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I. Part 1 (5 points)

As described in the problem statement, gp120 is present on the surface of HIV. It binds to CD4 on the
surface of T-cells. After the initial binding event, CCR5 (also on the T-cell surface) also binds to gp120. We
are interested in describing these binding events using first-order rate equations for receptor-ligand bind-
ing. A schematic of the binding is shown in Figure 1A. Forward and reverse rate constants for gp-120 (R)
binding to CD4 (L1) to form the first complex, C1, are k1 and k2, respectively. The forward and reverse rate
constants for C1 binding to CCR5 (L2) to form the ternary complex, C2, are k3 and k4, respectively.

The rate equations describing these interactions are as follows:

dC1

dt
= k1RL1 − k2C1 − k3C1L2 + k4C2

dC2

dt
= k3C1L2 − k4C2

dL1

dt
= −k1RL1 + k2C1

dL2

dt
= −k3C1L2 + k4C2

dR
dt

= −k1RL1 + k2C1

For this problem, since gp120, CD4, and CCR5 are on a cell surface, I will explicitly choose units of
numbers per cell as opposed to the units of [M] we have been using for ligands. Thus, the mass balance
equations are:

L1,0 = L1 + C1 + C2

L2,0 = L2 + C2

RT = R + C1 + C2
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where L1,0, L2,0, and RT are the total number of CD4, CCR5, and gp120 molecules per cell, respec-
tively.

Note that you could also chose to express CD4 and CCR5 in [M], in which case L1,0 = L1 +
n

NA
C1 +

n
NA

C2
and L2,0 = L2 +

n
NA

C2, where L1,0 and L2,0 are the initial concentrations of CD4 and CCR5, respectively,
in [M]. n is the number of cells per volume, and NA is Avogadro’s number (number of molecules per
mole).

Assuming excess ligand gives the approximations, L1 ∼ L1,0 and L2 ∼ L2,0. Note that, unlike the examples
involving soluble ligands we’ve discussed in class, this implies that there is an excess of cell-surface
proteins available for binding relative to the number of complexes. This is probably still a fine assumption
given that the number of HIV particles binding to the cell at a given time is probabably small.

At steady state, all of the time differentials are zero.

Rearranging to eliminate R and C1, we can obtain an expression for full complexes, C2, as a function of
system inputs and parameters:

C2 =
RT L1,0L2,0

KD2(L1,0 + KD1) + L1,0L2,0

where KD4 = k2
k1

and KD5 = k4
k3

. It is the custom that the rate constants are denoted with lower case ’k’ and
the equilibrium constants are denoted with upper case ’K’. Also, note that there are many other algebraic
rearrangements of this that are also correct.

It’s a little hard to intuit the behavior of this equation. Thus, we could also rearrange to express full
complexes as:

C2 =
RT L2,0

KD2(1 + KD1
L1,0

) + L2,0

Getting the expression for C2 in this particular (rather familiar) form shows us that a plot of full complexes
as a function of CCR5 concentration, or L2,0, will have the same RT, regardless of CD4 concentration, or
L1,0. This highlights the importance of really looking at your equations and understanding them because,
for example, just looking at the graph at low concentrations of CD4 might lead you to believe that RT
appears to vary with CCR5. Further, this form highlights an apparent KD, KD,app = KD2(1 + KD1

L1,0
). Graphs

showing the effect of varying KD2 (Fig. 1B) or L2,0 (Fig. 1C) are shown in the figures at the end of this
document.

In grading this section I looked at your well-labeled schematics (1 point), your equations (1 point), a clear
statement of assumptions and their meanings and indication of the units of the different parameters (1
point), and getting the right solution (1 point). For the graphs (1 point), I was looking at whether you
varied some parameters and drew some conclusions from the graphs.

II. Part 2 (7 points)

For simplicity, we only consider the binding of gp120 (R) to CD4 (L1) in part 2. We also introduce the
inhibitor BMS-378806 (I). We first consider competitive binding where CD4 and BMS-378806 can bind to
gp120 in the same site. The forward and reverse reactions between gp120 and CD4 are again given rate
constants k1 and k2, respectively. Let the forward and reverse rate constants for gp120 and BMS-378806
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be k5 and k6, respectively. The equilibrium constants are KD1 = k2
k1

and KI =
k6
k5

. The gp120-CD4 complex
is still C1 and the gp-120-BMS complex is C3. Schematics are shown in Figure 2A.

The rate equations defining this system are:

dC1

dt
= k1RL1 − k2C1

dC3

dt
= k5RI − k6C3

dL1

dt
= −k1RL1 + k2C1

dI
dt

= −k5RI + k6C3

dR
dt

= −k1RL1 + k2C1 − k5RI + k6C3

Again, the units of our various components could be anything, so long as we are explicit about them.
Given that the experiment done in this case involves soluble CD4 and BMS binding to surface bound
gp120 in a well, I have chosen R, C1, and C3 to be expressed as molecules per well and L1 and I to be
expressed in [M]. Thus our mass balances are:

L1,0 = L1 +
C1

NAVw

RT = R + C1 + C2

I0 = I +
C3

NAVw

where RT is the total number of gp120 molecules per well, L1,0 is the initial concentration [M] of CD4, I0 is
the initial concentration [M] of BMS, Vw is volume of liquid per well, and NA is Avogadro’s number.

