 12 (18 days) to time t = 15 (22.5 days), regions of high
cell density appear near the parent vessel and migrate forward and also laterally.
By a time of t = 20 (30 days), a small cluster of cells has reached the tumor.
At this stage interactions between the endothelial cells and the tumor cells now
become important and our model is no longer valid.

The above results show how both the geometry and size of the TAF gradient is
important. In changing the initial TAF concentration profile, we have been able
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Figure 8. Spatiotemporal evolution of endothelial-cell density from a numerical simula-
tion of system (8) representing endothelial-cell migration from the parent vessel toward
a circular tumor implant for later values of t (with the same parameter values and color
graduation as Fig. 7). There is now some movement of the regions of high cell density
back towards the parent vessel and eventual connection with the circular tumor at some
time between t = 15 and 20.

to produce motion of cells directed towards the tumor and also directed back
towards the parent vessel. The results are due to the interplay of chemotaxis and
haptotaxis and are therefore related to the distributions of both fibronectin and
TAF. From the results of Figs 3–8 it is clear that our simple model (8) is capable
of producing a wide range of spatiotemporal behaviour. The important points to
note are as follows.

1. Without haptotaxis, the regions of endothelial-cell density migrate directly
across the extracellular matrix to the tumor.

2. With haptotaxis, the regions of endothelial-cell density migrate more slowly,
with lateral movement between the clusters clearly visible.

3. With an appropriate choice of α, the endothelial cells do not connect with
the tumor.

We also note that the geometry of the tumor, and consequently the TAF con-
centration profile, clearly plays a role in influencing cell migration and therefore,
the shape of the capillary network. Although these results are qualitatively real-
istic, since we are dealing with a continuum model, the dependent variable in the
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endothelial-cell equation is endothelial-cell density. In the next section, we dis-
cuss a discrete form of equation (8) that enables us to follow the path of a single
endothelial cell located at a capillary sprout tip, and hence allows us to simulate
the growth of an individual capillary sprout (cf. Stokes and Lauffenburger, 1991).

4. THE DISCRETE MATHEMATICAL MODEL

Many different types of discrete models, such as coupled map lattice models,
fractal models, diffusion limited aggregation models and L-systems, have already
been developed to model general branching processes (including angiogenesis) in
a qualitative and phenomenological way (Bell et al., 1979; Bell, 1986; Gottlieb,
1990, 1991a, b; Düchting, 1990a, 1990b, 1992; Prusinkiewicz and Lindenmayer,
1990; Kiani and Hudetz, 1991; Landini and Misson, 1993; Indermitte et al.
1994; Düchting et al., 1996; Nekka et al., 1996). These discrete models may
be considered as particular examples of a wider class of discrete models, re-
ferred to generically as cellular automata models, which have been applied to
a wide range of problems in many areas of applied mathematics. An excellent
survey of cellular automata models applied specifically to biological systems can
be found in the paper of Ermentrout and Edelstein-Keshet (1993). Cellular au-
tomata models are discrete in time, space and state. They have the advantage of
being computationally fast and efficient, and can provide qualitative information
regarding a particular model without necessarily having to provide exact param-
eter values. They are also useful for providing a foundation upon which one can
construct a more detailed and precise mathematical model. However, one of the
main problems with cellular automata models is in defining the appropriate state
space. In certain situations, the transition from one state to another is clear, but,
in general, such distinctions do not exist. The spatial movement of individuals
in cellular automata models is governed mainly by nearest-neighbor interactions
and as such shares some similarity with the discrete model we will present be-
low. However, in general, the nearest-neighbor interactions for cellular automata
models are based on phenomenological rules, whereas, in our discrete model,
the movement rules are based directly on a discretized form of the continuous
model (8).

In this section we will develop a novel discrete mathematical model of tumor-
induced angiogenesis which will enable not only a qualitative but also a quan-
titative comparison with in vivo experimental results. The model will be based
around the assumption that the motion of an individual endothelial cell located
at the tip of a capillary sprout governs the motion of the whole sprout. This
is not unreasonable since the remaining endothelial cells lining the sprout-wall
are contiguous (Paweletz and Knierim, 1989; Stokes and Lauffenburger, 1991).
The particular technique which we will use to follow the path of an individ-
ual endothelial cell at a sprout tip is a development of the method used by
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Anderson et al. (1997) and first of all involves discretizing (using standard
finite-difference methods) the partial differential equation governing the rate of
change of endothelial-cell density (8). We then use the resulting coefficients of
the five-point finite-difference stencil to generate the probabilities of movement
of an individual cell in response to its local milieu. This technique differs from
the discrete model of Stokes and Lauffenburger (1991) in that the movement
of individual cells is based on a discrete form of the continuous model, but is
similar to that used by Weimar et al. (1992a, b) (wave propagation in excitable
media) and that of Dallon and Othmer (1997) (aggregation of Dictyostelium dis-
coideum). However, there is an element of stochasticity (randomness) in our
model in the movement rules for the cells. In effect, we will derive a biased
random-walk governing the motion of a single endothelial cell based on the sys-
tem of partial differential equations (8). In this sense, our discrete model is
probably most similar in formulation to the reinforced random-walk models of
Othmer and Stevens (1997), where cell movement is modeled in response to a
chemical stimulus by considering an equation (discrete in space and continuous
in time) governing the probability that a cell is at a given position at time t . This
equation is a function of the transition probabilities for one-step jumps to the
orthogonal neighbors. The form of the transition probabilities for the gradient
model of Othmer and Stevens (1997) is very similar to the probabilities of move-
ment that will be derived from our discrete model (see also Alt, 1980; Davis,
1990).