Once again, we will assume excess ligand (L1 ∼ L1,0 and I ∼ I0) and steady state (time differentials are
zero). Solving for C1 in terms of things we know or can measure gives:

C1 =
RT L1,0

KD1(1 + I0
KI
) + L1,0

Taking this a step further, we can say that:

C1 =
RT L1,0

KD1,app + L1,0

where KD1,app = KD1(1 + I0
KI
).

The point is that you know the general form that you are looking for (C = RT L0
KD+L0

), so you should try to
rearrange to get something that looks like that to make meaning out of the equations and the data. Many
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people got to C1 =
RT L1,0KD2

L1,0KD2+IKD1+KD1KD2
, and stopped. Dividing by KD2 and rearranging gives the more

intuitive form to work with.

Expressing the equation this way lets us see that in the presence of inhibitor, the number of CD4-gp120
complexes will appear to have a different KD1, but an unchanged RT. You should have a check in that for
I0 = 0 we get back the expression for single R-L equilibrium binding, C1 =

RT L1,0
KD1+L1,0

. It also shows us that
KD1,app should linearly increase with I!

Now we can get to business plotting the given data on a Scatchard plot. Rearranging, we get:

C1

L1,0
=

RT

KD1,app
− L1,0

KD1,app

Plotting the data on a Scatchard plot (Fig. 2B) and fitting for the slope and intercept, we obtain:

[BMS] (nM) 0 0.8 1.6 3.2
slope -0.97 -0.27 -0.16 -0.08
intercept 1.32 0.37 0.21 0.12
KD,app (nM) 1.03 3.75 6.30 11.82
RT (abs) 1.35 1.37 1.35 1.37

We can get KD1 = 1.03 nM from the BMS = 0 set and, averaging the RT values for all 4 lines, gives us that
RT = 1.36 in absorbance units! Further, if we plot KD,app vs. I (Fig. 2C), we see that it is a line with a
slope of 3.37. Thus, our data is consistent with a competitive binding mechanism and we can even solve
for KI = 0.31 nM! Amazing, no?

For this section, I was really looking for you to really use your model along with the data to make this type
of conclusion and really solve for the parameters because you can. The schematics (0.5 points), equations
(1 point), and assumptions (0.5 points) were rather simple. A correct solution was good (1 point) but
inspecting to see that you could turn it into a KD,app (in some way) was even better (1 point). The focus
was on using the data to make a Scatchard plot (1 point) and solving for RT, KD1, and KI (1.5 points) and
giving them the correct units. Finally, correctly explaining why the data was consistent with competitive
binding was looked at (0.5 points).

III. Part 3 (3 points)

For part 3, the question was rather ambiguous as to whether the new inhibitor bound to gp120 or CCR5.
The equations for inhibitor (I) binding to gp120(R) and changing the affinity for CCR5 (L2) binding to the
gp120-CD4 complex (C1) are given. Versions that explicitly pointed out that binding the inhibitor after the
gp120-CD4-CCR5 complex formed would not help, were also considered correct. Naming conventions
the same as in Part 1. Schematics are shown in Figure 3.

Let C3 be inhibitor bound to gp120-CD4 (C1) (with rate constants for this interaction, k5 and k6) and C4
be the quaternary complex of gp120-CD4-CCR5-inhibitor. The rate constants for binding of gp120-CD4-
inhibitor (C3) to CCR5 (L2) are k7 and k8 and those for binding of inhibitor to gp120-CD4-CCR5 (C2) are
k9 and k10 (phew!). All of this mess gives us the equations:

dC1

dt
= k1RL1 − k2C1 − k3C1L2 + k4C2 − k5C1 I + k6C3
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dC2

dt
= k3C1L2 − k4C2 − k9C2 I + k10C4

dC3

dt
= k5C1 I − k6C3 − k7C3L2 + k8C4

dC4

dt
= k7C3L2 − k8C4 + k9C2 I − k10C4

dL1

dt
= −k1RL1 + k2C1

dL2

dt
= −k3C1L2 + k4C2 − k7C3L2 + k8C4

dI
dt

= −k5C1 I + k6C3 − k9C2 I + k10C4

dR
dt

= −k1RL1 + k2C1

And we can write the epic mass balance equations for all of our many friends here:

L1,0 = L1 + C1 + C2 + C3 + C4

L2,0 = L2 + C2 + C4

RT = R + C1 + C2 + C3 + C4

I0 = I +
n

NA
(C3 + C4)

where L1,0, L2,0, and RT are the total number of CD4, CCR5, and gp120 molecules per cell, respectively,
and I0 is the molar concentration of inhibitor.

Of course, we don’t want to solve this, but the general idea is that we want an expression for (C2 + C4)
since this is ultimately the functional unit for HIV-T-cell binding. This expression should eliminate R, C1,
and C3 and will use the excess ligand assumption.

For this final bit, I was looking to make sure you could do the book keeping in this type of model when
things get hairy – basically trying to force you to use the pictures because you can’t just do this in your
head. I looked at schematics (1 point), equations (1 point), and some description of how you would solve
(1 point).
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Figure 2
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Figure 3

Y
gp120

R
gp120-CD4

C1

CD4
L1

k1

k2
Y

Y
gp120-CD4-CCR5

C2

CCR5
L2

k3

k4
Y

gp120-CD4
C1

Y
gp120-CD4-Inh

C3

Inhibitor
I

k5

k6
Y

gp120-CD4
C1

Y
gp120-CD4-CCR5-Inh

C4

CCR5
L2

k7

k8
Y

C3

Y
gp120-CD4-CCR5-Inh

C4

Inhibitor
I

k9

k10
Y

C2