We now set about formulating the discrete model and deriving the movement
probabilities for an individual endothelial cell located at a sprout tip. Rules for
processes such as the generation of new capillary sprouts (branching) and the
fusion of two sprouts (anastomosis) will be described later. We first discretize
(8) using the Euler finite difference approximation (Mitchell and Griffiths, 1980).
This involves approximating the continuous two-dimensional domain [0, 1] ×
[0, 1] in the usual way as a grid of discrete points (mesh size h), and time (t)
by discrete increments (magnitude k). The full discretized system is given in the
Appendix. For clarity we only consider the endothelial-cell equation,

nq+1
l ,m = nq

l ,mP0 + nq
l+1,mP1 + nq

l−1,mP2 + nq
l ,m+1 P3 + nq

l ,m−1 P4, (14)

where the subscripts specify the location on the grid and the superscripts the time
steps. That is x = lh, y = mh and t = qk where l , m, k, q and h are positive
parameters.

In a numerical simulation of the continuous model (8), the purpose of the dis-
crete equation (14) is to determine the endothelial-cell density at grid position
(l ,m), and time q + 1, by averaging the density of the four surrounding neigh-
bors at the previous time step q. For our discrete model, we will use the five
coefficients P0–P4 from equation (14) to generate the motion of an individual
endothelial-cell. These coefficients can be thought of as being proportional to



Models of Tumor-induced Angiogenesis 877

the probabilities of the endothelial cell being stationary (P0) or moving left (P1),
right (P2), up (P3) or down (P4).

Each of the coefficients P1–P4 consists of three components,

Pn = random movement+ chemotactic+ haptotactic, (15)

thus showing how the discrete endothelial-cell equation is linked to the continu-
ous endothelial-cell equation of system (8). The coefficient P0 has a similar form
(see Appendix). Equation (15) is very similar to the transition probabilities of
the reinforced random-walk model of Othmer and Stevens (1997). In particular,
their gradient models have a random component and a ‘taxis’ component. Oth-
mer and Stevens (1997) used their discrete transition probabilities to then derive
a partial differential equation in the continuous limit. It is possible to show this
for our model by defining transition probabilities of the form (15). The original
equation governing the rate of change of endothelial-cell density (8) can then be
recovered by following the analysis of Othmer and Stevens (1997) in the same
rigorous manner.

The exact forms of P0–P4 involve functions of the fibronectin and TAF con-
centrations near an individual endothelial cell (see Appendix). Therefore, if there
were no fibronectin or TAF the values of P1–P4 would be equal, with P0 smaller
(or larger, depending on the precise values chosen for the space and time steps),
i.e., there is no bias in any one direction and the endothelial cell is less (more)
likely to be stationary—approximating an unbiased random-walk. However, if
there is a TAF gradient and no fibronectin gradient, chemotaxis dominates and
the coefficients P0–P4 will become biased towards the tumor source at x = 1
(see Fig. 3 for continuous results). The reverse is true if there is only a fi-
bronectin gradient and no TAF gradient, i.e., haptotaxis dominates. When both
gradients exist, the complex interplay between chemotaxis and haptotaxis will
bias the coefficients accordingly. The motion of an individual cell at the sprout
tip is therefore governed by its interactions with angiogenic factors and matrix
macromolecules in its local environment.

Before proceeding to the simulation section, we first of all discuss the manner
in which we explicitly incorporate the processes of branching and anastomosis
into the discrete model.

4.1. Rules for branching and anastomosis.While there is a good deal of in-
formation regarding the actual events of the generation of new sprouts (sprout
branching) and the formation of loops (anastomosis), there is no explanation as to
the precise mechanisms which cause them (Paweletz and Knierim, 1989). Figure
9 gives a schematic illustration of these processes which we will model explicitly
using the discrete model.
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Figure 9. Schematic representation of branching at a capillary sprout tip to produce two
new sprouts and anastomosis of two capillary sprouts to form a loop.

We will assume that the generation of new sprouts (branching) occurs only
from existing sprout tips. It is also reasonable to assume that the newly formed
sprouts are unlikely to branch immediately and that there must be a sufficient
number of endothelial cells, near the sprout tip, for new sprouts to form. We will
assume that the density of endothelial cells required for branching is inversely
proportional to the concentration of TAF, since the new sprouts become much
shorter as the tumor is approached, i.e., as the TAF concentration increases (cf.
Muthukkaruppan et al., 1982). From these assumptions we obtain the following
three conditions, which must be satisfied before a capillary sprout can branch at
its tip and generate a new sprout.

1. The age of the current sprout is greater than some threshold branching age
ψ , i.e., new sprouts must mature for a length of time at least equal to ψ
before being able to branch.

2. There is sufficient space locally for a new sprout to form, i.e., branching
into a space occupied by another sprout is not possible.

3. The endothelial-cell density is greater than a threshold level nb, where
nb ∝ 1

cl ,m
.

We note that these conditions have been chosen as one possible method for pro-
ducing new sprouts (branching) and that other equally valid choices are possible.

Given that each of the above three conditions is satisfied, we assume that each
sprout tip has a probability, Pb, of generating a new sprout (branching) and that
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this probability is dependent on the local TAF concentration. We therefore adopt
a positional information approach (Lewis et al., 1977; Wolpert, 1981), with the
simple rule that, as the TAF concentration increases, the probability of generating
new sprouts (branching) increases. Figure 10 shows how the probability of gen-
erating new sprouts (branching) varies with TAF concentration and subsequently
with space. The branching probabilities have been chosen on a qualitative basis,
i.e., very little branching occurs initially (near the parent vessel, e.g., limbus),
but as the endothelial cells migrate closer to the tumor (at x = 1) the number of
new sprouts slowly increases. A short distance from the tumor the frequency of
branching dramatically increases creating the ‘brush border’ effect.

Anastomosis, the formation of loops by capillary sprouts, is another very im-
portant feature of angiogenesis which can be captured explicitly by the discrete
model. As the sprouts progress towards the tumor, driven by the movement
probabilities of (14), at each time step of the simulation, the endothelial cells at
the sprout tips can move to any of the four orthogonal neighbors on the discrete
grid. If upon one of these moves another sprout is encountered, then anastomosis
can occur. Experiments have shown that the initial formation of anastomoses
occurs at a well-defined distance from the parent vessel (Paweletz and Knierim,
1989). For simplicity, we assume that, as a result of the anastomosis, only one
of the original sprouts continues to grow (the choice of which is purely random).
The schematic diagram of Fig. 9 shows the formation of a loop by anastomosis
of two individual capillary sprouts.

4.2. Simulation process for the discrete model.Each time step of the simula-
tion process involves solving the discrete form of the system (8) numerically to
generate the five coefficients P0–P4 (see Appendix). Probability ranges are then
computed by summing the coefficients to produce five ranges, R0 = 0–P0 and
Rj = ∑ j−1

i=0 Pi –
∑ j

i=0 Pi , where j = 1–4. We then generate a random number
between 0 and 1, and, depending on the range into which this number falls,
the current individual endothelial cell under consideration will remain stationary
(R0) or move left (R1), right (R2), up (R3) or down (R4). The larger a partic-
ular range, the greater the probability that the corresponding coefficient will be
selected. Each endothelial cell is therefore restricted to move to one of its four
orthogonal neighboring grid points or remain stationary at each time step.

All the simulations of the discrete model were carried out on a 200 × 200
grid, which is a discretization of the unit square, [0, 1] × [0, 1], with a space
step of h = 0.005. Given that our unit of length is 2 mm, this means that h
is equivalent to a dimensional length of 10 µm, i.e., approximately the length
of one or two endothelial cells (Paku and Paweletz, 1991). A discrete form of
the no-flux boundary condition (9) was imposed on the square grid, restricting
the endothelial cells to within the grid. The initial conditions in all simulations
(unless otherwise stated) are given by discrete forms of the fibronectin (13) and
TAF (12) equations. We assume that there are five capillary sprouts initiated by
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Figure 10. Positional branching probabilities in relation to the TAF concentration. The
probability of branching increases as the TAF concentration increases, i.e., as the tumor,
located at x = 1, is approached.

five endothelial cells located at the sprout tips. Three of them are located at the
maximum-density positions of the continuous endothelial-cell initial data (Fig. 2)
and the other two being placed between these. Therefore, we have endothelial
cells starting at y = 0.17, 0.3, 0.5, 0.65, 0.84 all at x = 0.

The parameter values used in the following simulations are the same as those
used in the previous two-dimensional continuous simulations (unless otherwise
stated), i.e., D = 0.00035, α = 0.6, χ = 0.38, ρ = 0.34, β = 0.05, γ = 0.1
and η = 0.1. Through trial and error it was found that a threshold branching
age of ψ = 0.5 (equivalent to a dimensional time of 0.75 days) produced simu-
lated networks which were qualitatively similar in morphology to those networks
observed in vivo.

4.3. Discrete model simulation results.As with the continuous two-dimensional
simulations we will initially consider our discrete model without the effect of
haptotaxis, i.e., ρ = 0. Figure 11 shows four snapshots in time of the capillary
sprouts progressing towards the tumor. The progress of the sprouts is almost
linear in each case, with little lateral motion (i.e., parallel to the y-axis) and no
contact between the initial sprouts and, therefore, no anastomosis. As the sprouts
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Figure 11. Spatiotemporal evolution of a capillary network from a numerical simulation
of the discrete model. The figure shows the endothelial cells at the capillary sprout tips
migrating from the parent vessel (x = 0) towards a line source of tumor cells (x = 1) in
the absence of haptotaxis (see text for parameter values). We observe that there is very
little lateral movement (in the y direction) or branching, no anastomosis and by t = 4
the sprouts connect with the tumor.

progress and near the tumor, there is a minimal amount of branching. Compar-
ing these results with the continuous equivalent in Fig. 3, we see that the sprout
progression matches well with the movement of the high areas of endothelial-cell
density. Owing to the inherent randomness of the discrete model, some of the
sprouts progress more slowly than others in Fig. 11. To show how the geometry
of the TAF concentration profile affects both the full system and the chemotaxis-
only system we use the same parameter values as above (i.e., no haptotaxis)
but with a discrete form of the circular TAF initial data (10). The four plots in
Fig. 12 show clearly how all five initial sprouts are drawn together towards the
maximum TAF concentration at (1, 1

2). There is some branching, but again there
is no anastomosis. Although some of the sprouts do encounter each other, they
do so far into the domain.

We next consider the model with the inclusion of haptotaxis. Using the original
initial data [i.e., linear profiles of TAF/fibronectin gradients from equations (12)
and (13)] with the haptotaxis coefficient ρ = 0.34 and the other parameters as
before, we generated the plots shown in Fig. 13. At t = 3 we see that anastomosis
has occurred between the second and third sprouts (from the top), and also that
the migration of the endothelial cells is slower than the chemotaxis-only results
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Figure 12. Spatiotemporal evolution of a capillary network from a numerical simulation
of the discrete model. The figure shows the migration of endothelial cells at the capillary
sprout tips in the absence of haptotaxis towards a circular TAF source, with the same
parameter values as Fig. 11. In this case the sprouts converge towards the middle of the
domain, but this is due solely to the circular geometry of the TAF concentration profile.
Very little anastomosis occurs and again the sprouts connect with the tumor by t = 4.

of Fig. 11. The lateral movement of sprouts in this case is governed solely by
haptotaxis and the interactions of the endothelial cells with the extracellular matrix
and not the geometry of the TAF concentration profile. As t increases, the sprouts
begin to branch and spread into the domain, contrasting with the linear, compact
endothelial-cell migration of the chemotaxis-only results (Fig. 11). As the tumor
is approached, the sprouts coalesce and form the ‘brush border’ observed by
Muthukkaruppan et al. (1982). Comparing the time t = 7.5 with t = 7 in the
continuous results (Fig. 4) we again see that the two match well.

We now discuss the simulations of endothelial-cell movement towards a circular
TAF source (representing a small solid tumor implant) and use a discrete form
of (10) with the parameter values the same as in Fig. 13. By t = 3 in Fig. 14,
we see that two of the sprouts have already achieved anastomosis, with another
two about to form a loop, and that one of the sprouts near y = 0.3 appears to be
moving away from the tumor back towards the parent vessel. This same sprout
continues to move towards the parent vessel (x = 0) until it reaches a steady
state between t = 15 and 20. Cell migration towards the tumor is slower than
in Fig. 13 which agrees well with the continuous results of Figs 7 and 8. This
is due, in part, to the shallower gradient of the circular TAF concentration initial
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Figure 13. Spatiotemporal evolution of a capillary network from a numerical simulation
of the discrete model. The figure shows the migration of endothelial cells at the capillary
sprout tips under the influence of both chemotaxis and haptotaxis towards a line source of
tumor cells situated at x = 1, with the same parameter values as Fig. 4. Anastomosis of
the second and third sprouts (from the top) and the branching of all sprouts is observed.
The formation of the dense ‘brush border’ is also evident.

data. The ‘brush border’ occurs further from the tumor than in Fig. 13, again
due to the gradient difference and subsequently the stronger haptotactic effect of
fibronectin. Comparing the profiles at t = 15 and 20 in Fig. 8 with those in
Fig. 14, the high-density regions are in good agreement with the results of the
discrete model. The simulations of Fig. 12 in comparison with those of Fig. 14
emphasize the importance of cell–matrix interactions via haptotaxis in achieving
both anastomosis and the generation of a sufficient vasculature.

The absence of cell proliferation in the model prevents the completion of an-
giogenesis and this is seen in both the continuous and discrete results (Figs 3 and
12). This is due to the incorporation of the chemotactic function χ(c), enabling
us to reproduce the experimental observations of Sholley et al. (1984) which
demonstrated that vascularization of the tumor did not occur in the absence of
cell proliferation. Due to the choice of parameters the sprouts reach a steady
state at x ≈ 0.9. By increasing the parameter α we are able to restrict the extent
of the network to a point closer to the parent vessel. This is analogous to as-
suming that the endothelial cells become desensitized at a lower concentration of
TAF. In order to accomplish vascularization, the endothelial cells must proliferate
and subsequently migrate the whole distance to the tumor. The incorporation of
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Figure 14. Spatiotemporal evolution of a capillary network from a numerical simulation
of the discrete model. The figure shows the migration of endothelial cells at the capillary
sprout tips under the influence of both chemotaxis and haptotaxis towards a circular tumor
implant, with the same parameter values as Fig. 7. Four of the five initial sprouts achieve
anastomosis and some sprouts are also seen to migrate backwards, i.e., away from the
tumor toward the parent vessel. Once again the formation of the ‘brush border’ is clearly
observed.

proliferation in the discrete model will be considered in the next section.
Finally, Fig. 15 shows the results of a simulation with a constant initial dis-

tribution of fibronectin as an initial condition, i.e., f (x, y, 0) = 0.4,∀x, y ∈
[0, 1] × [0, 1]. This represents a homogeneous initial distribution of pre-existing
fibronectin in the extracellular matrix. The initial TAF concentration profile was
taken to be the discrete form of (12). From the results shown in this figure,
it is clear that the structure of the capillary network produced is qualitatively
similar to the network structure of Fig. 13, but, due to the absence of an ini-
tial fibronectin gradient, the network progresses towards the tumor more quickly.
These results indicate that the precise initial distribution of fibronectin is not of
crucial importance in generating a realistic branched network. However, as we
have shown from the results of Fig. 11, the presence of fibronectin, or more
precisely, interaction between the cells and the extracellular matrix, is required
for the generation of realistic network structures.

4.4. Cell proliferation. As discussed in the introduction, during angiogenesis
there is initially no endothelial-cell proliferation. Cells are recruited from the
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Figure 15. Spatiotemporal evolution of a capillary network from a numerical simulation
of the discrete model. The two plots show the migration of endothelial cells at the cap-
illary sprout tips under the influence of both chemotaxis and haptotaxis with a constant,
homogeneous distribution of fibronectin [ f (x, y, 0) = 0.4] and a linear source of tumor
cells as initial conditions. The two plots clearly show the development of a branched
network which is similar in structure to that of Fig. 13.

parent vessel and migrate toward the tumor. Approximately 36–48 h into the
process, cell mitosis is observed (Sholley et al., 1984; Paweletz and Knierim,
1989) and is confined to a region just behind the sprout tip. Endothelial-cell
doubling time has been estimated at 18 h (Williams, 1987) and we model the
process of cell division in the discrete model by assuming that some of the cells
behind the sprout tip divide (into two daughter cells) every 18 h. We assume
that this has the effect of increasing the length of a sprout by approximately
one cell length every 18 h. In terms of the non-dimensional discrete model, this
is equivalent to the sprout length being increased by an amount h every half
time unit. Owing to the inherent randomness of the discrete model, proliferation
will occur asynchronously in separate sprouts, as is observed experimentally
(Paweletz and Knierim, 1989). This feature is captured by the discrete model as
the age of each cell at a sprout tip is known and this determines when mitosis
occurs. Figure 16 gives a schematic illustration of this process.

Figure 17 shows the results of incorporating endothelial-cell proliferation in the
discrete model as described above, with a linear source of tumor cells located at
x = 1. The parameter values and initial conditions for fibronectin and TAF are
as shown in Fig. 13. Cell proliferation is assumed to begin 48 h into the process,
i.e., at a (non-dimensional) time of t = 1.3, and cell doubling is assumed to occur
every 18 hr (t = 0.5). By t = 3 sprouts two and three (from the top) have almost
formed a loop. At this stage there is little difference between this developing
network and the corresponding network in Fig. 13. However, by t = 7.5, we see
that a well-developed branching network has already formed, with proliferation
providing additional extension of the sprouts, and by t = 10, the sprouts have
already connected with the tumor. This is in contrast with the corresponding
network in Fig. 13.
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Tip cell

Daughter cells

Mitotically active cells

Figure 16. Schematic representation of cell proliferation and subsequent sprout extension.
Cells behind the sprout tip undergo mitosis. Each of these mitotic cells divides and gives
rise to two daughter cells. The effect of this process is to extend the overall length of
the capillary sprout.

Figure 18 shows the results of incorporating endothelial-cell proliferation in the
discrete model (as described above), but this time with a circular tumor implant.
The parameter values and initial conditions for fibronectin and TAF are as per
Fig. 14. From the plots at t = 3 and t = 7.5, one can see that the developing
network is very similar in structure to that in Fig. 14. However, once again,
by t = 10 the sprouts have already connected with the tumor (in contrast with
Fig. 14) with the final structure of the network in Fig. 18 being less dense than
that in Fig. 14.

5. DISCUSSION AND CONCLUSIONS

The work we have presented here has developed a mathematical model for
tumor-induced angiogenesis using a novel blend of continuum, deterministic
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Figure 17. Spatiotemporal evolution of a capillary network from a numerical simulation
of the discrete model. The figure shows the migration of endothelial cells at the sprout
tips (with both chemotaxis and haptotaxis) towards a line source of tumor cells with
endothelial-cell proliferation. The network connects with the tumor after a time of
t = 10 and vascularization is achieved.

modeling and discrete, stochastic modeling in two space dimensions. Parameter
values for the models (in particular the length scale L , the cell random-motility
coefficient Dn, the TAF diffusion constant Dc, the chemotactic coefficient χ0 and
the endothelial-cell proliferation rate) were estimated, as far as possible, from
independent experimental measurements, thus grounding the results of the model
in a realistic framework.

The continuum model consists of a system of nonlinear partial differential
equations and examines how endothelial cells respond not only to angiogenic
cytokines (such as VEGF) via chemotaxis, but also to essential interactions with
extracellular matrix macromolecules (such as fibronectin) via haptotaxis. The re-
sults from the continuum-model simulations demonstrate two important aspects
of capillary-network formation. First, in agreement with previous models (e.g.,
Stokes and Lauffenburger, 1991; Chaplain and Stuart, 1993), a sufficiently strong
chemotactic response is necessary for the initial outgrowth of the capillary net-
work. Secondly, the model demonstrates the importance of interactions between
endothelial cells and the extracellular matrix. The inclusion of uptake terms for
the TAF and fibronectin by the cells enables the creation of local gradients around
the areas of high cell density which permits lateral migration. Without such inter-
actions, the model predicts that the cells move directly to the tumor without any
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Figure 18. Spatiotemporal evolution of a capillary network from a numerical simulation
of the discrete model. The figure shows the migration of endothelial cells at the sprout
tips (with both chemotaxis and haptotaxis) towards a circular source of tumor cells with
endothelial-cell proliferation. Once again the network connects with the tumor around
t = 10 and vascularization is achieved.

significant lateral movement. These results show that the important large-scale
features of angiogenesis can be captured qualitatively using a continuum model.
However, important processes on a smaller scale, such as sprout branching, are
not captured. This requires the development of a discrete model applicable at the
level of a single endothelial cell.

The discrete model that we developed was derived from a discretized form
of the partial differential equations of the continuum model, and permits the
tracking of individual endothelial cells located at the capillary sprout tip. This,
in turn, enables the path of the complete capillary sprout to be followed. Since
the parameter values used in the discrete model are directly related to those
of the continuum model, the results of the simulations of the discrete model
are therefore also firmly grounded in a realistic framework. In addition to this,
the discrete model enables us to explicitly incorporate rules for the production
of new sprouts (branching), the fusion of sprouts to form loops (anastomosis)
and sprout extension through endothelial-cell proliferation. The results from the
discrete model simulations confirm the predictions of the continuum model that
both chemotaxis and haptotaxis are necessary for the formation of a capillary
network at a large scale.

On a finer scale, the discrete model simulations produce capillary networks
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with a very realistic structure and morphology, capturing the early formation of
loops (anastomosis), the essential dendritic structure of a capillary network and
the formation of the experimentally observed ‘brush border’. The discrete model
also incorporates a realistic method of modeling mitosis and its effect on the
sprouts, i.e., actual extension in the length of the sprout due to cell division.

Owing to the manner in which the discrete model is derived [finite difference
approximation of equation (8)] and subsequently developed (the inclusion of
branching, anastomosis and sprout extension via cell proliferation) and then sim-
ulated [using the coefficients of equation (14) as probabilities of cell movement],
it shares some similarities with previous discrete models (Weimer et al., 1992a,
b), previous stochastic differential equation models (Stokes and Lauffenburger,
1991) and, most closely, with reinforced (or biased) random-walk models (Oth-
mer and Stevens, 1997). While reinforced random-walk models have not as yet
been applied to modeling angiogenesis, the probabilities governing endothelial-
cell movement in our discrete model are very similar to the transition probabilities
for cell movement in the gradient models of Othmer and Stevens (1997) where
such transition probabilities are taken as the basis for deriving a continuum ap-
proximation. If we apply this same procedure to the movement probabilities of
equation (15), we obtain a more general equation describing cell movement, with
arbitrary functional forms for χ(c) and ρ( f ). The equation for endothelial-cell
density in equation (8) can then be recovered by taking χ(c) to have the form of
equation (1) and choosing ρ( f ) = ρ. This procedure demonstrates, in a rigorous
manner, the link between the individual cell level and the population level.

Our discrete modeling techniques are therefore different to the discrete model of
angiogenesis of Stokes and Lauffenburger (1991), which is the closest comparable
model of angiogenesis at the individual cell level. Moreover, the inclusion of
fibronectin production and uptake by the endothelial cells, cell–matrix interactions
via haptotaxis, TAF uptake by the endothelial cells, and a more realistic approach
to the effects of cell proliferation on the extension of the sprouts, significantly
extends the work of Stokes and Lauffenburger (1991).

The results of the discrete model simulations emphasize the importance of
cell–matrix interactions in producing lateral motion of the sprouts. Subsequent
loop formation is, therefore, also dependent upon cell–matrix interactions. By
increasing the cell random motility coefficient by a factor of 10, therefore bring-
ing this parameter value in line with that used by Stokes and Lauffenburger
(1991), we generated capillary networks which were rather more disorganized
and lacking in structure. Experimental observations (Paweletz and Knierim,
1989; Paku and Paweletz, 1991) indicate that there this is very little random
motility of endothelial cells at the sprout tips, which is in line with the assump-
tions and results of our model. These findings are in contrast with the results
of Stokes and Lauffenburger (1991) where cell random motility played a crucial
role in determining the anastomosis of sprouts—without a sufficiently strong cell
random motility response, there was little loop formation. Finally, in the discrete
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model simulations, the timescale on which the capillary network formed (between
10 and 21 days in real time) correlates very well with experimental observations
(Gimbrone et al., 1974; Ausprunk and Folkman, 1977; Muthukkaruppan et al.,
1982).

We have also carried out simulations with an increased value for the chemotac-
tic coefficient χ , keeping ρ fixed. This leads to the capillary network reaching the
tumor in a shorter time and having a structure similar to those of the chemotaxis-
only results in Fig. 11, i.e., there was not as much lateral movement of the sprouts
and not as much branching of the sprouts. Other simulations using alternative
initial distributions of fibronectin (e.g., constant concentration throughout the
domain, cf. Fig. 15; less steep initial gradients) lead to capillary network struc-
tures having very similar overall morphology to the results presented in Figs 13
and 14. However, the presence of fibronectin in the matrix and a haptotactic
response from the endothelial cells is essential for realistic structures to be gen-
erated. These results would seem to imply an optimal chemotactic–haptotactic
response for the formation of a sufficiently well-connected vasculature. Finally,
simulations involving a range of different values of the parameters β, γ and η
between 0 and 1, indicated that the system is not particularly sensitive to changes
in these parameters.

Although the model has incorporated many of the important mechanisms in-
volved in the angiogenic process, some extensions of the model are still possible.
There is now clear experimental evidence that disrupting the transmembrane re-
ceptor tyrosine kinases (RTKs) has a direct effect on the structural morphogenesis
of the capillary network. Results show that disrupting the RTK Tie2 receptor of
endothelial cells leads to a poorly formed capillary network which lacks a full
branching structure (Dumont et al., 1994; Sato et al., 1995; Hanahan, 1997).
Therefore, the number of active receptors on the cell surface can have a direct
influence on the outcome of network structure. One way to extend the model fur-
ther would therefore be to consider the chemotactic function χ(c) as an explicit
function of the number of active TAF receptors, i.e., we could include an extra
equation for the receptor kinetics and couple this directly into the chemotactic
function (cf. Sherratt et al., 1993; Sherratt, 1994; Höfer et al., 1996). Experi-
mental studies have also shown that angiogenic cytokines such as VEGF, aFGF,
bFGF and angiogenin have a marked affinity for heparin and that these cytokines
are likely to exist in bound form, as well as soluble form, in the extracellular ma-
trix (D’Amore and Klagsbrun, 1984; Gospodarowicz et al., 1984; Lobb and Fett,
1984; Maciag et al., 1984; Sullivan and Klagsbrun, 1985). Taking these obser-
vations into account would involve modeling the distribution of heparin within
the matrix and the subsequent binding of TAF to the heparin.

The technique of using partial differential equations as the basis for discrete
models is clearly very useful, with the ability to generate movements of indi-
vidual cells based on a continuum model of a population of cells. Indeed, this
technique provides a powerful means of linking microscale events to macroscale
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events and individual behaviour to population behaviour, with potential applica-
tion to a wide range of problems in mathematical biology. Another advantage
of using this technique is the possibility of manipulating the underlying spatial
environment. For example, with respect to angiogenesis, the inclusion of an ob-
struction, such as a piece of cartilage, to block endothelial cell migration could
easily be incorporated or the inclusion of an underlying spatially heterogeneous
medium, which more faithfully reflects the make-up of an extracellular matrix,
could also be incorporated. Such theoretical experiments are already in progress.
The discrete model also offers a useful alternative to stochastic partial differential
equations (cf. Stokes and Lauffenburger, 1991), combining, in an elegant and
efficient way, the strengths of continuum models with the element of randomness.

Other important aspects of angiogenesis which can be added to the model
in the future include incorporating blood flow through the capillary network
(Muthukkarupann et al., 1982), the role of oxygen gradients and oxygen con-
centration (Knighton et al., 1981) and the role of macrophages (Polverini et al.,
1977; Knighton et al., 1983; Lewis et al., 1995). These aspects are also very
important to angiogenesis in wound healing.

Finally, we note that antiangiogenesis strategies, such as the preferential killing
of endothelial cells (Brooks et al., 1994), the inhibition of endothelial-cell prolif-
eration via a chemical such as angiostatin (O’Reilly et al., 1994), the development
of antichemotactic drugs (Bussolino et al., 1992) and the development of anti-
haptotactic drugs (Yamada and Olden, 1978), are now clinically recognized as
having enormous potential and promise in the treatment of patients with cancer
(Harris, 1997). In particular, their use as an adjuvant chemotherapy is being
recognized as a very effective way to treat secondary tumors (metastases), and
mathematical models of angiogenesis may have an increasingly important role to
play in the development and testing of these therapies.
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APPENDIX

To discretize the continuous system (8) we use Euler finite difference approxi-
mations (Mitchell and Griffiths, 1980), which leads to the system,

nq+1
l ,m = nq

l ,mP0 + nq
l+1,mP1 + nq

l−1,mP2 + nq
l ,m+1 P3 + nq

l ,m−1 P4,

f q+1
l ,m = f q

l ,m

[
1− kγnq

l ,m

]+ kβnq
l ,m,

cq+1
l ,m = cq

l ,m

[
1− kηnq

l ,m

]
,
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with x = lh, y = mh and t = pk.
The coefficient P0, which is proportional to the probability of no movement,

has the form,

P0 = 1 −4kD

h2
+ kαχ(cq

l ,m)

4h2(1+ αcq
l ,m)

[(
cq

l+1,m− cq
l−1,m

)2 + (cq
l ,m+1 − cq

l ,m−1

)2
]

−kχ(cq
l ,m)

h2

(
cq

l+1,m+ cq
l−1,m− 4cq

l ,m+ cq
l ,m+1 + cq

l ,m−1

)
−kρ

h2

(
f q
l+1,m+ f q

l−1,m− 4 f q
l ,m+ f q

l ,m+1 + f q
l ,m−1

)
,

and the coefficients P1, P2, P3 and P4, which are proportional to the probabilities
of moving left, right, up and down respectively, have the forms,

P1 = kD

h2
− k

4h2

[
χ(cq

l ,m)
(
cq

l+1,m− cq
l−1,m

)+ ρ ( f q
l+1,m− f q

l−1,m

)]
,

P2 = kD

h2
+ k

4h2

[
χ(cq

l ,m)
(
cq

l+1,m− cq
l−1,m

)+ ρ ( f q
l+1,m− f q

l−1,m

)]
,

P3 = kD

h2
− k

4h2

[
χ(cq

l ,m)
(
cq

l ,m+1 − cq
l ,m−1

)+ ρ ( f q
l ,m+1 − f q

l ,m−1

)]
,

P4 = kD

h2
+ k

4h2

[
χ(cq

l ,m)
(
cq

l ,m+1 − cq
l ,m−1

)+ ρ ( f q
l ,m+1 − f q

l ,m−1

)]
.

When there is no TAF or fibronectin in the same region as an endothelial cell,
P1–P4 are equal since the values of c and f are 0. Also when there is an equal
amount of TAF and fibronectin on either side of an endothelial cell (i.e., no gradi-
ent), the values (c, f )l ,m−1 and (c, f )l ,m+1 cancel each other out as do (c, f )l−1,m

and (c, f )l+1,m and thus P1–P4 are equal. Therefore, in both these circumstances
unbiased random movements will be produced. However, if there is more TAF
(fibronectin) on one side of the endothelial cell than the other, the probabilities
(P1–P4) will no longer be equal and hence directed movement towards the higher
concentration of TAF (fibronectin), will result. If both TAF and fibronectin gra-
dients exist then the probabilities will be biased by both gradients, depending on
the coefficients χ and ρ.
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